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Abstract— Runtime reconfiguration is a promising solution for 
reducing hardware cost in embedded systems, without 
compromising on performance. We present a framework that 
aims to increase the advantages of runtime reconfiguration on 
reconfigurable processors that support full or partial runtime 
reconfiguration. The proposed framework incorporates a 
hierarchical loop partitioning strategy that leverages FPGA-
aware merging of custom instructions to: 1) maximize the 
reconfigurable logic block utilization in each configuration, and 
2) reduce the runtime reconfiguration overhead. Experimental 
results show that the proposed strategy leads to over 39% 
average reduction in runtime reconfiguration overhead for 
partial runtime reconfiguration. In addition, the proposed 
strategy leads to an average performance gain of over 32% and 
34% for full and partial runtime reconfiguration respectively. 

Keywords- Custom instructions, FPGA, full/partial runtime 
reconfiguration, loop partitioning, reconfigurable processors. 

I.  INTRODUCTION  
Future system-on-chip platforms are expected to 

incorporate reconfigurable processors [1] to leverage the 
computational power of hardware while providing for high 
instruction set programmability to meet the increasingly tight 
time-to-market requirements. Reconfigurable processors enable 
the basic instruction set of the microprocessor to be extended 
by implementing custom instructions on the reconfigurable 
space (e.g. Field Programmable Gate Arrays (FPGAs)). 

Runtime reconfiguration enables the realization of low cost 
systems without compromising on performance by allowing the 
configuration of the hardware to change dynamically during 
program execution. Although runtime reconfiguration is 
possible in commercial FPGAs, the fine-grained programmable 
structure of commercially available reconfigurable 
architectures results in large reconfiguration overhead. In 
addition, there is a lack of tools and methodologies to support 
runtime reconfiguration in commercial FPGAs. 

A framework is presented in this paper to rapidly identify a 
suitable set of runtime configurations or temporal partitions 
from a given application. Rapid area-time estimation of the 
custom instructions in the temporal partitions are undertaken to 
evaluate the benefits of runtime reconfiguration early in the 
design cycle. The proposed framework incorporates a 
hierarchical loop partitioning strategy that reduces the search 

space complexity for determining full and partially 
reconfigurable custom instructions. The framework leverages 
the cluster merging technique that we proposed in [2] to 
increase the benefits of runtime reconfiguration on 
reconfigurable processors. In this paper, we target area-
constrained FPGAs with multi-bit logic blocks and bus-based 
architecture that facilitate configuration memory sharing, 
which is similar to [3]. We assume that the smallest possible 
configuration unit is a multi-bit logic block. In this paper, we 
assume that the logic blocks consist of 4-input LUTs that are 
accompanied by fast carry propagation structure. Such logic 
blocks can be found in commercial FPGA architectures. 
Experiment results show that both the full and partial 
reconfiguration models of the target FPGA can benefit notably 
from the proposed cluster merging based hierarchical loop 
partitioning strategy. 

The paper is organized as follows: In the next section, we 
discussed related work in runtime reconfiguration for 
reconfigurable processors and temporal partitioning. Section 3 
provides a brief description of the cluster merging technique. In 
Section 4, we introduce the proposed framework for generating 
runtime custom instruction configurations for area-constrained 
reconfigurable processors. We will also provide detailed 
description of the proposed hierarchical loop partitioning 
strategy. Next, experimental results will be shown to 
demonstrate the viability of the proposed strategy for 
generating runtime configurations based on full and partial 
reconfiguration models. We conclude the paper in Section 6. 

II. RELATED WORK 
Previous work has shown the benefits of runtime 

reconfiguration on commercial reconfigurable processors. For 
example, the work in [4] has demonstrated runtime 
reconfiguration for JPEG and H.264 encoder/decoder on Xilinx 
Virtex FPGA based reconfigurable processors. However, the 
fine-grained programmable structure in commercial FPGAs 
necessitates high reconfiguration overhead which may override 
the speedup obtained through hardware acceleration. This 
overhead is significant. For example, partial reconfiguration on 
Xilinx Virtex FPGA [4] and the Stretch processor [5] is in the 
order of milliseconds. Hence, FPGA architectures with multi-
bit logic blocks and bus-based architecture that facilitate 
configuration memory sharing (e.g. [3]) is an attractive 



proposition as they can fully exploit the advantages of runtime 
reconfiguration. 

Tools and methodologies also play an essential role to 
select custom instructions that can mitigate the high 
reconfiguration overhead in order to exploit the benefits of 
runtime reconfiguration in reconfigurable processors. There are 
many reported works in custom instruction selection but we 
will not be discussing them here as it is not the focus of this 
paper. The authors in [6] have provided a good review of the 
work in this area. Tools and methodologies supporting runtime 
reconfiguration on reconfigurable processors must also 
incorporate efficient temporal partitioning strategies that take 
into account the reconfiguration overhead. Temporal 
partitioning is required to partition the application into 
mutually exclusive configurations such that the area 
requirement of each configuration is within the reconfigurable 
resource capacity.  

The following describes some previously reported work in 
temporal partitioning. Integer Linear Programming (ILP) has 
been used for temporal partitioning of application task graph in 
[7]. This is accompanied by a loop transformation strategy that 
aims to increase the throughput while minimizing the 
reconfiguration overhead. The framework in [8] presented a 
strategy that traverse the loop graph in a hierarchical top-down 
fashion, while recursively combining nested loops. The work in 
[9] presented a method that partitions and modifies custom 
instructions so that they can be mapped onto coarse-grained 
functional units. The authors in [10] presented a framework 
which performs temporal partitioning of frequently executed 
application loops. The framework assumes that custom 
instruction versions and their corresponding hardware area-
time measures are available prior to the partitioning process. 
Recently, we proposed a hierarchical partitioning strategy that 
heuristically determines whether the application loops can be 
merged with existing configurations or unfolded for further 
evaluation in order to obtain a set of runtime configurations 
that contain profitable custom instructions [11]. 

A. Our Contribution 
We present a framework that performs temporal 

partitioning on application loops, which constitute the most 
frequently executed segments of embedded applications. 
Unlike the framework in [10], our work does not assume the 
availability of the hardware area-time measures prior to the 
partitioning process. Instead, the proposed framework is 
capable of rapidly estimating the hardware area-time 
information of the custom instructions in the temporal 
partitions without undergoing time consuming hardware 
implementation. Unlike [8], the proposed hierarchical loop 
partitioning strategy aims to maximize the performance gain of 
each configuration by increasing the utilization of each 
configuration and reducing the reconfiguration cost. In 
particular, the proposed strategy employs cluster merging to 
maximize the performance gain of the configurations. Finally, 
unlike our previously reported work in [11], the proposed 
hierarchical loop partitioning strategy in this paper employs k-
way partitioning approaches to maximize the performance gain 
of each configuration and minimize the reconfiguration 
overhead. In addition, our previous work does not exploit 

cluster merging for runtime reconfiguration. We will also 
demonstrate the advantages of the proposed framework for 
both full and partial runtime reconfiguration in this paper. 

III. CLUSTER MERGING 
In [2], we proposed the cluster merging technique to 

generate area-time efficient custom instructions. Figure 1 
illustrates an example of cluster merging of two custom 
instructions G1 and G2, with the assumption that there is only 
one available output port. The cluster merging method first 
partitions the custom instructions into a set of clusters such that 
each cluster can be mapped onto a single FPGA logic block. In 
Figure 1(a), G1 is partitioned into clusters 1

1C , 2
1C  and 3

1C , and 

G2 is partitioned into clusters 4
2C  and 5

2C . Next, clusters from 
different custom instructions are merged if the resulting merged 
cluster can still be mapped onto a single FPGA logic block. 
This process takes into account the architectural constraints of 
the FPGA device for generating area-time efficient custom 
instructions. It can be observed that the merged data-path in 
Figure 1(b) is capable of performing the functionality of the 
original custom instructions ( yx ⊕  denotes x and y have been 
merged). 

Unlike the widely-used resource sharing method for area 
optimization, the proposed cluster merging process does not 
maximize sharing of common resources and this leads to less 
reliance on multiplexers for implementing custom instructions. 
The proposed method has been shown to achieve significantly 
lower area-delay products when compared to commercial tools 
and efficient resource sharing methods in the literature. For 
example, when compared to commercial tools, the proposed 
cluster merging technique can achieve over 40% average 
reduction in area costs for certain FPGA devices. Further 
details of the cluster merging technique can be found in [2].  
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Figure 1: Example of cluster merging for custom instructions G1 and G2 

 

It is noteworthy that the results of cluster merging also 
provide an area-time estimation of FPGA realization due to the 
architecture-aware nature of the cluster merging process. For 
example, the merged data-path in Figure 1(b) utilizes three 
FPGA logic blocks and has a critical path delay that is 
equivalent to the latency of three FPGA logic blocks. The 
cluster generation technique used to partition the custom 
instructions into clusters is formulated based on certain rule-



sets that define the architectural constraints of the target FPGA 
logic blocks. Investigations show that the cluster generation 
technique can estimate the average critical paths and area 
measures of 150 custom instructions from sixteen applications, 
to be within 3% and 1% respectively of those obtained using 
hardware synthesis.  

In the next section, we describe how the cluster merging 
technique can lead to performance benefits for runtime 
reconfiguration. 

IV. PROPOSED METHOD 
Figure 2 shows an overview of the proposed framework. 

The framework relies on the Trimaran compiler infrastructure 
[12] to generate the Intermediate Representation (IR) of the C-
application in the form of a Data Flow Graph (DFG). The IR 
serves as input to the Custom Instruction Selection stage to 
select a set of custom instructions. There are a large number of 
previously reported works in Custom Instruction Selection [6], 
all of which can be incorporated in the proposed framework. 

Cluster merging is then performed on the selected custom 
instructions to determine the merged clusters. As discussed in 
Section 3, the results of cluster merging provides an indication 
of the area costs and critical path delays of the custom 
instructions when they are implemented on the reconfigurable 
multi-bit logic blocks. 

 
Figure 2: Framework for generating runtime configurations 

 

A configuration graph is then generated to enable temporal 
partitioning of loops using the proposed hierarchical loop 
partitioning strategy. We will discuss the generation of the 
configuration graph in the following sub-section. Note that the 
partitioning strategy relies on the hardware estimation results 
from the cluster merging process in order to obtain a set of 
custom instruction configurations. In addition, the partitioning 
strategy also utilizes the results from cluster merging to 
increase the performance gain of the configurations and to 
reduce reconfiguration cost. 

A. Generating the Configuration Graph 
The configuration graph is intended to provide visibility of 

sections of the application that run together and hence would be 
considered as a group for custom instruction reconfiguration. 
Figure 3 shows an example of configuration graph generation 
from the basic block trace of an application obtained from 
Trimaran. 

 
Figure 3: Generating configuration graph from basic block trace 

 

We first convert the basic block trace into a weighted 
Control Flow Graph (CFG), which encapsulates the control 
flow between unique basic blocks and the corresponding 
frequency. In particular, the weighted CFG is a directed graph 
G(V,E,w), where V is a set of vertices that represent the unique 
basic blocks in the basic block trace. An edge e ∈ E is an 
ordered pair (u,v), where u, v ∈ V, that represents the control 
flow between basic blocks u and v. Each edge (u,v) is 
associated with a weight w that represents the frequency of the 
control flow between u and v. 

The configuration graph is a directed graph Gc(Vc,Ec,wc) 
that is generated from the weighted CFG. Each vertex uc ∈ Vc 
in the configuration graph, denoted as a configuration, is a set 
of basic blocks (i.e. uc = {u1, u2, ..., uk} ∈ V) that are reachable 
from one another. In other words, a cycle can be found between 
any pair of basic blocks in a configuration. In addition, there 
are no duplicated basic blocks in different configurations (i.e. 
uc ∩ vc = ø, where uc, vc ∈ Vc and uc ≠ vc). For example in 
Figure 3, configuration CG1 in the configuration graph consists 
of basic blocks BB1, BB2, ... BB7, configuration CG3 in the 
configuration graph consists of basic blocks BB8, BB9, ... 
BB13, and configuration CG2 in the configuration graph 
consists of basic blocks BB14, BB15, ... BB17. It is noteworthy 
that the basic blocks in each configuration belong to 
application loops, which are the most frequently executed 
segments of embedded applications. 
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Figure 4: Example of hierarchical loop partitioning 

 

We have used transitive closure to identify the existence of 
cycles between each pair of basic block in the weighted CFG. 
Other more efficient methods such as [13] can also be used for 
identifying cycles. The acyclic graph is then generated by 
collapsing the basic blocks into the corresponding 
configurations. It can be observed that the edges of the 
configuration graph are associated with a weight, which is the 
sum of edge weights between basic blocks in different 
configurations. Note that weights of the edges in the 
configuration graph are typically very small, as these edges 
represent the less occurring control flow between disjoint loops 
in the application. Each configuration in the initial 
configuration graph is a potential runtime configuration 
candidate. Hence, the weight of an edge in the configuration 
graph wc(uc,vc), where uc, vc ∈ Vc, represent the number of 
times configuration uc is reconfigured to vc. 

B. Hierarchical Loop Partitioning 
The proposed hierarchical loop partitioning temporally 

partitions the application loops, in a top-down fashion starting 
from the initial acyclic configuration graph, into one or more 
configurations such that the overall performance gain of 
runtime reconfiguration is maximized. The final output of the 
partitioning process is a set of configurations and the selected 
custom instructions in each configuration. 

Figure 4 shows an example of the proposed method. In the 
initial step, the performance gain of the custom instructions in 
each configuration is calculated. The performance gain is 
computed by selecting the set of custom instructions in each 
configuration that leads to the highest software cycle savings 
while meeting the FPGA area constraint. In the subsequent 
iterations of the partitioning process, each configuration is 
partitioned into two new configurations. We have used the 
multilevel 2-way partitioning algorithm in [13] to partition each 
configuration into two equal-size parts with the objective to 
minimize the edge-cut. The edge-cut is defined as the sum of 

the weight of the straddling edges between the partitions. Each 
new partition can be represented by a new vertex in Gc, which 
represents a possible runtime configuration candidate. Note that 
the partitioning also introduces additional edges in the 
configuration graph which represents the straddling edges 
between the basic blocks in the various partitions. 

The effective performance gain for each new configuration  
x ∈ Vc (in terms of software cycle savings) is computed as 
shown in Eq. (1), where x

iG  is a custom instruction in 

configuration x, )( x
iGF is the execution frequency of instruction 

x
iG , )( x

iS GT  denotes the number of operations in x
iG , 

)( x
iH GT is the estimated critical path delay of x

iG  (inferred 
from cluster merging), r is the ratio between the clock 
frequency of the FPGA and base processor (r is chosen based 
on the area-optimized configuration of the soft-core processor 
in [13]), and x

RTRT  is the reconfiguration cost of x. The area 

utilization of all the custom instructions x
iG  in x cannot exceed 

the FPGA area constraint AFPGA (in terms of number of logic 
blocks) as shown in Eq. (2). In our work, x

iG  is selected from 
the set of custom instructions in configuration x that leads to 
the highest software cycle savings while meeting the FPGA 
area constraint. 
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The reconfiguration cost of configuration x is computed 
differently for the full and partial reconfiguration model as 
shown in Eq. (3). ( )∑ xuw cc ,  is the sum of weights of the 
incoming edges of x in the configuration graph. In other words, 

( )∑ xuw cc ,  represents the number of times configuration x 

will be reconfigured on the FPGA at runtime. lb
RTRT  is the 

reconfiguration cost of a single multi-bit logic block [3] and is 
measured in terms of software clock cycles. Finally, nc is the 
number of common clusters/merged clusters in configuration x 
and the previous configuration uc, i.e. (uc, x) ∈ Ec. For partial 
reconfiguration, we can avoid reconfiguring logic blocks with 
common clusters/merged clusters in two consecutive 
configurations. 

For each partition solution, the total performance gain of 
the resulting partitions is compared to the performance gain of 
the initial configuration. If the post-partition performance is 
less than the initial performance, then the new partitions are 
discarded and the initial configuration is restored. This can be 
observed in Iteration 2 of Figure 4, where some of the 
configurations in Iteration 1 do not lead to any further 
partitions. The partition process is repeated until no new 
partitions are formed in a particular iteration. The final set of 
partitions is the runtime configurations. Note that the proposed 
hierarchical partitioning strategy reduces the search space by 
avoiding further partitioning if the resulting partitions do not 
lead to higher performance. 

 
PARTITION-LOOP (Gc, AFPGA) 

        1. partition_exist := true 
     2. while (partition_exist = true) { 
     3.       partition_exist := false 
     4.    for each node uc ∈ Gc { 
     5.          SCS(uc) = CAL-GAIN (uc, AFPGA) 
     6.             remove uc from Gc 

     7.            21, cc uu = 2-WAY-PARTITION (uc) 

     8.           insert 1
cu and 2

cu  in Gc 

     9.             SCS( 1
cu ) = CAL-GAIN ( 1

cu , AFPGA) 

   10.             SCS( 2
cu ) = CAL-GAIN ( 2

cu , AFPGA) 

   11.             if SCS( 1
cu ) + SCS( 2

cu ) <  SCS(uc) { 
   12.                  restore uc in Gc 

   13.                  remove 1
cu and 2

cu  from Gc } 
   14.             else partition_exist := true }} 
   15.  return Gc 

 
Figure 5: Pseudo code for hierarchical loop partitioning 

 

Figure 5 shows the pseudo code for the proposed 
hierarchical loop partitioning strategy. In each iteration (lines 
4-14), the performance gain of each existing configuration in 
the configuration graph Gc is first evaluated (line 5) using the 
function CAL-GAIN and temporarily removed from Gc (line 6). 
The existing configuration is then partitioned into two smaller 
configurations using the 2-WAY-PARTITION function (line 7) 
and the new configurations are inserted into Gc along with the 
corresponding edges (line 8). The performance gain of the two 

new configurations is evaluated (lines 9-10) and compared to 
the performance gain of the initial configuration (line 11). In 
the event that the partitioning has led to less favorable 
performance gain, the initial partition is restored (line 12) in the 
configuration graph and the new configurations are removed 
from the configuration graph (line 13). When no new partitions 
are generated in an iteration (evaluated in line 2), the algorithm 
returns the configuration graph consisting of the final set of 
configurations (line 15). 

V. EXPERIMENTAL RESULTS 
Runtime reconfiguration on reconfigurable processors is 

only feasible for applications where the performance of the 
custom instructions can mitigate the high reconfiguration 
overhead of the FPGA architecture. The proposed framework 
employs cluster merging to increase the utilization of each 
configuration by packing larger number of profitable custom 
instructions in each configuration. In addition, cluster merging 
may lead to reduction in the partial reconfiguration cost due to 
larger number of common basic/merged cluster realizations in 
consecutive runtime configurations. Hence, the proposed 
strategy can lead to high performance benefits if most of the 
profitable custom instructions in the application have common 
clusters.  

Table I reports the cluster statistics from Cjpeg application 
[15]. The first column lists the number of selected custom 
instructions, the second column lists the number of basic 
clusters that are obtained using the clustering technique, the 
third column lists the number of unique basic clusters, and the 
final column reports the number of unique basic/merged 
clusters after the cluster merging. The unique clusters in the 
third and fourth column of Table I is the set of non-isomorphic 
clusters before and after cluster merging respectively. It can be 
observed that on average over 71% of the basic clusters in the 
application are isomorphic. The number of unique clusters can 
be further reduced by 50% through cluster merging. The 
notable number of isomorphic clusters found in Cjpeg provides 
a strong justification for adopting the cluster-based runtime 
reconfiguration approach. 

TABLE 1: CLUSTER STATISTICS FOR CJPEG APPLICATION 

Custom 
Instructions Basic Clusters 

Unique Clusters 
(Before Cluster 

Merging) 

Unique Clusters 
(After Cluster 

Merging) 
90 191 54 27 

 
In this section, we will evaluate the proposed hierarchical 

loop partitioning strategy for both full reconfiguration and 
partial reconfiguration models. In addition, we will also 
investigate the impact of cluster merging on increasing the 
performance gain of runtime reconfigurable RISPs. 

A. Full Reconfiguration 
The full reconfiguration model requires the complete 

reprogramming of the entire configuration memory during 
runtime reconfiguration. Figure 6 shows the total runtime 
reconfiguration cost (primary axis), which is calculated using 
Eq. (3), and the number of configurations (secondary axis) for 
the full reconfiguration model. These values are obtained for 



varying FPGA area constraints (in terms of number of logic 
blocks), i.e. 2% to 20% of the maximum FPGA area that is 
required to implement all the selected custom instructions. 
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Figure 6: Runtime reconfiguration cost and number of partitions for full 
reconfiguration model 

 

It can be observed that in general (except for cases where 
the area constraint is less than 6%), the runtime reconfiguration 
cost where cluster merging is not considered during 
hierarchical loop partitioning (denoted as No Cluster Merging), 
is lower than the case where cluster merging is considered 
during hierarchical loop partitioning (denoted as Cluster 
Merging). This is due to the fact that when cluster merging is 
taken into account during hierarchical loop partitioning, more 
configurations are generated as shown in Figure 6. Hence, the 
number of times the FPGA undergoes reconfiguration at 
runtime also increases for Cluster Merging. The gradual 
increase in reconfiguration cost for area constraint larger than 
5% is due to the increase in the number of logic blocks that 
undergo runtime reconfiguration for the full reconfiguration 
model. 

 Figure 7 compares the performance between No Cluster 
Merging and Cluster Merging for the full reconfiguration 
model. The performance is calculated by summing up the 
software cycle savings of all the configurations (calculated 
using Eq. (1)). In addition, the performance without runtime 
reconfiguration (No RTR) is also shown in Figure 7. In order to 
obtain the performance of No RTR, a greedy algorithm is used 
to select a set of custom instructions that lead to the highest 
performance while meeting the area constraint. Hierarchical 
loop partitioning is not employed for No RTR. 

It can be observed that No Cluster Merging outperforms No 
RTR only for a few cases when the area constraint is less than 
6%. Thereafter, there is no significant difference between the 
performance of No Cluster Merging and No RTR. On the other 
hand, Cluster Merging outperforms both No RTR and No 
Cluster Merging for almost all the cases (except for the case 
where the area constraint is 20%). In particular, on average, 
Cluster Merging outperforms No RTR and No Cluster Merging 
by 45.6% and 32.9% respectively. It is noteworthy that Cluster 

Merging can outperform No Cluster Merging by over 77% (i.e. 
for an area constraint of 4%). In addition, Cluster Merging 
outperforms No RTR by two times or more for area constraints 
2%, 3% and 5%. The performance gain of Cluster Merging 
over the No RTR and No Cluster Merging gradually decreases 
when the area constraint is more relaxed due to the increase in 
reconfiguration cost as shown in Figure 6. 
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Figure 7: Performance gain for full reconfiguration model 

 

These results show that cluster merging can effectively 
increase the utilization of the configurations, which has led to 
the generation of a larger number of configurations. This in 
turn has resulted in higher performance benefits for the full 
reconfiguration model. 

B. Partial Reconfiguration 
Partial reconfiguration enables a portion of the 

configuration memory to be programmed during runtime 
reconfiguration and hence this can lead to higher savings in the 
runtime reconfiguration cost. Figure 8 shows the total runtime 
reconfiguration cost (primary axis), which is calculated using 
Eq. (3), and the number of configurations (secondary axis) for 
the partial reconfiguration model. The range of area constraint 
is the same as the previous sub-section. 

It can be observed that similar to the full reconfiguration 
method, the number of configurations obtained using the 
proposed method without considering cluster merging (denoted 
as No Cluster Merging) is generally lower than the number of 
configurations obtained using the proposed method that takes 
into account cluster merging (denoted as Cluster Merging). 
However, unlike the full reconfiguration model, the runtime 
reconfiguration cost of Cluster Merging is lower than No 
Cluster Merging for all the area constraints considered. On 
average, Cluster Merging has 39.6% lesser reconfiguration cost 
compared to No Cluster Merging. The maximum percentage of 
reduction in configuration cost is 49.4% when the area 
constraint is 6% of the maximum FPGA area. These results 
imply that cluster merging is capable of reducing the runtime 



reconfiguration cost due to the increase in common 
basic/merged clusters in consecutive configurations. 
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Figure 8: Runtime reconfiguration cost and number of partitions for partial 

reconfiguration model 
 

Figure 9 compares the performance between No Cluster 
Merging and Cluster Merging for the partial reconfiguration 
model. The performance of No RTR is also shown. Firstly, it 
can be observed that the partial reconfiguration model leads to 
higher performance than the full reconfiguration model. For 
example, unlike the full reconfiguration model, Cluster 
Merging in the partial reconfiguration model still outperforms 
No RTR when the area constraint is 20% of the maximum 
FPGA area. However No Cluster Merging outperforms No 
RTR for only a few cases when the area constraint is less than 
6%. This shows the significance of cluster merging for 
increasing the performance of runtime reconfiguration for the 
partial reconfiguration model. It is also evident that Cluster 
Merging outperforms both No RTR and No Cluster Merging for 
all cases. In particular, on average, Cluster Merging 
outperforms No RTR and No Cluster Merging by 52.2% and 
34.9% respectively. In addition, Cluster Merging can 
outperform No Cluster Merging by over 86% (i.e. for area 
constraint of 4%). Similar to the full reconfiguration model, 
Cluster Merging outperforms No RTR by two times or more for 
area constraints 2%, 3% and 5%. Specifically, a maximum 
performance gain of up to 2.94 times can be observed when the 
area constraint is 2% of the maximum FPGA area. 

These results show that cluster merging can lead to higher 
performance benefits for the partial reconfiguration model in 
two ways: 1) increasing the utilization of the configurations, 
and 2) reducing the runtime reconfiguration cost. 

  

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
ft

w
ar

e 
Cy

cl
e 

Sa
vi

ng
s

Logic Blocks (%)

Cjpeg

Partial RTR (No Cluster Merging) Partial RTR (Cluster Merging) No RTR  
 

Figure 9: Performance gain for partial reconfiguration model 

I. CONCLUSION 
A framework which aims to maximize the performance of 

custom instructions through runtime reconfiguration, while 
minimizing the reconfiguration overhead has been presented. 
The proposed framework incorporates a hierarchical loop 
partitioning strategy which employs cluster merging to enable a 
larger number of profitable custom instructions to be 
implemented in each configuration. Experimental results show 
that this also leads to the generation of more configurations 
containing profitable custom instructions. In addition, 
hierarchical loop partitioning with cluster merging can achieve 
significant reduction in the reconfiguration cost for the partial 
reconfiguration model. This is due to the fact that cluster 
merging results in a larger number of common basic/merged 
cluster realizations in consecutive runtime configurations. 
Experiment results show that both the full and partial runtime 
reconfiguration can benefit notably from the proposed cluster 
merging based hierarchical loop partitioning strategy. Finally, 
the benefits of cluster-based runtime reconfiguration for a 
given application can be easily determined by analyzing the 
percentage of isomorphic clusters in the selected custom 
instructions.  
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