
Automatic Compilation of C Applications for FPGA-based Hardware

Acceleration

Lieu My Chuong
1
, Yan Lin Aung

2
, Siew-Kei Lam

2
, Thambipillai Srikanthan

2
, Lim Chai Soon

3

1
PixelMetrix Corporation, Singapore

2
Centre for High Performance Embedded Systems,

Nanyang Technological University, Singapore
3
School of Engineering, Republic Polytechnic, Singapore

jeff@pixelmetrix.com, {layan, assklam, astsrikan}@ntu.edu.sg, lim_chai_soon@rp.sg

Abstract

Advancement in design tools is necessary to bridge

the widening productivity gap between hardware

design and software development in state-of-the-art

Field Programmable Gate Arrays (FPGA). We present

a design exploration framework that automatically

compiles C applications to realize efficient custom co-

processor structures for hardware acceleration on the

reconfigurable logic. We show that the proposed

design exploration framework can automatically

generate Register Transfer Level (RTL) codes from C-

functions that outperform the commercial Altera C2H

RTL generator by about 40% in terms of average area-

time product.

1. Introduction

FPGAs are increasingly being adopted in embedded

systems due to their ability to meet the technological

and market uncertainties [1]. Modern FPGA

architectures incorporate a multitude of Intellectual

Property cores that include soft and hard processors.

The additional processing options available on FPGAs

have increased the complexity of design space

explorations and have become unmanageable in

traditional design methodologies especially for large

applications.

In light of this, system-level design methodologies

are expected to play a central role in the design success

of current and future embedded products. System-level

design methodologies often incorporate High-Level

Synthesis (HLS) that allow automatic compilation of

algorithm description in high-level languages such as

C, C++ and SystemC to RTL code. In addition, one of

the key tasks in modern system-level design is design

space exploration for evaluating possible candidate

design instances with varying design trade-offs on

performance, hardware area, power, etc. in order to

determine an optimal solution.

In this paper, we present a design exploration

framework that can rapidly generate custom co-

processor structures for FPGAs from C functions. The

proposed framework is part of a larger co-design

methodology that is capable of generating optimal

hardware and software implementations for modern

FPGA platforms.

The proposed framework relies on the Trimaran

compiler infrastructure [2] for its advanced scheduling

schemes to expose inherent parallelism in C-based

algorithms. We have employed a co-processor template

to assist in data and control path generation. The

original Very Long Instruction Word (VLIW) machine

model in Trimaran was modified to incorporate

heterogeneous Functional Units (FUs) that will be

bounded to the co-processor template.

The remainder of the paper is organized as follows.

In the next section, we will discuss commercial tools

and related work in automatic hardware generation for

FPGAs, as well as the main contribution of our work.

In Section 3, we describe an overview of the proposed

framework and co-processor template. Section 4

discussed the bit-width optimization technique that has

been employed for high-level synthesis in the proposed

framework. Section 5 presents experimental results

demonstrating the benefits of the proposed framework.

Finally, Section 6 concludes the paper.

2. Related Work

A number of commercial tools that synthesize high-

level languages to FPGA have been developed to

expedite the development of complex applications in

hardware. These tools differ in high-level language

support, optimization capabilities and the target device.

For example, Mitrion-C from [3] and ImpulseC [4]

support a subset of the ANSI-C language that is

extended with constructs for specifying the hardware

definitions. These tools cannot be directly employed

for most embedded applications that are typically

represented using ANSI-C. C2H tool from [5], Catapult

from [6] and Trident [7] support pure ANSI-C

applications. Although these tools can efficiently

convert C-level algorithm into gates, they do not

provide accurate high-level estimations to facilitate

hardware-software partitioning in FPGA-based system.

HLS approaches vary widely from hardware only

implementations of high-level applications to

processor-accelerator systems to heterogeneous multi-

core systems. Some HLS tools have been developed for

domain specific applications such as GAUT [8],

ROCCC [9]. Quality of results and usability are two

key criteria to measure capability and effectiveness of

HLS tools. Recent BDTI evaluation results on two

commercial HLS tools: AutoPilot from AutoESL and

Synphony C from Synopsys show that current state-of-

the-art HLS tools are capable of achieving both criteria.

Such advancement plays a pivotal role in design space

exploration for FPGA-based embedded systems.

2.1. Main Contribution

Unlike existing commercially available C-to-FPGA

tools from Mitronics and Impulse Accelerated

Technologies, the proposed framework supports

applications represented in pure ANSI-C language,

which is widely used in embedded applications. In

addition, unlike C-to-FPGA tools from Altera, Mentor

Graphics and Trident, the proposed framework

incorporates reliable high estimation techniques to

facilitate rapid design exploration for hardware-

software partitioning for FPGA systems. Existing

works also often neglect the effects of logic synthesis

when translating the high-level input specification to an

intermediate form for estimation. The proposed

framework overcomes this problem by incorporating

efficient bit-width optimization strategies. We will

show that RTL implementations generated from the

proposed framework provide higher area-time gains

than those generated using the commercial Altera C2H

RTL generator for almost all the benchmarks

considered.

3. Overview of Proposed Framework

Figure 1 describes an overview of the proposed

design exploration framework. The open-source

Trimaran compiler infrastructure, which supports state

of the art compiler research in instruction level

parallelism based architectures, is relied upon to

expose the hidden parallelism in the sequential C

functions, and to perform high-level optimizations and

scheduling. This front-end process typically takes less

than 10 seconds for compiling a single C-function.

Code

Transformation

C-Function

Scheduling,

Allocation,

Binding

Functional

Unit

Library

Performance

Evaluation

Automatic

RTL Code

Generation

Construct FSM Model
High Level Synthesis

(Bit-width Optimization)

VHDL

Target

Device
Application-

Specific

Co-processor

Template

Data-path and

Control-path

Estimation

Figure 1: Proposed design exploration framework

Based on the available Function Units (FUs)

specified in the Functional Unit Library, Trimaran

outputs an application schedule (i.e. the type of FUs

that will be executed in each clock cycle and the data-

dependency between them). This schedule information

and the co-processor template are used in a simple

hardware binding process to bind FUs with the most

common input-outputs in order to reduce the

interconnect complexity between registers and FUs.

Bit-width optimization and constant propagation are

then performed to prune off unnecessary logic.

Although not the focus of this paper, data-path and

control-path estimation is then performed to evaluate

the performance of the FPGA implementation. The

process is repeated for different sets of hardware

operators in order to populate the exploration space.

The framework also incorporates a process to

automatically generate RTL codes of the controller and

data-paths. The final RTL code can subsequently be

used as inputs to the FPGA implementation tool.

Details of data-path and control-path estimation can be

found in [10][11].

3.1. Co-processor Template

Figure 2 shows the application-specific co-processor

template, which is used to facilitate automatic

generation of the controller and data-paths. The

controller is a Finite State Machine (FSM) comprising

of the following components: 1) Next State Decoding

Logic, which computes the next-state of the FSM based

on the current state and inputs, 2) Control Signal

Decoding Logic, which decodes the control signals to

the data-path (i.e. register enable signals, multiplexer

select signals, FU enable signals), and 3) state registers,

that hold the current state of the FSM. Details of

control-path generation can be found in [11].

Next State

Decoding Logic

State Registers

Control Signal

Decoding Logic

Controller
Reg 1

Reg 2

Reg 3

Reg 4

Control Signals

FU 1 Reg 7

Data-path

Reg 5

Reg 6

FU 2 Reg 8

Figure 2: Co-processor template

We have adopted the data-path model that is similar

to the one proposed in [12]. It is worth mentioning that

the co-processor template can be adapted for pipelined

or non-pipelined data-paths by configuring the

application-specific interconnection. The Trimaran

machine description is augmented with a range of

heterogeneous FUs that can be part of the co-processor

template. Each FU performs a dedicated operation (e.g.

addition, shift, multiply, multiply-accumulate, logic

operation, comparison, multiplexers, memory access

operations, etc.). Only FUs that are required for a

particular application will be incorporated in the

application-specific co-processor.

4. Bit-Width Optimization

Bit-width optimization aims to automatically derive

the minimum bit-width of FUs, while maintaining the

functional correctness of the high-level specification.

We have adopted the work in [13] to propagate the bit-

width of each variable through the FUs. The work in

[13] performs iterative constraint propagation to

repeatedly refine the bit-width of the variables.

In addition to this, we have devised a simple

algorithm to identify unused and constant bits that

could lead to further bit-width refinement of the FUs.

The algorithm repeatedly propagates the unused and

constant bits through the data-path to refine the bit-

width of the FUs based on the rules shown in Figure 3.

These rules are used to determine the resulting bit i of a

particular operator with bit operands mi and ni. Note

that the operations in Figure 3, with the exception of

the shifter, are commutative. The algorithm terminates

when the bit-widths of the FUs remain unchanged in a

particular iteration.

Adder/Subtractor *

Operator

Logical AND

Logical OR

2-1 Multiplexer

n-bit Left Shifter

Multiplier **

mi, ni

0, 0 1, 10, 1 1, U U, U

0 1 0

0, U

U U U

0 0 1 0 U U

0 1 1 U U1

0 U 1 U UU

Least significant n bits = 0

0 0 U 0 UU

* only applies when mx AND yx are 0s, where x < i

** only applies when mx or yx are 0s, where x < i

Figure 3: Bit-width inference rules

We will describe a single iteration of the algorithm

using the data-path example in Figure 4. In the

example, the constant bits (i.e. ‘0’s and ‘1’s) are

propagated from the source registers (i.e. Reg 1 and

Reg 2), through the multiplexer M1, arithmetic

operators (i.e. multiplier and left shifter by 2),

multiplexer M2 and finally to the destination register

Reg 3. The output values of each register and operator

is shown, where ‘U’ represents a bit value that is

unknown before application runtime. Let us assume

that the last two bits of the source registers are

constants.

Based on the rules in Figure 3, it can be inferred that

the LSB output of M1 is ‘0’ as both inputs of the

multiplexer has a LSB of ‘0’. This constant ‘0’ is then

propagated to the output of the multiplier. At the same

time, the last two bits of the 2-bit left-shifter’s output

are always ‘0’s. The ‘0’s at shifter’s output and

multiplier’s output are then propagated to Reg 3, where

the LSB is inferred to be a constant ‘0’. The knowledge

of the unused and constant bits enables us to determine

the necessary bit-widths for the FUs and registers in the

data-path.

Reg 1

Reg 2

UUU00

UUU10

MUL
UUUU0

UUUUU

SHL

UUUUU

2

UUUU0

UUU00

Reg 3

UUUU0

M1

M2

Figure 4: Refining bit-width of operators

5. Experimental Results

In this section, we compare the implementation

results of RTL codes generated using the proposed

design exploration framework with those that are

generated from the commercial Altera C2H RTL

generator. Thirteen embedded functions from EEMBC

[14] and Trimaran benchmark suite, as shown in Table

1, were used to evaluate the effectiveness of the

proposed framework.

Table 1. C-Functions considered in the experiments
 FUNCTIONS FUNCTIONS

1 AutoCorrelation 8 CjpegV2_FixpointDCT_17mul

2 Adpcm_Coder 9 CjpegV2-RGB_YCC_Convert

3 Adpcm_Decoder 10 Convolutional Encoding

4 Comb_Sort 11 Viterbi_ACS

5 IDCT_Col 12 Viterbi_FindMetics

6 IDCT_Row 13 Viterbi_All

7 Sha

These thirteen functions were first compiled using

Trimaran to produce the IR. The framework shown in

Figure 1, which incorporates the techniques discussed

in this paper, is used to compile the C-functions to

RTL, which were then implemented using Altera

Quartus II 7.2. Note that in these experiments, we do

not employ hardware estimation and performance

evaluation as we are only interested to evaluate the

quality of the RTL codes produced by the proposed

framework.

We have evaluated the proposed method on Altera

Cyclone II (EP2C8) and compared our results with the

RTL generated using Altera C2H software. Altera C2H

software is an EDA tool that is used for automatically

translating algorithms written in ANSI-C into RTL

codes so that they can be implemented as a hardware

accelerator using Altera Quartus II FPGA tool. The

advantage of this tool is that the hardware accelerator

can be generated with minimum modifications in the C

codes. This section compares the RTL design

generated by the proposed design exploration

framework and RTL generated by Altera C2H. Figure 5

and Figure 6 shows the area and critical path delay

comparison of the RTL codes generated by the

proposed design exploration framework and Altera

C2H tool.

-10

0

10

20

30

40

50

60

70

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13

Lo
gi

c
C

e
ll

s

Function

Altera Cyclone II

C2H Proposed Percentage Reduction (%)

Figure 5: Area comparison

-10

0

10

20

30

40

50

60

70

80

90

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5 6 7 8 9 10 11 12 13

D
e

la
y

(n
s)

Function

Altera Cyclone II

C2H Proposed Percentage Reduction (%)

Figure 6: Delay comparison

It can be observed that the RTL codes generated

from the proposed design exploration tool outperforms

the RTL codes of Altera C2H tool in both area-

utilization and performance for almost all the functions

considered. In particular, when compared to the RTL

codes of Altera C2H tool, the RTL codes generated by

the proposed framework has an average area reduction

of 22.1% and 27.6% for the area and critical path delay

respectively. In addition, the Altera C2H tool is unable

to produce a solution that can be fitted onto the Altera

device for large functions e.g. Viterbi_All. The

proposed framework uses Trimaran’s in-lining

optimization to flatten the Viterbi_All function in order

to perform more optimizations on the function.

Figure 7 shows area-time product of the RTL codes

generated by the proposed framework and C2H’s RTL,

which is computed by multiplying the circuit’s area

(logic cells) with the circuit’s minimum clock period

(ns). It can be observed that the area-time product of

the hardware generated by the proposed framework is

smaller for almost all cases. In particular, when

compared to the RTL codes of Altera C2H tool, the

RTL codes generated by the proposed design

exploration framework has an average area-time

product reduction of 39.3% and a maximum area-time

product reduction of over 93% (for the Viterbi_ACS

function). Finally, the runtime time of the proposed

design exploration to generate RTL codes is much

faster than Altera C2H (less than a second compared to

tens of minutes).

-10

10

30

50

70

90

0.0

20000.0

40000.0

60000.0

80000.0

100000.0

120000.0

140000.0

160000.0

180000.0

200000.0

220000.0

1 2 3 4 5 6 7 8 9 10 11 12 13

A
re

a-
Ti

m
e

Function

Altera Cyclone II

C2H Proposed Percentage Reduction (%)

Figure 7: Area-time product comparison

6. Conclusion

In this paper, we proposed a design exploration

framework to facilitate FPGA porting of algorithms

represented in C. The proposed framework employs

bit-width optimization to automatically derive the

minimum bit-width of FUs. A simple algorithm is used

to identify unused and constant bits that could lead to

further bit-width refinement of the FUs. Results show

that our RTL implementations are superior to those

generated using the commercial Altera C2H RTL

generator in almost all cases considered.

7. References

[1] P. Garcia, K. Compton, M. Schulte, E. Blem and W.

Fu, "An Overview of Reconfigurable Hardware in

Embedded Systems", EURASIP Journal on Embedded

Systems, Vol. 1, 2006, pp. 1-19.

[2] Trimaran, "An Infrastructure for Research in Backend

Compilation and Architecture Exploration", Available:

http://www.trimaran.org/.

[3] Mitrionics, "The Mitrion Accelerated Computing

Platform", Available: http://www.mitrionics.com/

?page=mitrion-software-development-platform.

[4] Impulse Accelerated Technologies, Available:

http://www.impulseaccelerated.com/index.htm.

[5] Altera, "Design Software", Available:

http://www.altera.com/products/software/sfw-

index.jsp.

[6] Mentor Graphics, "Catapult C Synthesis". Available:

http://www.mentor.com/products/esl/high_level_synthe

sis/catapult_synthesis/.

[7] Trident Compiler, Available: http://trident.sourceforge.

net/.

[8] P. Coussy and A. Morawiec, "GAUT: A High-Level

Synthesis Tool for DSP Applications", High-level

Synthesis: From Algorithm to Digital Circuit, Springer,

2008, pp. 147-170.

[9] J. Villarreal, A. Park, W. Najjar, and R. Halstead,

"Designing Modular Hardware Accelerators in C with

ROCCC 2.0", 18th IEEE Annual International

Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2010, pp. 127-134.

[10] M.C. Lieu, S.K. Lam, and T. Srikanthan, "High-level

Delay Estimation Technique for Porting C-based

Applications on FPGA", IEEE International

Symposium on Industrial Electronics, June/July 2008,

pp. 1991-1996.

[11] M.C. Lieu, S.K. Lam, and T. Srikanthan, "Area-Time

Estimation of Controller for Porting C-based Functions

onto FPGA", IEEE/IFIP International Symposium on

Rapid System Prototyping, June 2009, pp. 145-151.

[12] R. Schreiber, S. Aditya, B.R. Rau, V. Kathail, S.

Mahlke, S. Abraham and G. Snider, "High-Level

Synthesis of Nonprogrammable Hardware

Accelerators", 12th IEEE International Conference on

Application-Specific Systems, Architectures and

Processors, July 2000, 113-124.

[13] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber

and T. Sherwood, "Bitwidth Cognizant Architecture

Synthesis of Custom Hardware Accelerators", IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 20, No. 11, 2001, pp. 1355-

1371.

[14] EEMBC: The Embedded Microprocessor Benchmark

Consortium. Available: http://eembc.org.

