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Abstract 
 

Advancement in design tools is necessary to bridge 

the widening productivity gap between hardware 

design and software development in state-of-the-art 

Field Programmable Gate Arrays (FPGA). We present 

a design exploration framework that automatically 

compiles C applications to realize efficient custom co-

processor structures for hardware acceleration on the 

reconfigurable logic. We show that the proposed 

design exploration framework can automatically 

generate Register Transfer Level (RTL) codes from C-

functions that outperform the commercial Altera C2H 

RTL generator by about 40% in terms of average area-

time product.  

 

1. Introduction 
 

FPGAs are increasingly being adopted in embedded 

systems due to their ability to meet the technological 

and market uncertainties [1]. Modern FPGA 

architectures incorporate a multitude of Intellectual 

Property cores that include soft and hard processors. 

The additional processing options available on FPGAs 

have increased the complexity of design space 

explorations and have become unmanageable in 

traditional design methodologies especially for large 

applications.  

In light of this, system-level design methodologies 

are expected to play a central role in the design success 

of current and future embedded products. System-level 

design methodologies often incorporate High-Level 

Synthesis (HLS) that allow automatic compilation of 

algorithm description in high-level languages such as 

C, C++ and SystemC to RTL code. In addition, one of 

the key tasks in modern system-level design is design 

space exploration for evaluating possible candidate 

design instances with varying design trade-offs on 

performance, hardware area, power, etc. in order to 

determine an optimal solution. 

In this paper, we present a design exploration 

framework that can rapidly generate custom co-

processor structures for FPGAs from C functions. The 

proposed framework is part of a larger co-design 

methodology that is capable of generating optimal 

hardware and software implementations for modern 

FPGA platforms.  

The proposed framework relies on the Trimaran 

compiler infrastructure [2] for its advanced scheduling 

schemes to expose inherent parallelism in C-based 

algorithms. We have employed a co-processor template 

to assist in data and control path generation. The 

original Very Long Instruction Word (VLIW) machine 

model in Trimaran was modified to incorporate 

heterogeneous Functional Units (FUs) that will be 

bounded to the co-processor template.   

The remainder of the paper is organized as follows. 

In the next section, we will discuss commercial tools 

and related work in automatic hardware generation for 

FPGAs, as well as the main contribution of our work. 

In Section 3, we describe an overview of the proposed 

framework and co-processor template. Section 4 

discussed the bit-width optimization technique that has 

been employed for high-level synthesis in the proposed 

framework. Section 5 presents experimental results 

demonstrating the benefits of the proposed framework. 

Finally, Section 6 concludes the paper. 

 

2. Related Work 
 

A number of commercial tools that synthesize high-

level languages to FPGA have been developed to 



expedite the development of complex applications in 

hardware. These tools differ in high-level language 

support, optimization capabilities and the target device. 

For example, Mitrion-C from [3] and ImpulseC [4] 

support a subset of the ANSI-C language that is 

extended with constructs for specifying the hardware 

definitions. These tools cannot be directly employed 

for most embedded applications that are typically 

represented using ANSI-C. C2H tool from [5], Catapult 

from [6] and Trident [7] support pure ANSI-C 

applications. Although these tools can efficiently 

convert C-level algorithm into gates, they do not 

provide accurate high-level estimations to facilitate 

hardware-software partitioning in FPGA-based system. 

HLS approaches vary widely from hardware only 

implementations of high-level applications to 

processor-accelerator systems to heterogeneous multi-

core systems. Some HLS tools have been developed for 

domain specific applications such as GAUT [8], 

ROCCC [9]. Quality of results and usability are two 

key criteria to measure capability and effectiveness of 

HLS tools. Recent BDTI evaluation results on two 

commercial HLS tools: AutoPilot from AutoESL and 

Synphony C from Synopsys show that current state-of-

the-art HLS tools are capable of achieving both criteria. 

Such advancement plays a pivotal role in design space 

exploration for FPGA-based embedded systems. 

 

2.1. Main Contribution  
 

Unlike existing commercially available C-to-FPGA 

tools from Mitronics and Impulse Accelerated 

Technologies, the proposed framework supports 

applications represented in pure ANSI-C language, 

which is widely used in embedded applications. In 

addition, unlike C-to-FPGA tools from Altera, Mentor 

Graphics and Trident, the proposed framework 

incorporates reliable high estimation techniques to 

facilitate rapid design exploration for hardware-

software partitioning for FPGA systems. Existing 

works also often neglect the effects of logic synthesis 

when translating the high-level input specification to an 

intermediate form for estimation. The proposed 

framework overcomes this problem by incorporating 

efficient bit-width optimization strategies. We will 

show that RTL implementations generated from the 

proposed framework provide higher area-time gains 

than those generated using the commercial Altera C2H 

RTL generator for almost all the benchmarks 

considered. 

 

 

 

3. Overview of Proposed Framework 
 

Figure 1 describes an overview of the proposed 

design exploration framework. The open-source 

Trimaran compiler infrastructure, which supports state 

of the art compiler research in instruction level 

parallelism based architectures, is relied upon to 

expose the hidden parallelism in the sequential C 

functions, and to perform high-level optimizations and 

scheduling. This front-end process typically takes less 

than 10 seconds for compiling a single C-function. 
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Figure 1: Proposed design exploration framework 

 

Based on the available Function Units (FUs) 

specified in the Functional Unit Library, Trimaran 

outputs an application schedule (i.e. the type of FUs 

that will be executed in each clock cycle and the data-

dependency between them). This schedule information 

and the co-processor template are used in a simple 

hardware binding process to bind FUs with the most 

common input-outputs in order to reduce the 

interconnect complexity between registers and FUs. 

Bit-width optimization and constant propagation are 

then performed to prune off unnecessary logic. 

Although not the focus of this paper, data-path and 

control-path estimation is then performed to evaluate 

the performance of the FPGA implementation. The 

process is repeated for different sets of hardware 

operators in order to populate the exploration space. 

The framework also incorporates a process to 

automatically generate RTL codes of the controller and 

data-paths. The final RTL code can subsequently be 



used as inputs to the FPGA implementation tool. 

Details of data-path and control-path estimation can be 

found in [10][11]. 

 

3.1. Co-processor Template 
 

Figure 2 shows the application-specific co-processor 

template, which is used to facilitate automatic 

generation of the controller and data-paths. The 

controller is a Finite State Machine (FSM) comprising 

of the following components: 1) Next State Decoding 

Logic, which computes the next-state of the FSM based 

on the current state and inputs, 2) Control Signal 

Decoding Logic, which decodes the control signals to 

the data-path (i.e. register enable signals, multiplexer 

select signals, FU enable signals), and 3) state registers, 

that hold the current state of the FSM. Details of 

control-path generation can be found in [11]. 
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Figure 2: Co-processor template 

 

We have adopted the data-path model that is similar 

to the one proposed in [12]. It is worth mentioning that 

the co-processor template can be adapted for pipelined 

or non-pipelined data-paths by configuring the 

application-specific interconnection. The Trimaran 

machine description is augmented with a range of 

heterogeneous FUs that can be part of the co-processor 

template. Each FU performs a dedicated operation (e.g. 

addition, shift, multiply, multiply-accumulate, logic 

operation, comparison, multiplexers, memory access 

operations, etc.). Only FUs that are required for a 

particular application will be incorporated in the 

application-specific co-processor. 

 

 

 

4. Bit-Width Optimization 
 

Bit-width optimization aims to automatically derive 

the minimum bit-width of FUs, while maintaining the 

functional correctness of the high-level specification. 

We have adopted the work in [13] to propagate the bit-

width of each variable through the FUs. The work in 

[13] performs iterative constraint propagation to 

repeatedly refine the bit-width of the variables.  

In addition to this, we have devised a simple 

algorithm to identify unused and constant bits that 

could lead to further bit-width refinement of the FUs. 

The algorithm repeatedly propagates the unused and 

constant bits through the data-path to refine the bit-

width of the FUs based on the rules shown in Figure 3. 

These rules are used to determine the resulting bit i of a 

particular operator with bit operands mi and ni. Note 

that the operations in Figure 3, with the exception of 

the shifter, are commutative. The algorithm terminates 

when the bit-widths of the FUs remain unchanged in a 

particular iteration. 
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Operator
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Logical OR

2-1 Multiplexer

n-bit Left Shifter

Multiplier **

mi, ni

0, 0 1, 10, 1 1, U U, U

0 1 0

0, U

U U U

0 0 1 0 U U

0 1 1 U U1

0 U 1 U UU

Least significant n bits = 0

0 0 U 0 UU

* only applies when mx AND yx are 0s, where x < i

** only applies when mx or yx are 0s, where x < i
 

Figure 3: Bit-width inference rules 

 

We will describe a single iteration of the algorithm 

using the data-path example in Figure 4. In the 

example, the constant bits (i.e. ‘0’s and ‘1’s) are 

propagated from the source registers (i.e. Reg 1 and 

Reg 2), through the multiplexer M1, arithmetic 

operators (i.e. multiplier and left shifter by 2), 

multiplexer M2 and finally to the destination register 

Reg 3. The output values of each register and operator 

is shown, where ‘U’ represents a bit value that is 

unknown before application runtime. Let us assume 

that the last two bits of the source registers are 

constants. 

Based on the rules in Figure 3, it can be inferred that 

the LSB output of M1 is ‘0’ as both inputs of the 

multiplexer has a LSB of ‘0’. This constant ‘0’ is then 

propagated to the output of the multiplier. At the same 

time, the last two bits of the 2-bit left-shifter’s output 



are always ‘0’s. The ‘0’s at shifter’s output and 

multiplier’s output are then propagated to Reg 3, where 

the LSB is inferred to be a constant ‘0’. The knowledge 

of the unused and constant bits enables us to determine 

the necessary bit-widths for the FUs and registers in the 

data-path. 
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Figure 4: Refining bit-width of operators 

 

5. Experimental Results 
 

In this section, we compare the implementation 

results of RTL codes generated using the proposed 

design exploration framework with those that are 

generated from the commercial Altera C2H RTL 

generator. Thirteen embedded functions from EEMBC 

[14] and Trimaran benchmark suite, as shown in Table 

1, were used to evaluate the effectiveness of the 

proposed framework.  

 

Table 1. C-Functions considered in the experiments 
 FUNCTIONS  FUNCTIONS 

1 AutoCorrelation 8 CjpegV2_FixpointDCT_17mul 

2 Adpcm_Coder 9 CjpegV2-RGB_YCC_Convert 

3 Adpcm_Decoder 10 Convolutional Encoding 

4 Comb_Sort 11 Viterbi_ACS 

5 IDCT_Col 12 Viterbi_FindMetics 

6 IDCT_Row 13 Viterbi_All 

7 Sha   

 

These thirteen functions were first compiled using 

Trimaran to produce the IR. The framework shown in 

Figure 1, which incorporates the techniques discussed 

in this paper, is used to compile the C-functions to 

RTL, which were then implemented using Altera 

Quartus II 7.2. Note that in these experiments, we do 

not employ hardware estimation and performance 

evaluation as we are only interested to evaluate the 

quality of the RTL codes produced by the proposed 

framework. 

We have evaluated the proposed method on Altera 

Cyclone II (EP2C8) and compared our results with the 

RTL generated using Altera C2H software. Altera C2H 

software is an EDA tool that is used for automatically 

translating algorithms written in ANSI-C into RTL 

codes so that they can be implemented as a hardware 

accelerator using Altera Quartus II FPGA tool. The 

advantage of this tool is that the hardware accelerator 

can be generated with minimum modifications in the C 

codes. This section compares the RTL design 

generated by the proposed design exploration 

framework and RTL generated by Altera C2H. Figure 5 

and Figure 6 shows the area and critical path delay 

comparison of the RTL codes generated by the 

proposed design exploration framework and Altera 

C2H tool. 
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Figure 5: Area comparison  
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Figure 6: Delay comparison  

 

It can be observed that the RTL codes generated 

from the proposed design exploration tool outperforms 

the RTL codes of Altera C2H tool in both area-

utilization and performance for almost all the functions 

considered. In particular, when compared to the RTL 

codes of Altera C2H tool, the RTL codes generated by 

the proposed framework has an average area reduction 

of 22.1% and 27.6% for the area and critical path delay 



respectively. In addition, the Altera C2H tool is unable 

to produce a solution that can be fitted onto the Altera 

device for large functions e.g. Viterbi_All. The 

proposed framework uses Trimaran’s in-lining 

optimization to flatten the Viterbi_All function in order 

to perform more optimizations on the function. 

Figure 7 shows area-time product of the RTL codes 

generated by the proposed framework and C2H’s RTL, 

which is computed by multiplying the circuit’s area 

(logic cells) with the circuit’s minimum clock period 

(ns). It can be observed that the area-time product of 

the hardware generated by the proposed framework is 

smaller for almost all cases. In particular, when 

compared to the RTL codes of Altera C2H tool, the 

RTL codes generated by the proposed design 

exploration framework has an average area-time 

product reduction of 39.3% and a maximum area-time 

product reduction of over 93% (for the Viterbi_ACS 

function). Finally, the runtime time of the proposed 

design exploration to generate RTL codes is much 

faster than Altera C2H (less than a second compared to 

tens of minutes). 
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Figure 7: Area-time product comparison  

 

6. Conclusion 
 

In this paper, we proposed a design exploration 

framework to facilitate FPGA porting of algorithms 

represented in C. The proposed framework employs 

bit-width optimization to automatically derive the 

minimum bit-width of FUs. A simple algorithm is used 

to identify unused and constant bits that could lead to 

further bit-width refinement of the FUs. Results show 

that our RTL implementations are superior to those 

generated using the commercial Altera C2H RTL 

generator in almost all cases considered.  
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