
Exploiting FPGA-Aware Merging of Custom
Instructions for Runtime Reconfiguration

Siew-Kei Lam*, Thambipillai Srikanthan
Centre for High Performance Embedded Systems,

Nanyang Technological University,
SINGAPORE.

Email: assklam@ntu.edu.sg*

Christopher T. Clarke
Department of Electronic and Electrical Engineering,

University of Bath,
Bath, United Kingdom.

Abstract— Runtime reconfiguration is a promising solution for
reducing hardware cost in embedded systems, without
compromising on performance. We present a framework that
aims to increase the advantages of runtime reconfiguration on
reconfigurable processors that support full or partial runtime
reconfiguration. The proposed framework incorporates a
hierarchical loop partitioning strategy that leverages FPGA-
aware merging of custom instructions to: 1) maximize the
reconfigurable logic block utilization in each configuration, and
2) reduce the runtime reconfiguration overhead. Experimental
results show that the proposed strategy leads to over 39%
average reduction in runtime reconfiguration overhead for
partial runtime reconfiguration. In addition, the proposed
strategy leads to an average performance gain of over 32% and
34% for full and partial runtime reconfiguration respectively.

Keywords- Custom instructions, FPGA, full/partial runtime
reconfiguration, loop partitioning, reconfigurable processors.

I. INTRODUCTION
Future system-on-chip platforms are expected to

incorporate reconfigurable processors [1] to leverage the
computational power of hardware while providing for high
instruction set programmability to meet the increasingly tight
time-to-market requirements. Reconfigurable processors enable
the basic instruction set of the microprocessor to be extended
by implementing custom instructions on the reconfigurable
space (e.g. Field Programmable Gate Arrays (FPGAs)).

Runtime reconfiguration enables the realization of low cost
systems without compromising on performance by allowing the
configuration of the hardware to change dynamically during
program execution. Although runtime reconfiguration is
possible in commercial FPGAs, the fine-grained programmable
structure of commercially available reconfigurable
architectures results in large reconfiguration overhead. In
addition, there is a lack of tools and methodologies to support
runtime reconfiguration in commercial FPGAs.

A framework is presented in this paper to rapidly identify a
suitable set of runtime configurations or temporal partitions
from a given application. Rapid area-time estimation of the
custom instructions in the temporal partitions are undertaken to
evaluate the benefits of runtime reconfiguration early in the
design cycle. The proposed framework incorporates a
hierarchical loop partitioning strategy that reduces the search

space complexity for determining full and partially
reconfigurable custom instructions. The framework leverages
the cluster merging technique that we proposed in [2] to
increase the benefits of runtime reconfiguration on
reconfigurable processors. In this paper, we target area-
constrained FPGAs with multi-bit logic blocks and bus-based
architecture that facilitate configuration memory sharing,
which is similar to [3]. We assume that the smallest possible
configuration unit is a multi-bit logic block. In this paper, we
assume that the logic blocks consist of 4-input LUTs that are
accompanied by fast carry propagation structure. Such logic
blocks can be found in commercial FPGA architectures.
Experiment results show that both the full and partial
reconfiguration models of the target FPGA can benefit notably
from the proposed cluster merging based hierarchical loop
partitioning strategy.

The paper is organized as follows: In the next section, we
discussed related work in runtime reconfiguration for
reconfigurable processors and temporal partitioning. Section 3
provides a brief description of the cluster merging technique. In
Section 4, we introduce the proposed framework for generating
runtime custom instruction configurations for area-constrained
reconfigurable processors. We will also provide detailed
description of the proposed hierarchical loop partitioning
strategy. Next, experimental results will be shown to
demonstrate the viability of the proposed strategy for
generating runtime configurations based on full and partial
reconfiguration models. We conclude the paper in Section 6.

II. RELATED WORK
Previous work has shown the benefits of runtime

reconfiguration on commercial reconfigurable processors. For
example, the work in [4] has demonstrated runtime
reconfiguration for JPEG and H.264 encoder/decoder on Xilinx
Virtex FPGA based reconfigurable processors. However, the
fine-grained programmable structure in commercial FPGAs
necessitates high reconfiguration overhead which may override
the speedup obtained through hardware acceleration. This
overhead is significant. For example, partial reconfiguration on
Xilinx Virtex FPGA [4] and the Stretch processor [5] is in the
order of milliseconds. Hence, FPGA architectures with multi-
bit logic blocks and bus-based architecture that facilitate
configuration memory sharing (e.g. [3]) is an attractive

proposition as they can fully exploit the advantages of runtime
reconfiguration.

Tools and methodologies also play an essential role to
select custom instructions that can mitigate the high
reconfiguration overhead in order to exploit the benefits of
runtime reconfiguration in reconfigurable processors. There are
many reported works in custom instruction selection but we
will not be discussing them here as it is not the focus of this
paper. The authors in [6] have provided a good review of the
work in this area. Tools and methodologies supporting runtime
reconfiguration on reconfigurable processors must also
incorporate efficient temporal partitioning strategies that take
into account the reconfiguration overhead. Temporal
partitioning is required to partition the application into
mutually exclusive configurations such that the area
requirement of each configuration is within the reconfigurable
resource capacity.

The following describes some previously reported work in
temporal partitioning. Integer Linear Programming (ILP) has
been used for temporal partitioning of application task graph in
[7]. This is accompanied by a loop transformation strategy that
aims to increase the throughput while minimizing the
reconfiguration overhead. The framework in [8] presented a
strategy that traverse the loop graph in a hierarchical top-down
fashion, while recursively combining nested loops. The work in
[9] presented a method that partitions and modifies custom
instructions so that they can be mapped onto coarse-grained
functional units. The authors in [10] presented a framework
which performs temporal partitioning of frequently executed
application loops. The framework assumes that custom
instruction versions and their corresponding hardware area-
time measures are available prior to the partitioning process.
Recently, we proposed a hierarchical partitioning strategy that
heuristically determines whether the application loops can be
merged with existing configurations or unfolded for further
evaluation in order to obtain a set of runtime configurations
that contain profitable custom instructions [11].

A. Our Contribution
We present a framework that performs temporal

partitioning on application loops, which constitute the most
frequently executed segments of embedded applications.
Unlike the framework in [10], our work does not assume the
availability of the hardware area-time measures prior to the
partitioning process. Instead, the proposed framework is
capable of rapidly estimating the hardware area-time
information of the custom instructions in the temporal
partitions without undergoing time consuming hardware
implementation. Unlike [8], the proposed hierarchical loop
partitioning strategy aims to maximize the performance gain of
each configuration by increasing the utilization of each
configuration and reducing the reconfiguration cost. In
particular, the proposed strategy employs cluster merging to
maximize the performance gain of the configurations. Finally,
unlike our previously reported work in [11], the proposed
hierarchical loop partitioning strategy in this paper employs k-
way partitioning approaches to maximize the performance gain
of each configuration and minimize the reconfiguration
overhead. In addition, our previous work does not exploit

cluster merging for runtime reconfiguration. We will also
demonstrate the advantages of the proposed framework for
both full and partial runtime reconfiguration in this paper.

III. CLUSTER MERGING
In [2], we proposed the cluster merging technique to

generate area-time efficient custom instructions. Figure 1
illustrates an example of cluster merging of two custom
instructions G1 and G2, with the assumption that there is only
one available output port. The cluster merging method first
partitions the custom instructions into a set of clusters such that
each cluster can be mapped onto a single FPGA logic block. In
Figure 1(a), G1 is partitioned into clusters 1

1C , 2
1C and 3

1C , and

G2 is partitioned into clusters 4
2C and 5

2C . Next, clusters from
different custom instructions are merged if the resulting merged
cluster can still be mapped onto a single FPGA logic block.
This process takes into account the architectural constraints of
the FPGA device for generating area-time efficient custom
instructions. It can be observed that the merged data-path in
Figure 1(b) is capable of performing the functionality of the
original custom instructions (yx ⊕ denotes x and y have been
merged).

Unlike the widely-used resource sharing method for area
optimization, the proposed cluster merging process does not
maximize sharing of common resources and this leads to less
reliance on multiplexers for implementing custom instructions.
The proposed method has been shown to achieve significantly
lower area-delay products when compared to commercial tools
and efficient resource sharing methods in the literature. For
example, when compared to commercial tools, the proposed
cluster merging technique can achieve over 40% average
reduction in area costs for certain FPGA devices. Further
details of the cluster merging technique can be found in [2].

1

1
C

4

2

1

1
CC ⊕

3

1C

5

2

2

1 CC ⊕

116⊕

3

1
C

2

1
C 4

2
C

5

2
C

Figure 1: Example of cluster merging for custom instructions G1 and G2

It is noteworthy that the results of cluster merging also
provide an area-time estimation of FPGA realization due to the
architecture-aware nature of the cluster merging process. For
example, the merged data-path in Figure 1(b) utilizes three
FPGA logic blocks and has a critical path delay that is
equivalent to the latency of three FPGA logic blocks. The
cluster generation technique used to partition the custom
instructions into clusters is formulated based on certain rule-

sets that define the architectural constraints of the target FPGA
logic blocks. Investigations show that the cluster generation
technique can estimate the average critical paths and area
measures of 150 custom instructions from sixteen applications,
to be within 3% and 1% respectively of those obtained using
hardware synthesis.

In the next section, we describe how the cluster merging
technique can lead to performance benefits for runtime
reconfiguration.

IV. PROPOSED METHOD
Figure 2 shows an overview of the proposed framework.

The framework relies on the Trimaran compiler infrastructure
[12] to generate the Intermediate Representation (IR) of the C-
application in the form of a Data Flow Graph (DFG). The IR
serves as input to the Custom Instruction Selection stage to
select a set of custom instructions. There are a large number of
previously reported works in Custom Instruction Selection [6],
all of which can be incorporated in the proposed framework.

Cluster merging is then performed on the selected custom
instructions to determine the merged clusters. As discussed in
Section 3, the results of cluster merging provides an indication
of the area costs and critical path delays of the custom
instructions when they are implemented on the reconfigurable
multi-bit logic blocks.

Figure 2: Framework for generating runtime configurations

A configuration graph is then generated to enable temporal
partitioning of loops using the proposed hierarchical loop
partitioning strategy. We will discuss the generation of the
configuration graph in the following sub-section. Note that the
partitioning strategy relies on the hardware estimation results
from the cluster merging process in order to obtain a set of
custom instruction configurations. In addition, the partitioning
strategy also utilizes the results from cluster merging to
increase the performance gain of the configurations and to
reduce reconfiguration cost.

A. Generating the Configuration Graph
The configuration graph is intended to provide visibility of

sections of the application that run together and hence would be
considered as a group for custom instruction reconfiguration.
Figure 3 shows an example of configuration graph generation
from the basic block trace of an application obtained from
Trimaran.

Figure 3: Generating configuration graph from basic block trace

We first convert the basic block trace into a weighted
Control Flow Graph (CFG), which encapsulates the control
flow between unique basic blocks and the corresponding
frequency. In particular, the weighted CFG is a directed graph
G(V,E,w), where V is a set of vertices that represent the unique
basic blocks in the basic block trace. An edge e ∈ E is an
ordered pair (u,v), where u, v ∈ V, that represents the control
flow between basic blocks u and v. Each edge (u,v) is
associated with a weight w that represents the frequency of the
control flow between u and v.

The configuration graph is a directed graph Gc(Vc,Ec,wc)
that is generated from the weighted CFG. Each vertex uc ∈ Vc
in the configuration graph, denoted as a configuration, is a set
of basic blocks (i.e. uc = {u1, u2, ..., uk} ∈ V) that are reachable
from one another. In other words, a cycle can be found between
any pair of basic blocks in a configuration. In addition, there
are no duplicated basic blocks in different configurations (i.e.
uc ∩ vc = ø, where uc, vc ∈ Vc and uc ≠ vc). For example in
Figure 3, configuration CG1 in the configuration graph consists
of basic blocks BB1, BB2, ... BB7, configuration CG3 in the
configuration graph consists of basic blocks BB8, BB9, ...
BB13, and configuration CG2 in the configuration graph
consists of basic blocks BB14, BB15, ... BB17. It is noteworthy
that the basic blocks in each configuration belong to
application loops, which are the most frequently executed
segments of embedded applications.

30010
00

60
00

500 1000 1000 40
00

6000

2000

10
00

10
00

60
00

60

100060

60

1000 40
0060

50

6000

200010
00 50

Figure 4: Example of hierarchical loop partitioning

We have used transitive closure to identify the existence of
cycles between each pair of basic block in the weighted CFG.
Other more efficient methods such as [13] can also be used for
identifying cycles. The acyclic graph is then generated by
collapsing the basic blocks into the corresponding
configurations. It can be observed that the edges of the
configuration graph are associated with a weight, which is the
sum of edge weights between basic blocks in different
configurations. Note that weights of the edges in the
configuration graph are typically very small, as these edges
represent the less occurring control flow between disjoint loops
in the application. Each configuration in the initial
configuration graph is a potential runtime configuration
candidate. Hence, the weight of an edge in the configuration
graph wc(uc,vc), where uc, vc ∈ Vc, represent the number of
times configuration uc is reconfigured to vc.

B. Hierarchical Loop Partitioning
The proposed hierarchical loop partitioning temporally

partitions the application loops, in a top-down fashion starting
from the initial acyclic configuration graph, into one or more
configurations such that the overall performance gain of
runtime reconfiguration is maximized. The final output of the
partitioning process is a set of configurations and the selected
custom instructions in each configuration.

Figure 4 shows an example of the proposed method. In the
initial step, the performance gain of the custom instructions in
each configuration is calculated. The performance gain is
computed by selecting the set of custom instructions in each
configuration that leads to the highest software cycle savings
while meeting the FPGA area constraint. In the subsequent
iterations of the partitioning process, each configuration is
partitioned into two new configurations. We have used the
multilevel 2-way partitioning algorithm in [13] to partition each
configuration into two equal-size parts with the objective to
minimize the edge-cut. The edge-cut is defined as the sum of

the weight of the straddling edges between the partitions. Each
new partition can be represented by a new vertex in Gc, which
represents a possible runtime configuration candidate. Note that
the partitioning also introduces additional edges in the
configuration graph which represents the straddling edges
between the basic blocks in the various partitions.

The effective performance gain for each new configuration
x ∈ Vc (in terms of software cycle savings) is computed as
shown in Eq. (1), where x

iG is a custom instruction in

configuration x,)(x
iGF is the execution frequency of instruction

x
iG ,)(x

iS GT denotes the number of operations in x
iG ,

)(x
iH GT is the estimated critical path delay of x

iG (inferred
from cluster merging), r is the ratio between the clock
frequency of the FPGA and base processor (r is chosen based
on the area-optimized configuration of the soft-core processor
in [13]), and x

RTRT is the reconfiguration cost of x. The area

utilization of all the custom instructions x
iG in x cannot exceed

the FPGA area constraint AFPGA (in terms of number of logic
blocks) as shown in Eq. (2). In our work, x

iG is selected from
the set of custom instructions in configuration x that leads to
the highest software cycle savings while meeting the FPGA
area constraint.

() () ()() x
RTR

c

i

x
iH

x
iS

x
i TGTrGTGFxSCS −⋅−⋅=∑)((1)

()∑ ≤=
c

i
FPGA

x
i AGAxA)((2)

()
() ()⎪⎩

⎪
⎨
⎧

−××

××
=
∑
∑

RTRpartialifnATxuw

RTRfullifATxuw
T

cFPGA
lb
RTRcc

FPGA
lb
RTRccx

RTR
,

,
(3)

The reconfiguration cost of configuration x is computed
differently for the full and partial reconfiguration model as
shown in Eq. (3). ()∑ xuw cc , is the sum of weights of the
incoming edges of x in the configuration graph. In other words,

()∑ xuw cc , represents the number of times configuration x

will be reconfigured on the FPGA at runtime. lb
RTRT is the

reconfiguration cost of a single multi-bit logic block [3] and is
measured in terms of software clock cycles. Finally, nc is the
number of common clusters/merged clusters in configuration x
and the previous configuration uc, i.e. (uc, x) ∈ Ec. For partial
reconfiguration, we can avoid reconfiguring logic blocks with
common clusters/merged clusters in two consecutive
configurations.

For each partition solution, the total performance gain of
the resulting partitions is compared to the performance gain of
the initial configuration. If the post-partition performance is
less than the initial performance, then the new partitions are
discarded and the initial configuration is restored. This can be
observed in Iteration 2 of Figure 4, where some of the
configurations in Iteration 1 do not lead to any further
partitions. The partition process is repeated until no new
partitions are formed in a particular iteration. The final set of
partitions is the runtime configurations. Note that the proposed
hierarchical partitioning strategy reduces the search space by
avoiding further partitioning if the resulting partitions do not
lead to higher performance.

PARTITION-LOOP (Gc, AFPGA)

 1. partition_exist := true
 2. while (partition_exist = true) {
 3. partition_exist := false
 4. for each node uc ∈ Gc {
 5. SCS(uc) = CAL-GAIN (uc, AFPGA)
 6. remove uc from Gc

 7. 21, cc uu = 2-WAY-PARTITION (uc)

 8. insert 1
cu and 2

cu in Gc

 9. SCS(1
cu) = CAL-GAIN (1

cu , AFPGA)

 10. SCS(2
cu) = CAL-GAIN (2

cu , AFPGA)

 11. if SCS(1
cu) + SCS(2

cu) < SCS(uc) {
 12. restore uc in Gc

 13. remove 1
cu and 2

cu from Gc }
 14. else partition_exist := true }}
 15. return Gc

Figure 5: Pseudo code for hierarchical loop partitioning

Figure 5 shows the pseudo code for the proposed
hierarchical loop partitioning strategy. In each iteration (lines
4-14), the performance gain of each existing configuration in
the configuration graph Gc is first evaluated (line 5) using the
function CAL-GAIN and temporarily removed from Gc (line 6).
The existing configuration is then partitioned into two smaller
configurations using the 2-WAY-PARTITION function (line 7)
and the new configurations are inserted into Gc along with the
corresponding edges (line 8). The performance gain of the two

new configurations is evaluated (lines 9-10) and compared to
the performance gain of the initial configuration (line 11). In
the event that the partitioning has led to less favorable
performance gain, the initial partition is restored (line 12) in the
configuration graph and the new configurations are removed
from the configuration graph (line 13). When no new partitions
are generated in an iteration (evaluated in line 2), the algorithm
returns the configuration graph consisting of the final set of
configurations (line 15).

V. EXPERIMENTAL RESULTS
Runtime reconfiguration on reconfigurable processors is

only feasible for applications where the performance of the
custom instructions can mitigate the high reconfiguration
overhead of the FPGA architecture. The proposed framework
employs cluster merging to increase the utilization of each
configuration by packing larger number of profitable custom
instructions in each configuration. In addition, cluster merging
may lead to reduction in the partial reconfiguration cost due to
larger number of common basic/merged cluster realizations in
consecutive runtime configurations. Hence, the proposed
strategy can lead to high performance benefits if most of the
profitable custom instructions in the application have common
clusters.

Table I reports the cluster statistics from Cjpeg application
[15]. The first column lists the number of selected custom
instructions, the second column lists the number of basic
clusters that are obtained using the clustering technique, the
third column lists the number of unique basic clusters, and the
final column reports the number of unique basic/merged
clusters after the cluster merging. The unique clusters in the
third and fourth column of Table I is the set of non-isomorphic
clusters before and after cluster merging respectively. It can be
observed that on average over 71% of the basic clusters in the
application are isomorphic. The number of unique clusters can
be further reduced by 50% through cluster merging. The
notable number of isomorphic clusters found in Cjpeg provides
a strong justification for adopting the cluster-based runtime
reconfiguration approach.

TABLE 1: CLUSTER STATISTICS FOR CJPEG APPLICATION

Custom
Instructions Basic Clusters

Unique Clusters
(Before Cluster

Merging)

Unique Clusters
(After Cluster

Merging)
90 191 54 27

In this section, we will evaluate the proposed hierarchical

loop partitioning strategy for both full reconfiguration and
partial reconfiguration models. In addition, we will also
investigate the impact of cluster merging on increasing the
performance gain of runtime reconfigurable RISPs.

A. Full Reconfiguration
The full reconfiguration model requires the complete

reprogramming of the entire configuration memory during
runtime reconfiguration. Figure 6 shows the total runtime
reconfiguration cost (primary axis), which is calculated using
Eq. (3), and the number of configurations (secondary axis) for
the full reconfiguration model. These values are obtained for

varying FPGA area constraints (in terms of number of logic
blocks), i.e. 2% to 20% of the maximum FPGA area that is
required to implement all the selected custom instructions.

0

1

2

3

4

0

1000000

2000000

3000000

4000000

5000000

6000000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ru
nt

im
e

Re
co

nf
ig

ra
tio

n
Co

st

Logic Block (%)

Cjpeg

Full RTR (No Cluster Merging) Full RTR (Cluster Merging)

Full RTR (No Cluster Merging) Full RTR (Cluster Merging)

Figure 6: Runtime reconfiguration cost and number of partitions for full
reconfiguration model

It can be observed that in general (except for cases where
the area constraint is less than 6%), the runtime reconfiguration
cost where cluster merging is not considered during
hierarchical loop partitioning (denoted as No Cluster Merging),
is lower than the case where cluster merging is considered
during hierarchical loop partitioning (denoted as Cluster
Merging). This is due to the fact that when cluster merging is
taken into account during hierarchical loop partitioning, more
configurations are generated as shown in Figure 6. Hence, the
number of times the FPGA undergoes reconfiguration at
runtime also increases for Cluster Merging. The gradual
increase in reconfiguration cost for area constraint larger than
5% is due to the increase in the number of logic blocks that
undergo runtime reconfiguration for the full reconfiguration
model.

 Figure 7 compares the performance between No Cluster
Merging and Cluster Merging for the full reconfiguration
model. The performance is calculated by summing up the
software cycle savings of all the configurations (calculated
using Eq. (1)). In addition, the performance without runtime
reconfiguration (No RTR) is also shown in Figure 7. In order to
obtain the performance of No RTR, a greedy algorithm is used
to select a set of custom instructions that lead to the highest
performance while meeting the area constraint. Hierarchical
loop partitioning is not employed for No RTR.

It can be observed that No Cluster Merging outperforms No
RTR only for a few cases when the area constraint is less than
6%. Thereafter, there is no significant difference between the
performance of No Cluster Merging and No RTR. On the other
hand, Cluster Merging outperforms both No RTR and No
Cluster Merging for almost all the cases (except for the case
where the area constraint is 20%). In particular, on average,
Cluster Merging outperforms No RTR and No Cluster Merging
by 45.6% and 32.9% respectively. It is noteworthy that Cluster

Merging can outperform No Cluster Merging by over 77% (i.e.
for an area constraint of 4%). In addition, Cluster Merging
outperforms No RTR by two times or more for area constraints
2%, 3% and 5%. The performance gain of Cluster Merging
over the No RTR and No Cluster Merging gradually decreases
when the area constraint is more relaxed due to the increase in
reconfiguration cost as shown in Figure 6.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
ft

w
ar

e
Cy

cl
e

Sa
vi

ng
s

Logic Blocks (%)

Cjpeg

Full RTR (No Cluster Merging) Full RTR (Cluster Merging) No RTR

Figure 7: Performance gain for full reconfiguration model

These results show that cluster merging can effectively
increase the utilization of the configurations, which has led to
the generation of a larger number of configurations. This in
turn has resulted in higher performance benefits for the full
reconfiguration model.

B. Partial Reconfiguration
Partial reconfiguration enables a portion of the

configuration memory to be programmed during runtime
reconfiguration and hence this can lead to higher savings in the
runtime reconfiguration cost. Figure 8 shows the total runtime
reconfiguration cost (primary axis), which is calculated using
Eq. (3), and the number of configurations (secondary axis) for
the partial reconfiguration model. The range of area constraint
is the same as the previous sub-section.

It can be observed that similar to the full reconfiguration
method, the number of configurations obtained using the
proposed method without considering cluster merging (denoted
as No Cluster Merging) is generally lower than the number of
configurations obtained using the proposed method that takes
into account cluster merging (denoted as Cluster Merging).
However, unlike the full reconfiguration model, the runtime
reconfiguration cost of Cluster Merging is lower than No
Cluster Merging for all the area constraints considered. On
average, Cluster Merging has 39.6% lesser reconfiguration cost
compared to No Cluster Merging. The maximum percentage of
reduction in configuration cost is 49.4% when the area
constraint is 6% of the maximum FPGA area. These results
imply that cluster merging is capable of reducing the runtime

reconfiguration cost due to the increase in common
basic/merged clusters in consecutive configurations.

0

1

2

3

4

0

20000

40000

60000

80000

100000

120000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ru
nt

im
e

Re
co

nf
ig

ra
tio

n
Co

st

Logic Block (%)

Cjpeg

Partial RTR (No Cluster Merging) Partial RTR (Cluster Merging)

Partial RTR (No Cluster Merging) Partial RTR (Cluster Merging)

Figure 8: Runtime reconfiguration cost and number of partitions for partial

reconfiguration model

Figure 9 compares the performance between No Cluster
Merging and Cluster Merging for the partial reconfiguration
model. The performance of No RTR is also shown. Firstly, it
can be observed that the partial reconfiguration model leads to
higher performance than the full reconfiguration model. For
example, unlike the full reconfiguration model, Cluster
Merging in the partial reconfiguration model still outperforms
No RTR when the area constraint is 20% of the maximum
FPGA area. However No Cluster Merging outperforms No
RTR for only a few cases when the area constraint is less than
6%. This shows the significance of cluster merging for
increasing the performance of runtime reconfiguration for the
partial reconfiguration model. It is also evident that Cluster
Merging outperforms both No RTR and No Cluster Merging for
all cases. In particular, on average, Cluster Merging
outperforms No RTR and No Cluster Merging by 52.2% and
34.9% respectively. In addition, Cluster Merging can
outperform No Cluster Merging by over 86% (i.e. for area
constraint of 4%). Similar to the full reconfiguration model,
Cluster Merging outperforms No RTR by two times or more for
area constraints 2%, 3% and 5%. Specifically, a maximum
performance gain of up to 2.94 times can be observed when the
area constraint is 2% of the maximum FPGA area.

These results show that cluster merging can lead to higher
performance benefits for the partial reconfiguration model in
two ways: 1) increasing the utilization of the configurations,
and 2) reducing the runtime reconfiguration cost.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
ft

w
ar

e
Cy

cl
e

Sa
vi

ng
s

Logic Blocks (%)

Cjpeg

Partial RTR (No Cluster Merging) Partial RTR (Cluster Merging) No RTR

Figure 9: Performance gain for partial reconfiguration model

I. CONCLUSION
A framework which aims to maximize the performance of

custom instructions through runtime reconfiguration, while
minimizing the reconfiguration overhead has been presented.
The proposed framework incorporates a hierarchical loop
partitioning strategy which employs cluster merging to enable a
larger number of profitable custom instructions to be
implemented in each configuration. Experimental results show
that this also leads to the generation of more configurations
containing profitable custom instructions. In addition,
hierarchical loop partitioning with cluster merging can achieve
significant reduction in the reconfiguration cost for the partial
reconfiguration model. This is due to the fact that cluster
merging results in a larger number of common basic/merged
cluster realizations in consecutive runtime configurations.
Experiment results show that both the full and partial runtime
reconfiguration can benefit notably from the proposed cluster
merging based hierarchical loop partitioning strategy. Finally,
the benefits of cluster-based runtime reconfiguration for a
given application can be easily determined by analyzing the
percentage of isomorphic clusters in the selected custom
instructions.

REFERENCES
[1] Francisco Barat, Rudy Lauwereins and Geert Deconinck,

"Reconfigurable Instruction Set Processors from a
Hardware/Software Perspective", IEEE Transactions on
Software Engineering, Vol. 28, No. 9, September 2002, pp. 847-
862

[2] S.K. Lam, T. Srikanthan and C.T. Clarke, "Architecture-Aware
Technique for Mapping Area-Time Efficient Custom
Instructions onto FPGAs", IEEE Transactions on Computers,
Vol. 60, No. 5, May 2011, pp. 680-692

[3] A.G. Ye and J. Rose, "Using Bus-Based Connections to Improve
Field-Programmable Gate-Array Density for Implementing
Datapath Circuits", IEEE Transactions on Very Large Scale
Integration Systems, Vol. 14, No. 5, May 2006, pp. 462-473.

[4] L. Bauer, M. Shafique, S. Kramer and J. Henkel, "RISPP:
Rotating Instruction Set Processing Platform", ACM/IEEE/EDA
44th Design Automation Conference, June 2007, pp.791-796.

[5] Stretch Inc., "S6000 Family Software Configurable Processors",
Online: http://www.stretchinc.com/products/s6000.php

[6] Carlo Galuzzi and Koen Bertels, "The Instruction-Set Extension
Problem: A Survey", International Workshop on Applied
Reconfigurable Computing (ARC), March 2008, pp. 209-220.

[7] M. Kaul, R. Vemuri, S. Govindarajan and I. Ouaiss, "An
Automated Temporal Partitioning and Loop Fission Approach
for FPGA based Reconfigurable Synthesis of DSP
Applications", Design Automation Conference, 1999, pp. 616-
622.

[8] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure and J.
Stockwood, "Hardware-Software Co-Design of Embedded
Reconfigurable Architectures", Design Automation Conference,
2000, pp. 507-512.

[9] Farhad Mehdipour, Hamid Noori, Morteza Saheb Zamani,
Kazuaki Murakami, Mehdi Sedighi and Koji Inoue, "An
Integrated Temporal Partitioning and Mapping Framework for
Handling Custom Instructions on a Reconfigurable Functional
Unit", Asia-Pacific Computer Systems Architecture Conference,
August 2006, pp. 219-230.

[10] H.P. Huynh, J.E. Sim and T. Mitra, "An Efficient Framework
for Dynamic Reconfiguration of Instruction-Set Customization",
Design Automation for Embedded Systems, Vol. 13, No. 1-2,
June 2009, pp. 91-113.

[11] S.K. Lam, Y. Deng, J. Hu, X. Zhou and T. Srikanthan,
"Hierarchical Loop Partitioning for Rapid Generation of
Runtime Configurations", 6th International Symposium on
Applied Reconfigurable Computing, March 2010, pp. 282-293.

[12] Trimaran: An Infrastructure for Research in Instruction-Level
Parallelism, Online: http://www.trimaran.org

[13] G. Ramalingam, "Identifying Loops in Almost Linear Time",
ACM Transactions on Programming Languages and Systems,
Vol. 21, No. 2, March 1999, pp. 175-188.

[14] George Karypis and Vipin Kumar, "A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes and
Computing Fill-Reducing Orderings of Sparse Matrices",
University of Minnesota, September 1998.

[15] Daniel Mattson and Marcus Christensson, “Evaluation of
Synthesizable CPU Cores”, M.S. thesis, Chalmers University of
Technology, Gothenburg, Sweden, 2004.

[16] The Embedded Microprocessor Benchmark Consortium, Online:
http://www.eembc.org/home.php.

