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Abstract— Area-time efficient custom instructions are desirable for maximizing the performance of reconfigurable processors. 
Existing data path merging techniques based on resource sharing can be deployed to improve area efficiency of custom 
instructions. However, these techniques lead to large increase in the critical path delay. In this paper, we propose a novel 
strategy that takes into account the architectural constraints of the FPGA device in order to realize custom instructions with low 
area-delay product. The proposed strategy is based on partitioning the custom instruction data-paths into a set of basic clusters 
such that they can be combined using a heuristic based cluster merging process to maximize the utilization of FPGA logic 
blocks. Unlike the resource sharing method, the proposed cluster merging process does not maximize sharing of common 
resources and this leads to lesser reliance on multiplexers for implementing custom instructions. Resource sharing is only 
applied sparingly at the final stage to increase utilization of logic blocks. We show that the proposed technique leads to more 
than 34%, 34% and 42% average reduction in area costs for Spartan-3, Virtex-4 and Virtex-5 architectures respectively when 
compared to optimizations achieved through commercial synthesis tool. We have also shown that the proposed technique leads 
to more than 18%, 17% and 13% average reduction in area costs for Spartan-3, Virtex-4 and Virtex-5 respectively when 
compared to results obtained using one of the most efficient resource sharing based method reported in the literature. In 
addition, the proposed technique outperforms the resource sharing based method in terms of area-delay product, with average 
reductions of more than 27%, 34% and 19% for Spartan-3, Virtex-4 and Virtex-5 respectively. 

Index Terms— Automatic synthesis, data-path design, real-time and embedded systems, reconfigurable hardware  

——————————      —————————— 

1 INTRODUCTION

uture embedded systems must continue to meet the 
shrinking time-to-market window and lower NRE 
(Non-Recurring Engineering) costs. Product differen-

tiation needs and increasing complexity of applications 
will demand customization in the form of hardware ac-
celeration. To this end, FPGAs (Field Programmable Gate 
Arrays) are gaining popularity as the increasing NRE 
costs of Application-Specific Integrated Circuits begin to 
outweigh the per-unit-cost of FPGAs for high-volume 
applications 0-[2].  

Platforms which consist of a microprocessor core that 
is tightly coupled with a RFU (Reconfigurable Functional 
Unit) are defined as reconfigurable processors. The in-
struction set extension capability of reconfigurable proc-
essors (e.g. [3]-[5]) that facilitate critical parts of the appli-
cation to be implemented in hardware, provides an at-
tractive means to meet the flexibility, performance, and 
cost demands of embedded computing devices [6]. The 
use of FPGA-based embedded processing is growing and 

it is estimated that by 2010, more than 40% percent of all 
FPGA designs will contain an embedded microprocessor 
[7]. Strategies for maximizing the area utilization of FPGA 
based implementations will be an important step for sat-
isfying the tight design constraints in future embedded 
System-On-a-Chip designs.  

In this paper, we propose a novel high-level optimiza-
tion strategy for realizing area-time efficient custom in-
structions on FPGA devices. In particular, we show that the 
well-accepted notion of resource sharing for achieving 
area-efficient designs does not necessarily lead to best re-
sults for FPGA-based realizations. The proposed approach 
is targeted towards commercial FPGA architectures (i.e. 
[8]-[10]) that typically consist of logic elements with LUT 
(Look-Up Tables) of any arbitrary input K (i.e. K-LUT) and 
a carry-logic structure. 

The remainder of this paper is organized as follows: in 
the following sub-section, we discuss existing high-level 
area optimization approaches based on resource sharing. 
Section 2 provides an overview of the proposed strategy 
and highlights the differences between our proposed 
method and existing approaches. Section 3 describes the 
proposed technique in detail. Experimental results are 
provided in Section 4 and the paper concludes in Section 
5. 
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1.1 Related Work 
Most of the reported works in custom instruction genera-
tion [11]-[16] do not focus on efficient area-time mapping 
of the custom instructions onto the architecture. Area-
time optimization can be performed during high-level 
[17] or gate level synthesis (i.e. technology mapping [18]-
[19]). In contrast to gate level synthesis which operates on 
the available logic gates of a target architecture library, 
high-level synthesis operates on the primitive operations 
derived from the behavioral/algorithmic representations. 
Since designs at higher level of abstractions are less con-
fined to the physical architecture, optimizations at these 
levels usually lead to high quality results.     
     High-level area minimization has often relied on 
strategies to maximize resource sharing of the data-paths. 
These approaches aim at maximizing the reuse of opera-
tions and interconnections by identifying similarities be-
tween two original data-paths. Commercial FPGA tools 
also adopt the resource sharing approach as one of their 
main area optimization strategies. For example, the Xilinx 
synthesis tool supports resource sharing for a limited 
number of hardware resources (e.g. adders, subtractors 
and multipliers), by implementing one single arithmetic 
operator for similar operations that are never used con-
currently [20]. 
     Figure 1 illustrates an example of resource sharing of 
two custom instruction data-paths (i.e. G1 and G2 in Fig-
ure 1(a)). In this example, we assume that there is only 
one available output port on the RFU and, hence, the out-
puts of G1 and G2 have been multiplexed. The two custom 
instruction data-paths in Figure 1(a) are combined into a 
single data-path in Figure 1(b) by merging similar opera-
tions and interconnections between the two data-paths. 

yx⊕  denotes that operations/inputs x and y has been 
merged. The resulting data-path in Figure 1(b) is capable 
of performing the functionality of the original data-paths. 
It can be observed that the resulting number of operations 
and interconnections has been reduced. Figure 1 also re-
ports the FPGA implementation results which shows that 
the area (in terms of number of slices) have been reduced 
due to resource sharing.  
     Resource sharing has also been employed for reducing 

the system reconfiguration overhead of reconfigurable 
architectures [21]-[22]. The work in [21] minimizes the 
run-time reconfiguration time by identifying common 
components in two successive configurations. A weighted 
bipartite graph is constructed from two successive con-
figurations, and an algorithm that performs graph match-
ing and combining is employed to produce a combined 
configuration. In [22], a data-path merging algorithm has 
been presented to reduce the reconfiguration overhead of 
an architecture template with a reconfigurable intercon-
nection network. In order to optimize interconnect-
sharing, the data-paths are merged by solving the maxi-
mum bipartite matching problem. 

The work in [23], which was later extended in [24], 
represents custom instruction data-paths as path se-
quences, and computes the longest common subsequence 
to identify possible resource sharing between the se-
quences. In [25], the left-edge binding algorithm was em-
ployed to minimize the number of functional units and 
registers through resource sharing. Other methods for 
improving the interconnection mapping include iterative 
improvement and ILP (Integer Linear Programming) ap-
proaches [26].  

In [27], a data-path merging algorithm is presented to 
merge several DFGs (Data-Flow Graphs) in order to pro-
duce a reconfigurable data-path with minimum hardware 
operations and interconnection. The algorithm first con-
structs a compatibility graph that represents all the possi-
ble mappings of common operations and interconnectiv-
ity between two DFGs. The maximum weight clique 
problem is then solved to maximize resource sharing be-
tween the two DFGs. The authors in [27] demonstrated 
that their technique outperforms other approaches based 
on bipartite matching, on iterative improvement and on 
ILP. 

 
1.2 Main Contribution 
Conventional area optimization algorithms based on re-
source sharing typically merges graph representations of 
two or more custom instructions that contain similar sub-
graphs. Our results reveal that resource sharing based 
approaches (e.g. [21]-[27]) often do not lead to the most 

1
1C

2
1C

3
1C

4
2C

5
2C

104⊕

116⊕

95⊕

81⊕

73⊕

63 InIn ⊕ 74 InIn ⊕

16 InIn ⊕ 27 InIn ⊕
71 InIn ⊕

4
2

1
1 CC ⊕

3
1C

5
2

2
1 CC ⊕

116⊕

 
Fig. 1. (a) Original, (b) Resource sharing, (c) Cluster merging   
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efficient FPGA resource utilization and can result in high 
critical path delay.  

This paper presents a novel strategy for generating 
area-time efficient FPGA realization of custom instruc-
tions on commercial architectures. The proposed strategy 
first maps the custom-instructions onto the logic blocks to 
maximize the area utilization of FPGA resources. This 
process resembles technology mapping, and it is treated 
as a covering problem rather than a merging problem. 
The mapped custom instructions are then merged to 
maximize the utilization of the logic blocks prior to judi-
ciously considering resource sharing to avoid increasing 
the area-delay product. The proposed strategy can be 
completed in the order of milliseconds and hence does 
not incur an overhead in existing design flows. 

2 OVERVIEW OF PROPOSED METHOD 
The proposed method consists of the following three 
main steps: 1) cluster identification, 2) cluster merging, 
and 3) data-path combination and resource sharing. We 
describe the proposed method by using the example in 
Figure 1. 

Definition 1: A custom instruction data-path is a di-
rected graph Gi = (Vi, Ei) for ni ,,2,1 K=  and n is the 
number of custom instructions obtained using the meth-
odology in [28], where: 
 A vertex iVv∈  for ni ≤≤1  is a primitive integer op-

eration in a compiler’s IR (Intermediate Representa-
tion). These operations can be categorized as 1) 
arithmetic i.e. addition (add), subtraction (sub), multi-
plication (mul), 2) logical (and, or, xor), and 3) rela-
tional e.g. logical/arithmetic shift by a constant/non-
constant factor (shl, shr, shra). Each vertex is also asso-
ciated with at most two input ports and one output 
port. 

 An arc ( ) iEvue ∈= ,  indicates a data transfer from 
vertex u to vertex v, whereby the output port of u is 
connected to one of the input ports of v. 

Definition 2: A basic cluster ),( j
i

j
i

j
i EVC =  is a sub-

graph of a custom instruction Gi, which can be imple-
mented either 1) on a single FPGA logic group (a group of 
logic elements that share the same hardware configura-
tion), or 2) using embedded FPGA IP (Intellectual Prop-
erty) cores. The size of the logic group is equivalent to the 
custom instruction bit-width. None of the basic clusters in 
Gi overlap, i.e. ∅=k

i
j

i VV I and ∅=k
i

j
i EE I  for kj ≠ . 

In addition i

c

j

j
i VV =

=
U

1

 and i

c

j

j
i EE =

=
U

1

, where c is the 

number of basic clusters in Gi. 
Cluster identification partitions the custom instruction 

data-paths into a set of basic clusters. For example in Fig-
ure 1(a), G1 consists of basic clusters 1

1C , 2
1C and 3

1C , and 

G2 consists of basic clusters 4
2C and 5

2C  . Cluster identifi-
cation resembles the technology mapping process, where 
a set of basic clusters that effectively covers the custom 
instruction data-path is identified. It is worth mentioning 

that unlike existing works in technology mapping, cluster 
identification operates on the high-level representation of 
the custom instructions. 

Definition 3: Let ),( j
x

j
x

j
x EVC =  and ),( k

y
k
y

k
y EVC =   be 

basic clusters. ),( EVG = is known as the merged cluster of 
j

xC and k
yC , denoted as  k

y
j

x CCG ⊕= , if and only if: 

 yx ≠ , i.e. only the basic clusters in different data-
paths can be merged. 

 The merged cluster G  can be implemented on a sin-
gle FPGA logic group. 

 ok
y

j
x VVVV UU= , where oV is a set of extra vertices 

and 10 ≤≤ oV . The extra vertex consist of a m-1 

multiplexer (mux) to facilitate time-multiplexed com-
putations of the basic clusters j

xC  and k
yC . For ex-

ample in Figure 1(c), the basic clusters 1
1C  and 4

2C , 

and the basic clusters 2
1C and 5

2C  are merged to pro-

duce the merged clusters 4
2

1
1 CC ⊕ and 5

2
2
1 CC ⊕  re-

spectively. The resulting merged clusters require an 
additional component, which is a 2-1 multiplexer (m 
= 2). 

 ok
y

j
x EEEE UU= , where oE is a set of extra arcs and 

10 ≤≤ oE . The extra arcs are introduced along with 

the mux. For example in Figure 1(c), the introduction 
of a 2-1 mux in the merged cluster 4

2
1
1 CC ⊕  has re-

sulted in an additional arc from the output port of the 
mux to the input port of add. Note that the output 
ports of vertex j

xVu∈ and k
yVv∈ are assigned to the 

input ports of the mux. In addition, a select signal Sel 
is required for the mux. The same can be observed for 

5
2

2
1 CC ⊕ . 

Cluster merging first identifies all combinations for 
merging the basic clusters in order to further increase the 
utilization of the FPGA resources by maximizing the 
functionality of the logic groups. Basic clusters can be 
merged only if they belong to different data-paths and the 
resulting merged cluster can be implemented onto a sin-
gle FPGA logic group. Note that the generation of a 
merged cluster may introduce an additional input for the 
multiplexer select pin as shown in Figure 1(c). This poses 
a limitation to the combination of basic clusters that can 
be merged, as the number of inputs of the resulting 
merged cluster cannot violate the input constraint of the 
logic group. In cases where a multiplexer is introduced in 
a merged cluster, the multiplexer select signal is used to 
select the desired functionality between the correspond-
ing basic clusters in a time-multiplexed manner. This is 
possible as the basic clusters that are associated with the 
merged clusters do not execute concurrently as they be-
long to different data-paths. In order to ensure that each 
basic cluster can only be merged in a unique fashion, a 
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heuristic is used to select a unique set of merged clusters 
with the aim to maximize the area utilization of the FPGA 
resources. 

In the final stage (data-path combination and resource 
sharing), the basic clusters in the custom instruction data-
paths are replaced with the selected merged clusters. Cus-
tom instruction data-paths that incorporate common 
merged clusters are then combined to construct a final 
data-path such as that shown in Figure 1(c). Note that 
multiplexers may be inserted to facilitate interconnect 
sharing between the clusters. In the example, the result-
ing data-path consists of a set of merged clusters (i.e.   

4
2

1
1 CC ⊕  and 5

2
2
1 CC ⊕  ) and one basic cluster (i.e. 3

1C  ). In 
order to further minimize the area costs, we can perform 
resource sharing on the clusters of separate data-paths 
(data-paths that have not been combined) only if the re-
sulting data-path does not lead to higher area-delay 
product. Since the example in Figure 1(c) has only one 
single resulting data-path, resource sharing is not per-
formed. 

It can be observed that the resulting data-path in Fig-
ure 1(c) contains equivalent number of operations and 
interconnections as the original data-paths in Figure 1(a). 
Hence, in contrast to the resource sharing based method, 
our approach may not lead to lesser number of operations 
and interconnections. However, it can be seen in Figure 
1(c) that the actual FPGA implementation results of our 
approach has higher area reduction when compared to 
the resource sharing based approach (i.e. Figure 1(b)). In 
addition, our approach leads to a lower critical path de-
lay.  

The proposed method only attempts to merge basic 
clusters that can be mapped uniformly onto logic ele-
ments to form logic groups that share the same hardware 
configuration. This is applicable for most of the opera-
tions in our experiments. Operations, which cannot be 
mapped uniformly onto the logic groups, form basic clus-
ters that will not be considered for merging. Note that 
these operations are usually realized using embedded 
FPGA IP cores. The current method also does not con-
sider optimized circuits (e.g. carry-select adder, compres-
sor tree, etc.), or specialized operations (e.g. counters) that 
exploits the carry-chain and multiplexers within the logic 
elements for efficient realization. These cir-
cuits/operations cannot be directly identified from the 
high-level representation of the applications [29] and, 
therefore, are not considered in the proposed method. 

3 CLUSTER MERGING FOR AREA OPTIMIZATION 
In this section, we begin by briefly describing the cluster 
identification stage. Details of this work can be found in 
[28]. In this paper, we focus on cluster merging. The re-
source sharing algorithm employed in the last stage of the 
proposed method is adopted from [27]. 

3.1 Cluster Identification 
Cluster identification incorporates the following steps: 1) 
cluster enumeration and 2) cluster selection. The cluster 

enumeration process decomposes the template into a list of 
basic cluster instances. Two sets of legality checks have 
been used to determine a basic cluster. The legality checks 
have been formulated based on our understanding on 
how the operations are mapped onto the logic elements of 
the target FPGA. 

The first set of legality checks determines the primitive 
operations that can be included in the basic cluster. For 
example, only a single arithmetic operation is allowed in 
a basic cluster. A logical operation must execute before an 
add/sub operation in a basic cluster but certain relational 
operations (i.e. shift-by-constant) can execute after the 
add/sub operation in the basic cluster. More complex 
arithmetic operations such as multiplications cannot co-
exist in a basic cluster with other operations. 

The second set of legality checks evaluates whether the 
operations that have been included in a basic cluster con-
form to the input-output constraints of the FPGA logic 
element. For example, the number of inputs of the opera-
tions cannot exceed K and the number of outputs is 1. 
This legality check also takes into consideration the input 
constraints for implementing addition/subtraction using 
logic elements in certain FPGA technology (see [28]). 

After all the basic clusters have been enumerated,  a set 
of basic clusters is then selected in the cluster selection 
process to effectively cover the original data-path. The 
basic clusters can be categorized into three cluster groups 
as shown in Figure 2. The comb group (Figure 2(a)) con-
sists of only logical and/or relational operations (i.e. shl, 
shra). The ari group (Figure 2(b)) consists of an add/sub 
operation that may co-exist with a relational operation. 
Relational operations in the ari group (i.e. shl, shra) must 
execute after the add/sub operation (refer to the legality 
check for including an operation in the cluster). Finally, 
the third group consists of a combination of the comb and 
an ari group (Figure 2(c)). Operations in the comb group 
must execute before the operations in ari. 

3.2 Cluster Merging 
Figure 3 shows the algorithm for cluster merging. Ini-
tially, the basic clusters that are obtained from the cluster 
identification stage are stored in both iCs and 0Cs  (line 
1). In the first iteration (lines 4-19), each pair of basic clus-
ters are evaluated for cluster merging. The resulting 
merged clusters are stored in 1+iCs  (line 14). In subse-
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Fig. 2. Cluster groups and their corresponding examples  
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quent iterations, the newly computed merged clusters 
from the previous iteration (i.e. iCs ) are evaluated for 
cluster merging with the original set of basic clusters (i.e.  

0Cs ). This iterative process is repeated until no merged 
clusters are found in a particular iteration (i.e. condition 
expression equates to false in line 4). In the second part of 
the algorithm, a unique set of merged clusters is selected 
from the merged cluster sets (i.e. from the sets 

1,, CsCsi K ) and the original set of basic clusters (i.e. 0Cs ) 
(line 20). 

There are two ways for merging a pair of clusters: with 
or without introducing a multiplexer. The pair of clusters 
is first evaluated to determine if they can be merged 
without incurring a multiplexer (line 8). If this is not pos-
sible, then the cluster pair is evaluated to determine if 
they can be merged by introducing a multiplexer (line 10). 
Preference is given to the former as introducing a multi-
plexer requires additional input pins (i.e. the multiplexer 
select pin) and this may violate the input constraints of 
the cluster. In the following sections, we will discuss 
these two cluster merging methods. 

 
1) Merging Clusters Without Multiplexer 

Figure 4 describes the algorithm for determining if a 
cluster pair can be merged without introducing a multi-
plexer. As mentioned earlier, a pair of clusters can be 
merged if the resulting merged cluster can still be imple-
mented using a single logic group. The first step of the 
algorithm partitions the cluster pair into their correspond-
ing comb and ari components (lines 2-3).   

Figure 5 shows two approaches to merge clusters with-
out introducing a multiplexer. Let xC be a cluster, and 

xcomb / xari  the corresponding comb/ari components. In 

Figure 5(a), xcomb  consists of a multiplexer that has been 
introduced in previous iterations. Note that there is an 
external input to the multiplexer (i.e. In1) that is not con-
nected to any internal logic within xcomb . We denote 
such an input as an unused-mux-input. For simplicity, we 
have omitted all inputs/outputs of the clusters that are 
irrelevant to the current discussion. Cluster merging of   

xC  and yC  is achieved by connecting the output port of   

ycomb  to unused-mux-input. The second approach to 

merge xC  and yC  is shown in Figure 5(b). In this sce-

nario, xC  does not have a comb component and yC  does 
not have an ari component. Cluster merging is achieved 
by simply connecting the output port of ycomb  to the 

input port of xari . 
The cluster merging approaches discussed above can 

only be achieved when certain conditions are satisfied. 
These four conditions, which are evaluated in lines 4-21 of 
Algorithm 2, are described below. When the necessary 
Conditions 1 and 2 are met, Conditions 3 and 4 form the 
sufficient conditions to merge a pair of clusters. Note that 
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i
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Fig. 3. Cluster merging algorithm  
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Fig. 4. Algorithm to evaluate if a cluster pair can be merged without 
a multiplexer  
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the conditions for merging clusters xC and yC  are com-
mutative. 
 Necessary Condition 1: If xC  and yC  consist of ari 

components (e.g. Figure 5(a)) and they can be merged, 
then yx ariari = . Proof: We proof this by contradic-

tion. Suppose that xC  and  yC  can be merged and 
they both consist of different ari components 
( yx ariari ≠ ). The merged cluster yx CC ⊕  is imple-

mented in a single logic group (according to Defini-
tion 3), which can perform the functionalities of xC  

and yC  including the arithmetic functions xari  and 

yari . However, this contradicts the fact that each 

logic group can only implement one single ari com-
ponent (see Section 3.1). Hence, for xC  and yC  to 

merge, xari  and  yari  must be the same. This condi-

tion is evaluated in lines 4-8 of Algorithm 2. 
 Necessary Condition 2: If only one of the clusters xC  or 

yC  has an ari component (e.g. Figure 5(b)) and they can 

be merged, then the ari component cannot have a shift-by-
constant operation. Proof: We proof this by contradic-
tion. Suppose that xC  and yC  can be merged and 

only xC  has an ari component (i.e. xari ), which in-
cludes a shift-by-constant operation. The merged 
cluster yx CC ⊕  is implemented in a single logic 

group, which can perform the functionalities of xC  

and yC . In order for the merged cluster to perform 

the functionalities of yC , the ari component must be 
convertible to an identity function (for example in 
Figure 5(b), by assigning an identity operand to In2 
(e.g. In2 = 0) in  yx CC ⊕ , we can obtain the result of 

ycomb  if xari  can be converted to an identity func-

tion). However it is not possible to convert xari  with 
a shift-by-constant operation (assuming the constant 
is non-zero) to an identity function as the shift opera-
tion will always alter the input value (except when 
the input value is zero). Hence, this contradicts the 

assumption that xC  and yC  can be merged. This 
condition is evaluated in lines 9-13 of Algorithm 2, 
where the ShiftByConstantExist function checks if the 
ari component has a shift-by-constant operation. 

 Sufficient Condition 3: If Conditions 1 and 2 are met, 
and if both xC  and yC  have a comb component, then clus-
ter merging is possible if one of the clusters have an un-
used-mux-input (e.g. Figure 5(a)). This condition is 
evaluated in lines 15-17 in Algorithm 2 using function 
UnusedMuxPinExist. 

 Sufficient Condition 4: If Conditions 1 and 2 are met, 
and if at least one of the clusters has a comb component 
(e.g. ycomb  in Figure 5(a) and Figure 5(b)) while the 

other clusters have an ari component, then cluster merging 
can be achieved if the comb component can be converted to 
an identity function. This enables the merged cluster to 
perform the functionality of the ari component. This 
condition is evaluated in lines 18-20 of Algorithm 2 
using the IsIdentity function.  

     Figure 6 provides examples to show how two clusters 
can be merged without introducing a multiplexer. In Fig-
ure 6(a), conditions 1, 2 and 4 are not applicable as none 
of the clusters have an ari component. The clusters xC  

and yC  can be merged as they satisfy condition 3, i.e.   

xC  has an unused-mux-input. In Figure 6(b), conditions 1 

and 3 are not applicable. Clusters xC  and yC  can be 
merged as they satisfy condition 2 and 4, i.e. the ari com-
ponent in xC  does not have a shift-by-constant operation 

and the comb component in yC  can be converted to an 
identity function. Note that the latter condition allows the 
merged cluster to perform the arithmetic operation in xC  
by assigning 4In  to ‘1’, and 5In  to ‘0’. In Figure 6(c), con-

dition 1 is not applicable. Clusters xC  and 

yC  satisfy conditions 2, 3 and 4. In this case, the clus-

ters are merged by connecting the output of yC  to the 

unused-mux-input of xC . In addition, the merged cluster 

yx CC ⊕  can perform the arithmetic operation in xC  by 

assigning  5In  to ‘1’, and 6In  to ‘0’. Finally in Figure 6(d), 
condition 2 is not applicable. Both clusters have an ari 
component and hence they must first satisfy condition 1. 
In addition, they also satisfy condition 3 so that the comb 
component of yC  can be connected to the unused-mux-

input of xC . Finally, condition 4 is also satisfied and the 

merged cluster yx CC ⊕  can perform the arithmetic op-

eration in  xC  by assigning 62 InIn ⊕  to ‘0’. 

xC yC
yx CC ⊕

1In

xcomb
ycomb

1In

1In

2In 2In

2In

2In

1In

2In

xC yC

yx CC ⊕

 
Fig. 5. Two approaches for merging clusters without introducing an
additional multiplexer  
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The evaluation of the conditions for cluster merging re-
lies on three functions i.e. ShiftByConstantExist, Un-
usedMuxPinExist and IsIdentity. The first two functions 
are trivial as long as the program maintains a record of all 
the operations and the connectivity information between 
the operations in each cluster. Hence, we will only de-
scribe the implementation of the IsIdentity function. 

 
Implementation of the IsIdentity Function 

The IsIdentity function aims at evaluating whether the 
comb component of a cluster can produce an output that is 
identical to one of the inputs. In order to evaluate 
whether a particular input can be produced at the output, 
the remaining inputs are first assigned to ‘0’s or ‘1’s. Then 
the DFG of the comb component is progressively simpli-
fied as the inputs are propagated to the output by means 
of dataflow identity and dominance laws [30]. If the input 

is directly connected to the output when the process com-
pletes, then the comb component can be converted to an 
identity function. 

The proposed approach to determine if a DFG is an 
identity function draws certain similarities with the 
method presented in [31] to transform a complex DFG 
pattern to a simpler pattern by applying identity oper-
ands to the nodes in order to eliminate them from the 
pattern. However, the method presented in [31] assumes 
that each node in the DFG have an external input that can 
be assigned to an identity operand. In addition, the 
method in [31] does not take into account shift-by-
constant operators, which cannot be converted into an 
identity operation. The proposed method overcomes 
these limitations. 

Figure 7 shows the proposed algorithms for determin-
ing if xcomb  can be converted to an identity function. We 

xcomb

Sev ∈),( xCSev ∩∉),(
)',(' vie = SCev x −∈)','(

)( xCINodeu∈
vu ≠

);,0,,( xcombvu

);,1,,( xcombvu

xcomb

vuw ≠≠
φ=w

)( xcomb

);,0,,( xcombwu

);,1,,( xcombwu

xcomb

xcomb

Fig. 7. Algorithm to identify if a comb component can be converted to an identity function 
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Fig. 6. Examples of cluster pairs that can be merged without a multiplexer 
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will describe the algorithms based on the example in Fig-
ure 8. The first part of the algorithm (lines 1-6 of Algo-
rithm 3) removes all the nodes in the reverse sub-trees 
rooted at the shift-by-constant operations (e.g. node 4 in 
Figure 8(a)). The function first identifies all the root nodes 
in xcomb  (line 1 of Algorithm 3) before finding the re-
verse sub-tree members of the corresponding root nodes 
using the depth-first-search algorithm (line 3 of Algo-
rithm 3). Each sub-tree can only have one shift operation 
that must be a root node. Note that only the nodes that 
are exclusive to the sub-tree are removed (line 4 of Algo-
rithm 3). 

The rationale for removing the nodes in the reverse 
sub-trees rooted at the shift-by-constant operations are as 
follows. As discussed in [28], the inputs of these reverse 
sub-trees are assigned dedicated input pins (e.g. shrIn1  in 
Figure 8(b)), which are hardwired to the required shifted 
operands. Each sub-tree can then be treated as a hypo-
thetical node with dedicated input pins. As the hypotheti-
cal nodes cannot be converted to an identity function (due 
to the fact that the shift operations will alter any non-zero 
input values), they are removed from xcomb  by assigning 
the dedicated input pins to ‘0’s. This produces ‘0’s at the 
output of the hypothetical nodes as shown in Figure 8(c) 
(line 5 of Algorithm 3). 
 

Next, the inputs of xcomb  are evaluated one at a time 
to determine if they can be produced at the output after 
eliminating all the operations within xcomb  by means of 
dataflow identity and dominance laws. This is achieved 
by recursively assigning ‘0’s and ‘1’s to the remaining 
inputs (using the AssignOperand function in lines 10 and 
12 of Algorithm 3 and Algorithm 4) and propagating 
these values through the operators in xcomb  (using the 
function EliminateOp in line 5 of Algorithm 4). The As-
signOperand function considers all the n2  Boolean as-
signments of the remaining n number of external inputs 
to the comb component. For example in Figure 8(d), to 

evaluate whether In3 can be produced at the output, In1 
and In2 are assigned to ‘1’ and ‘0’ respectively (using the 
AssignOperand function). In the subsequent steps (Figure 
8(e)-(h)), these values are propagated to the operations 
one at a time beginning from the predecessor nodes (us-
ing the EliminateOp function). As the operations in the 
comb component have been sorted according to their or-
der of dependency, the operations are progressively re-
moved in the order of the dependency graph by means of 
dataflow identity and dominance laws. At each step, the 
output of an operation is produced based on whether the 
operands are identity and dominating operands. The op-
eration is then removed. In this example, In3 is directly 
connected to the output after all the operations have been 
removed and, hence, xcomb  can be converted to an iden-
tity function. 

In the worst case, the time complexity of AssignOper-
and for a single iteration of Algorithm 3 (lines 8-14) is 

)2( 1−innO , where inn  is the number of external inputs to 

the comb component. In practice, inn  is usually very small 
(e.g. 4-6 depending on the target FPGA). The execution 
time complexity of EliminateOp is )( opnO , where opn  is 

the number of operations in the comb component. Note 
that the linear time complexity can be achieved as the 
operations in the comb component have been sorted ac-
cording to their order of dependency. 

 
Checking for Input Constraints Violation of Merged Cluster 

As no additional multiplexer has been introduced in 
the merging process, the input constraints of the merged 
cluster will not be violated if all the input pins of the 
original cluster with fewer inputs can be merged. For ex-
ample, in Figure 6(d), all the input pins of yC  have been 

merged with those of xC . Since both the original clusters 
already conform to the input constraints, the number of 
input pins of the resulting merged cluster will also not 
exceed K. However, there is a possibility that the input 
pins of the original clusters cannot be merged. This is 
shown in Figure 6(a) and (c), whereby only a single input 
pin of the original clusters is merged (i.e. 63 InIn ⊕  in 

Figure 6(a) and 42 InIn ⊕  in Figure 6(c)). The reason for 
this is that shifted values of the inputs affected by the 
shift-by-constant operation (e.g. and-shl in Figure 6(a) and 
shr in Figure 6(c)) will be hardwired to the logic elements 
and, hence, cannot serve as valid inputs to other logic 
functions (that do not require the same shifted values). 
Hence, there is a need to check if the required inputs of 
the merged cluster exceed K (line 22 of Figure 4). We have 
employed the algorithm in [28] for checking the input 
constraint violation of the merged clusters. 
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Fig. 8. Identifying if a comb component can be converted to an iden-
tity function  
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2) Merging Clusters With Multiplexer 
If the cluster pair cannot be merged with the method 

described in the previous section, a multiplexer will be 
introduced in an attempt to merge the cluster pair. Figure 
9 shows the various scenarios for cluster pair xC  and  yC  
to be merged by introducing a multiplexer. When both 
the cluster pair do not consist of an ari component (e.g. 
Figure 9(a)), the multiplexer is inserted at the output of 

xC  and yC . However, if at least one of the cluster pair 
has an ari component (e.g. Figure 9(b) and (c)), the multi-
plexer must be inserted at the input of the arithmetic op-
eration. This is due to the fact that all logical operations 
(we assume that the multiplexer is a logic operator) must 
execute before the arithmetic operation in a cluster (see 
Section 3.1).   

The input pins of xC  and yC  are also merged when-
ever possible and an additional input pin is required for 
the multiplexer select. The actual number of required in-
put pins of the merged cluster candidate must be recalcu-
lated using the algorithm in [28] to verify if the input pin 
constraint is still met. 

 

3) Choosing Unique Sets of Merged Clusters 
The cluster merging method will result in a basic cluster 
appearing in a number of merged clusters. In order to 
ensure that each basic cluster can only be merged once, 
there is a need to select a unique set of merged clusters 
from the merged cluster set. 
     A compatibility graph is constructed to select a unique 
set of merged clusters from 0,, CsCsi K  (line 20 in Figure 

3). The set iCs for 0≠i  is a set of merged clusters where 
each merged cluster can be formed by merging a number 
i of basic clusters. The compatibility graph approach is 
similar to that proposed in [27] for selecting a set of re-
sources in two data-paths for merging. However, our ap-
proach differs from that in [27] as we consider the selec-
tion of basic clusters for merging in all the custom instruc-
tion data-paths (instead of two data-paths at a time as in 
[27]). This global selection strategy can lead to better qual-
ity results. 

Definition 4: A compatibility graph is an undirected 
graph  ),( uuu EVG  where: 
 A vertex uVv∈  is a merged cluster which consists of 

a number i of basic clusters that can be merged to 
form v. A vertex v is associated with a weight 

freqivw ×= 2)( , where freq is the number of occur-
rences of the basic clusters in v that is found across all 
the custom instructions. The weight has been chosen 
in order to maximize cluster sharing among the most 
frequently occurring clusters in the custom instruc-
tion data-paths. The factor i2 is used as the value of i 
is typically much lower than freq. Note that the value 
of i varies according to the number of basic clusters 
that are used to form the merged cluster (see line 14 
of Algorithm 1). 

 There is an arc uEvue ∈= ),(  if the merged clusters 
represented by u and v are compatible. 

Definition 5: Vertex u and vertex v are not compatible if 
a basic cluster associated with u also exists in v. 

In the worst case, the number of vertices uV  in the 

compatibility graph, is ∑
= −

i

r bc

bc

rnr
n

1 )!(!
!

, where bcn  is the 

number of basic clusters in 0Cs . i is the number of basic 
clusters that are used to form a merged cluster in the cor-
responding iteration in the while loop of Algorithm 1 
(lines 4-19). This equation assumes that in iteration i, all 
combination of i basic clusters can be merged. Hence, in 
each iteration of the while loop, the number of possible 
merged clusters can be calculated using the combination 

function ( )!!
!

ini
n

bc

bc

−
. Note that this assumption will not be 

the case in practice. The maximum number of compatibil-
ity graph vertices in our experiments is less than 200. In 
addition, the maximum value of i in our experiments is 
five, as it is unlikely to find more than five clusters that 
can be merged into a logic group. The time complexity to 

construct the compatibility graph is )( 2
uVO  as there is a 

need to check for the compatibility of each vertex with all 
other vertices. 

In order to identify a unique set of merged clusters that 
would maximize the FPGA resource utilization, the 
maximum weight clique is heuristically computed from 
the compatibility graph. The following definition of 
maximum weight clique is obtained from [27]. 

Definition 6: The maximum weight clique of a graph 
),( ccc EVG  is a set of vertices cVC ⊆  where for all verti-

ces  Cvu ∈, , the arc cEvu ∈),(  and ∑ ∈∀ Cv
vw )(  is 

maximum. 
As mentioned in [27], the execution time to compute 

the maximum weight clique can be polynomially 
bounded by uV . 

3.3 Resource Sharing of Clusters in the Combined 
Data-path 

The basic clusters in the custom instruction data-paths are 
replaced with the selected merged clusters so as to de-

yx InIn ⊕ yx InIn ⊕

xC
yC

yx InIn ⊕ yx InIn ⊕

xC
yC

yx InIn ⊕ yx InIn ⊕

xC
yC

 
Fig. 9. Incorporating multiplexer into a merged cluster 
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termine the resulting data paths. This involves combining 
custom instruction data-paths based on the binding of 
basic clusters that are associated with the unique merged 
cluster set. This may necessitate introducing multiplexers 
in order to maintain the correctness of data-path of the 
associated custom instruction. 

In order to further minimize the area costs without incur-
ring additional area-time overhead, resource sharing is per-
formed on the basic clusters and merged clusters that do not 
reside on the same data-path. A cluster can only be consid-
ered for resource sharing only once to avoid increasing the 
critical path delay. In addition, if resource sharing between 
the clusters leads to more inferior area-time results, the solu-
tion prior to resource sharing is adopted. In this work, we 
have employed the resource sharing method that was pre-
sented in [27] for merging a pair of clusters. It is noteworthy 
that in most of the experiments considered, the proposed 
approach leads to very little opportunity for resource shar-
ing. 

4 EXPERIMENTAL RESULTS 
In this section, we compare the results of the proposed 
approach with results from 1) a commercial FPGA im-
plementation tool [32] that is targeted for area optimiza-
tion with resource sharing option selected [20], and 2) one 
of the best known methods for resource sharing [27].   

We have used eight applications from the MiBench 
embedded benchmark [33] and MediaBench benchmark 
[34] suites. Only integer operations are allowed in custom 
instructions and the maximum number of inputs/outputs 
for the custom instructions is 5/2. Previous work has 
shown that inputs/outputs more than this range results 
in little performance gain [35]. It is noteworthy that al-
though larger custom instructions can be obtained by pre-
processing the IR with certain advanced optimization 
passes, such approaches are only viable if the resulting 
instructions can be supported by the target processor. It is 
worth mentioning that the proposed method in this paper 
is not restricted to the number of input/output con-
straints of custom instructions. The outputs of custom 
instruction data-paths of all three approaches are multi-
plexed to meet the two-output port constraint of the RFU. 
In particular, single output custom instructions are mul-
tiplexed to the primary output port of the RFU, and dual-
output custom instructions are multiplexed to the pri-
mary and secondary output ports of the RFU. 

Table 1 reports the total number of operations in the 
resulting data-paths that are generated using the various 
methods. The Original approach is based on custom in-
struction data-paths that have been obtained from [28] 
without further optimization. The Resource Sharing ap-
proach is based on the method presented in [27] to obtain 
an optimized data-path that maximizes the resource shar-
ing of the original data-paths. The approach in [27] per-
forms data-path merging on two data-paths at a time un-

til all the data-paths have been considered. For the Pro-
posed Method, the original custom instruction data-paths 
are subjected to the methods presented in this paper. 
Note that the data-paths in the three approaches will be 
subjected to further optimization during implementation 
with the FPGA tool. 

In Table 1, the optimized data-paths that are generated 
using Proposed Method are based on K = 4. The average 
number of operations per instruction in each application 
for Original ranges from 3 to 7. When compared to results 
of Original, the Resource Sharing approach leads to an av-
erage reduction of over 29% in the number of operations. 
In contrast, Proposed Method has an average percentage 
reduction in the number of operations of less than 7%. 
These results confirm that unlike the resource sharing 
approach, the proposed method does not aim at maximiz-
ing resource sharing between the data-paths. 
 

 
The optimized data-paths for each of these methods 

have been designed in VHDL, implemented using Xilinx 
ISE (version 9.1.01i) [32] and targeted on three state-of-
the-art FPGA architectures, i.e. Spartan-3 
(xc3s5000fg1156-4) [8], Virtex-4 (xc4vlx200ff1513-10) [9] 
and Virtex-5 (xc5vlx50ff1153-1) devices [10].  

The Spartan-3 and Virtex-4 devices incorporate logic 
elements with 4-input LUTs. The Virtex-5 devices incor-
porate logic elements with 6-input LUTs that can be used 
to implement any 6-input function or two dual-output 5-
input functions [36]. For the Spartan-3 and Virtex-4 solu-
tions, the proposed method generates optimized data-
paths for K = 4 such that all the clusters produced cannot 
have more than 4 inputs. For the Virtex-5 solution, two 
sets of results for K = 5 and K = 6 are first generated. The 
set which leads to the best area-time results is chosen. The 
data-paths produced using the various methods are im-
plemented with the FPGA tool under the same design 
constraints and optimization options. In particular, we 
have enabled the implementation options for area optimi-
zation and resource sharing. 

TABLE 1 
NUMBER OF OPERATIONS 
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4.1 Area Measures 
Table 2 shows the optimized area for the various ap-
proaches. In order to compare the area utilization using a 
common measure (i.e. number of slice LUTs), we have 
disabled the option to map multiplication operations onto 
embedded multipliers and DSP blocks in the FPGA. The 
percentage values (in brackets) are the percentage area 
reduction of Proposed Method over Resource Sharing. It is 
worth mentioning that the original data-paths have also 
undergone area optimizations (with resource sharing as 
one of the optimization strategy) that are provided by the 
commercial tool.  

It can be observed that Resource Sharing and Proposed 
Method both lead to notable area reduction when com-
pared to Original. The average area reduction of Resource 
Sharing over Original is 17.2%, 17.3% and 33.6% on Spar-
tan-3, Virtex-4 and Virtex-5 respectively. For certain ap-
plications (e.g. Adpcm Enc and Bitcount) on Spartan-3 
and Virtex-4, Resource Sharing results in lower area effi-
ciency than Original. This is due to the fact that custom 
instructions in these two applications have little opportu-
nity for resource sharing and hence, the area of the multi-
plexers introduced through the limited sharing of re-
sources outweighs the area savings. In comparison, Pro-
posed Method is capable of achieving higher area efficiency 
over Original in all cases. The average area reduction of 
Proposed Method over Original is 34.3%, 34.2% and 42.4% 
on the Spartan-3, Virtex-4 and Virtex-5 respectively. 
These results demonstrate that unlike resource sharing 
methods, the proposed method is still favorable for merg-
ing data-paths which do not have a high degree of simi-
larity in the operations. It can be observed that the area 
reduction in both methods for Spartan-3 and Virtex-4 is 
comparable due to the similar characteristics of the logic 
elements in both architectures. The higher area reduction 
for Virtex-5 is due to the larger LUTs in the architecture 
that enables more operations to be mapped onto a logic 
element. In the proposed method, the higher number of 
input pins allowable in a logic group for the Virtex-5 ar-
chitecture also enables more clusters to be merged.  

Proposed Method results in higher area efficiency than 
Resource Sharing in almost all cases. The only case where 
Resource Sharing leads to notably higher area efficiency 
than Proposed Method is for application Rijndael Dec on 
Spartan-3 and Virtex-4. Note that the percentage area dif-

ference for this case is lesser than the percentage area re-
duction of Proposed Method in all the other applications on 
the Spartan-3 and Virtex-4 device. The custom instruc-
tions in Rijndael Dec have many similar operations and 
hence the resource sharing method is more favorable in 
terms of area minimization. However as shown in the 
next sub-section, the area optimization of Resource Sharing 
is achieved at the cost of incurring large critical path de-
lays.  When compared to one of the best known resource 
sharing based method, the proposed method can achieve 
an average area reduction of 18%, 17.8% and 13.2% on the 
Spartan-3, Virtex-4 and Virtex-5 respectively. These re-
sults demonstrate that an approach that maximizes re-
source sharing may not be the best method for FPGA area 
optimization. 

 
4.2 Critical Path Delay 
While resource sharing based approaches can lead to area 
savings, they may incur undesirable delay in the data-
paths due to the extensive introduction of multiplexers 
whenever operations are shared across data-paths. In con-
trast, the proposed method judiciously introduces multi-
plexers at a coarser-grain, i.e. for interconnect sharing 
when the clusters in different data-paths are merged. In 
addition, the proposed method attempts to maximize the 
logic utilization of the FPGA logic elements, which can 
lead to lesser critical path delay in the data-paths. Table 3 
shows the critical path delay of the optimized data-paths. 
The percentage values (in brackets) are the percentage 
delay reduction of Proposed Method over Resource Sharing. 
The bracket below each critical path value shows the logic 
and route delay that constitute the critical path.  

It can be observed that Resource Sharing leads to high-
est critical path delay in almost all cases. In Virtex-5, Pro-
posed Method has a critical path delay that is marginally 
higher than Resource Sharing for only one application, i.e. 
Rijndael Enc (difference of less than 1ns). When com-
pared to the implementation results of Original, Resource 
Sharing has an average increase in critical path delay of 
20.0%, 28.8% and 18.9% on the Spartan-3, Virtex-4 and 
Virtex-5 respectively. In comparison, Proposed Method has 
an average increase in critical path delay over Original of 
only 4.3%, 2.2% and 11.3% on the Spartan-3, Virtex-4 and 
Virtex-5 respectively. In certain applications on the three 
FPGA devices, it can be observed that Proposed Method 
can lead to lower critical path delay than the original 

TABLE 2
AREA (NUMBER OF SLICE LUTS) 
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data-paths. This is contributed by two reasons. Firstly, in 
certain applications, the combination of data-paths due to 
cluster merging in the proposed method has resulted in 
less complex output multiplexer. Secondly, in cases 
where the Proposed Method has lower critical path delay 
than the original data-paths, it can be observed that the 
proposed method has led to a notable reduction in the 
routing delay. This is due to the efficient packing of op-
erations within the logic blocks in the proposed method 
that has enabled the implementation tool to perform 
tighter placement which, in turn, leads to more effective 
routing. 

When compared to Resource Sharing, Proposed Method 
has an average critical path delay reduction of 11.8%, 
20.7% and 6.3% on the Spartan-3, Virtex-4 and Virtex-5 
respectively. It can be observed that when compared to 
the original data-paths, Proposed Method generally leads to 
a lower increment in the routing delay than Resource Shar-
ing. This is due to the more compact designs generated by 
the proposed method. In particular, when compared to 
Original, Resource Sharing has an average increase in rout-
ing delay of 21.1%, 36.7% and 26.9% on the Spartan-3, 
Virtex-4 and Virtex-5 respectively. In contrast, Proposed 
Method leads to an average increase in routing delay of 
less than 1% on the Spartan-3 and Virtex-4, and only 
14.5% on Virtex-5. This confirms that the proposed 
method is not only capable of achieving a higher degree 
of area optimization when compared to resource sharing 

based approaches, but it can also lead to lesser critical 
path delay. 

 
4.3 Area-Time Measures 
The authors in [37] have observed that FPGA LUT size is 
the most useful architectural parameter for making area-
delay trade-offs. Their analysis is consistent with results 
in this paper, which shows that the implementations on 
the Virtex-5 architecture generally leads to higher area 
but lower delay when compared to implementations on 
Spartan-3 and Virtex-4 architectures. In addition, the 
work in [37] concludes that for minimum area-delay 
product, a FPGA LUT size of 4 (e.g. Virtex-4 devices) pro-
vides the best results. In order to compare the overall 
benefits of the proposed method, we use the metric area-
delay product which is obtained by multiplying the area 
(in terms of number of slice LUTs) with the critical path 
delay (in terms of nanoseconds). Table 4 shows the area-
delay product of the optimized data-paths. The percent-
age values (in brackets) are the percentage area-delay 
product reduction of Proposed Method over Resource Shar-
ing. 
     Table 4 confirms that Proposed Method has lower area-
delay product than Original and Resource Sharing in all 
cases. It can also be observed that in certain applications, 
the implementation of original data-paths using the op-
timization provided by the commercial tool can lead to 
lower area-delay product than the resource sharing ap-

TABLE 3
CRITICAL PATH (NS) 

 

TABLE 4
AREA-DELAY PRODUCT 
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proach. In particular when compared to Original, Proposed 
Method has an average area-delay product reduction of 
31.4%, 32.5% and 36.3% on the Spartan-3, Virtex-4 and 
Virtex-5 respectively. When compared to Resource Sharing, 
Proposed Method has an average area-delay product reduc-
tion of 27.8%, 34.5% and 19.2% on the Spartan-3, Virtex-4 
and Virtex-5 respectively. These results reinforce the 
benefits of the proposed method for area-time optimiza-
tion on FPGA. 
 
4.4 Execution Time 
The execution time of the proposed method is longer than 
that required by the resource sharing approach to gener-
ate the optimized data-paths. However, both methods 
(resource sharing and proposed) can be executed in the 
order of milliseconds on a HP Workstation with two 
2.66GHz processors and 2GB RAM. This is an insignifi-
cant overhead when compared to the time taken for the 
commercial FPGA tool to implement the optimized data-
paths, which is typically in the order of seconds/minutes. 
 
4.5 Performance Gain Over Base Processor 

We have performed cycle-accurate simulations for sev-
eral frequently executed functions in the benchmark ap-
plications using the SimpleScalar toolset [38], in order to 
evaluate the performance gain of the three approaches 
(Original, Resource Sharing and Proposed Method) over the 
base processor. Since the methodology for custom in-
struction generation in [28] relies on the Trimaran com-
piler [39] infrastructure, the Trimaran’s IR is first con-
verted to ARM assembly code. The custom instructions 
are then manually inserted into the assembly code. This 
process requires code motion and register allocation in 
order to maintain the correctness of the program. Finally, 
the ARM assembler is used to generate the binaries for 
simulation. The processor configuration in SimpleScalar 
is set as follows: pipeline depth = 5; cache size = 64KByte; 
line size = 8 byte; multiplication cycles = 3 and division 
cycles = 20. The remaining configurations are similar to 
the synthesizable OpenRiSC soft-core processor configu-
ration in [40]. All division operations are handled in soft-
ware. Multi-cycle custom instructions implementation is 
enabled and the critical path values for the three ap-

proaches are obtained from Table 3 (Virtex-4 device).  
 

Figure 10 shows the percentage performance gain of 
the three approaches over the base processor implementa-
tion. It can be observed that Proposed Method and Original 
outperforms Resource Sharing in most of the functions 
considered (except Bitcount) due to the lower critical path 
delays of their custom instructions. It is noteworthy that 
the proposed method has an area reduction of more than 
34% when compared to Resource Sharing for Bitcount (see 
Table 2). As shown in Figure 10, the proposed method 
can still achieve an average performance gain of over 22% 
over the base processor, while Resource Sharing can 
achieve an average performance gain of less than 15% 
over the base processor. Although the performance gain 
of Original and Proposed Method is comparable as their 
critical path delays are very close, it can be observed from 
Table 2 that Proposed Method has an average area reduc-
tion of more than 34% compared to Original. 

5 CONCLUSION 
In this paper, we have proposed a novel technique to 

realize area-time efficient custom instructions on com-
mercial FPGA architectures. It leverages on our existing 
technique to partition the custom instructions into a set of 
basic clusters such that the basic clusters can be efficiently 
mapped onto the LUT and carry-look-ahead structure of 
the FPGA logic blocks. We have proposed conditions to 
aid the merging of basic clusters without introducing 
multiplexers. We have employed a heuristic based on the 
degree of cluster merging and the frequency of occur-
rences of the basic clusters to accelerate the selection of a 
unique set of merged clusters. Resource sharing is then 
performed on clusters only if the resulting data-paths do 
not lead to an increase in the area-delay product. When 
compared to the area optimization capabilities of the 
commercial tool and to one of the most efficient methods 
reported in the literature for resource sharing, the pro-
posed method can achieve significantly lower area-delay 
product for all cases considered in this study due to its 
architecture-aware cluster merging strategy to maximize 
utilization of FPGA logic blocks.  
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