
IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2 1

Architecture-Aware Technique for
Mapping Area-Time Efficient

Custom Instructions onto FPGAs
Siew-Kei Lam, Member, IEEE, Thambipillai Srikanthan, Senior Member, IEEE, and

Christopher T. Clarke

Abstract— Area-time efficient custom instructions are desirable for maximizing the performance of reconfigurable processors.
Existing data path merging techniques based on resource sharing can be deployed to improve area efficiency of custom
instructions. However, these techniques lead to large increase in the critical path delay. In this paper, we propose a novel
strategy that takes into account the architectural constraints of the FPGA device in order to realize custom instructions with low
area-delay product. The proposed strategy is based on partitioning the custom instruction data-paths into a set of basic clusters
such that they can be combined using a heuristic based cluster merging process to maximize the utilization of FPGA logic
blocks. Unlike the resource sharing method, the proposed cluster merging process does not maximize sharing of common
resources and this leads to lesser reliance on multiplexers for implementing custom instructions. Resource sharing is only
applied sparingly at the final stage to increase utilization of logic blocks. We show that the proposed technique leads to more
than 34%, 34% and 42% average reduction in area costs for Spartan-3, Virtex-4 and Virtex-5 architectures respectively when
compared to optimizations achieved through commercial synthesis tool. We have also shown that the proposed technique leads
to more than 18%, 17% and 13% average reduction in area costs for Spartan-3, Virtex-4 and Virtex-5 respectively when
compared to results obtained using one of the most efficient resource sharing based method reported in the literature. In
addition, the proposed technique outperforms the resource sharing based method in terms of area-delay product, with average
reductions of more than 27%, 34% and 19% for Spartan-3, Virtex-4 and Virtex-5 respectively.

Index Terms— Automatic synthesis, data-path design, real-time and embedded systems, reconfigurable hardware

—————————— ——————————

1 INTRODUCTION

uture embedded systems must continue to meet the
shrinking time-to-market window and lower NRE
(Non-Recurring Engineering) costs. Product differen-

tiation needs and increasing complexity of applications
will demand customization in the form of hardware ac-
celeration. To this end, FPGAs (Field Programmable Gate
Arrays) are gaining popularity as the increasing NRE
costs of Application-Specific Integrated Circuits begin to
outweigh the per-unit-cost of FPGAs for high-volume
applications 0-[2].

Platforms which consist of a microprocessor core that
is tightly coupled with a RFU (Reconfigurable Functional
Unit) are defined as reconfigurable processors. The in-
struction set extension capability of reconfigurable proc-
essors (e.g. [3]-[5]) that facilitate critical parts of the appli-
cation to be implemented in hardware, provides an at-
tractive means to meet the flexibility, performance, and
cost demands of embedded computing devices [6]. The
use of FPGA-based embedded processing is growing and

it is estimated that by 2010, more than 40% percent of all
FPGA designs will contain an embedded microprocessor
[7]. Strategies for maximizing the area utilization of FPGA
based implementations will be an important step for sat-
isfying the tight design constraints in future embedded
System-On-a-Chip designs.

In this paper, we propose a novel high-level optimiza-
tion strategy for realizing area-time efficient custom in-
structions on FPGA devices. In particular, we show that the
well-accepted notion of resource sharing for achieving
area-efficient designs does not necessarily lead to best re-
sults for FPGA-based realizations. The proposed approach
is targeted towards commercial FPGA architectures (i.e.
[8]-[10]) that typically consist of logic elements with LUT
(Look-Up Tables) of any arbitrary input K (i.e. K-LUT) and
a carry-logic structure.

The remainder of this paper is organized as follows: in
the following sub-section, we discuss existing high-level
area optimization approaches based on resource sharing.
Section 2 provides an overview of the proposed strategy
and highlights the differences between our proposed
method and existing approaches. Section 3 describes the
proposed technique in detail. Experimental results are
provided in Section 4 and the paper concludes in Section
5.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• S.K. Lam and T. Srikanthan are with the Centre for High Performance

Embedded Systems, Nanyang Technological University, Singapore 637553.
E-mail: assklam@ntu.edu.sg, astsrikan@ntu.edu.sg.

• C.T. Clarke is with the Department of Electronic and Electrical Engineer-
ing, University of Bath, BA2 7AY Bath, U.K. E-mail:
c.t.clarke@bath.ac.uk..

Manuscript received 15 December 2009.

F

2 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2

1.1 Related Work
Most of the reported works in custom instruction genera-
tion [11]-[16] do not focus on efficient area-time mapping
of the custom instructions onto the architecture. Area-
time optimization can be performed during high-level
[17] or gate level synthesis (i.e. technology mapping [18]-
[19]). In contrast to gate level synthesis which operates on
the available logic gates of a target architecture library,
high-level synthesis operates on the primitive operations
derived from the behavioral/algorithmic representations.
Since designs at higher level of abstractions are less con-
fined to the physical architecture, optimizations at these
levels usually lead to high quality results.
 High-level area minimization has often relied on
strategies to maximize resource sharing of the data-paths.
These approaches aim at maximizing the reuse of opera-
tions and interconnections by identifying similarities be-
tween two original data-paths. Commercial FPGA tools
also adopt the resource sharing approach as one of their
main area optimization strategies. For example, the Xilinx
synthesis tool supports resource sharing for a limited
number of hardware resources (e.g. adders, subtractors
and multipliers), by implementing one single arithmetic
operator for similar operations that are never used con-
currently [20].
 Figure 1 illustrates an example of resource sharing of
two custom instruction data-paths (i.e. G1 and G2 in Fig-
ure 1(a)). In this example, we assume that there is only
one available output port on the RFU and, hence, the out-
puts of G1 and G2 have been multiplexed. The two custom
instruction data-paths in Figure 1(a) are combined into a
single data-path in Figure 1(b) by merging similar opera-
tions and interconnections between the two data-paths.

yx⊕ denotes that operations/inputs x and y has been
merged. The resulting data-path in Figure 1(b) is capable
of performing the functionality of the original data-paths.
It can be observed that the resulting number of operations
and interconnections has been reduced. Figure 1 also re-
ports the FPGA implementation results which shows that
the area (in terms of number of slices) have been reduced
due to resource sharing.
 Resource sharing has also been employed for reducing

the system reconfiguration overhead of reconfigurable
architectures [21]-[22]. The work in [21] minimizes the
run-time reconfiguration time by identifying common
components in two successive configurations. A weighted
bipartite graph is constructed from two successive con-
figurations, and an algorithm that performs graph match-
ing and combining is employed to produce a combined
configuration. In [22], a data-path merging algorithm has
been presented to reduce the reconfiguration overhead of
an architecture template with a reconfigurable intercon-
nection network. In order to optimize interconnect-
sharing, the data-paths are merged by solving the maxi-
mum bipartite matching problem.

The work in [23], which was later extended in [24],
represents custom instruction data-paths as path se-
quences, and computes the longest common subsequence
to identify possible resource sharing between the se-
quences. In [25], the left-edge binding algorithm was em-
ployed to minimize the number of functional units and
registers through resource sharing. Other methods for
improving the interconnection mapping include iterative
improvement and ILP (Integer Linear Programming) ap-
proaches [26].

In [27], a data-path merging algorithm is presented to
merge several DFGs (Data-Flow Graphs) in order to pro-
duce a reconfigurable data-path with minimum hardware
operations and interconnection. The algorithm first con-
structs a compatibility graph that represents all the possi-
ble mappings of common operations and interconnectiv-
ity between two DFGs. The maximum weight clique
problem is then solved to maximize resource sharing be-
tween the two DFGs. The authors in [27] demonstrated
that their technique outperforms other approaches based
on bipartite matching, on iterative improvement and on
ILP.

1.2 Main Contribution
Conventional area optimization algorithms based on re-
source sharing typically merges graph representations of
two or more custom instructions that contain similar sub-
graphs. Our results reveal that resource sharing based
approaches (e.g. [21]-[27]) often do not lead to the most

1
1C

2
1C

3
1C

4
2C

5
2C

104⊕

116⊕

95⊕

81⊕

73⊕

63 InIn ⊕ 74 InIn ⊕

16 InIn ⊕ 27 InIn ⊕
71 InIn ⊕

4
2

1
1 CC ⊕

3
1C

5
2

2
1 CC ⊕

116⊕

Fig. 1. (a) Original, (b) Resource sharing, (c) Cluster merging

LAM ET AL.: ARCHITECTURE-AWARE TECHNIQUE FOR MAPPING AREA-TIME EFFICIENT CUSTOM INSTRUCTIONS ONTO FPGAS 3

efficient FPGA resource utilization and can result in high
critical path delay.

This paper presents a novel strategy for generating
area-time efficient FPGA realization of custom instruc-
tions on commercial architectures. The proposed strategy
first maps the custom-instructions onto the logic blocks to
maximize the area utilization of FPGA resources. This
process resembles technology mapping, and it is treated
as a covering problem rather than a merging problem.
The mapped custom instructions are then merged to
maximize the utilization of the logic blocks prior to judi-
ciously considering resource sharing to avoid increasing
the area-delay product. The proposed strategy can be
completed in the order of milliseconds and hence does
not incur an overhead in existing design flows.

2 OVERVIEW OF PROPOSED METHOD
The proposed method consists of the following three
main steps: 1) cluster identification, 2) cluster merging,
and 3) data-path combination and resource sharing. We
describe the proposed method by using the example in
Figure 1.

Definition 1: A custom instruction data-path is a di-
rected graph Gi = (Vi, Ei) for ni ,,2,1 K= and n is the
number of custom instructions obtained using the meth-
odology in [28], where:
 A vertex iVv∈ for ni ≤≤1 is a primitive integer op-

eration in a compiler’s IR (Intermediate Representa-
tion). These operations can be categorized as 1)
arithmetic i.e. addition (add), subtraction (sub), multi-
plication (mul), 2) logical (and, or, xor), and 3) rela-
tional e.g. logical/arithmetic shift by a constant/non-
constant factor (shl, shr, shra). Each vertex is also asso-
ciated with at most two input ports and one output
port.

 An arc () iEvue ∈= , indicates a data transfer from
vertex u to vertex v, whereby the output port of u is
connected to one of the input ports of v.

Definition 2: A basic cluster),(j
i

j
i

j
i EVC = is a sub-

graph of a custom instruction Gi, which can be imple-
mented either 1) on a single FPGA logic group (a group of
logic elements that share the same hardware configura-
tion), or 2) using embedded FPGA IP (Intellectual Prop-
erty) cores. The size of the logic group is equivalent to the
custom instruction bit-width. None of the basic clusters in
Gi overlap, i.e. ∅=k

i
j

i VV I and ∅=k
i

j
i EE I for kj ≠ .

In addition i

c

j

j
i VV =

=
U

1

 and i

c

j

j
i EE =

=
U

1

, where c is the

number of basic clusters in Gi.
Cluster identification partitions the custom instruction

data-paths into a set of basic clusters. For example in Fig-
ure 1(a), G1 consists of basic clusters 1

1C , 2
1C and 3

1C , and

G2 consists of basic clusters 4
2C and 5

2C . Cluster identifi-
cation resembles the technology mapping process, where
a set of basic clusters that effectively covers the custom
instruction data-path is identified. It is worth mentioning

that unlike existing works in technology mapping, cluster
identification operates on the high-level representation of
the custom instructions.

Definition 3: Let),(j
x

j
x

j
x EVC = and),(k

y
k
y

k
y EVC = be

basic clusters.),(EVG = is known as the merged cluster of
j

xC and k
yC , denoted as k

y
j

x CCG ⊕= , if and only if:

 yx ≠ , i.e. only the basic clusters in different data-
paths can be merged.

 The merged cluster G can be implemented on a sin-
gle FPGA logic group.

 ok
y

j
x VVVV UU= , where oV is a set of extra vertices

and 10 ≤≤ oV . The extra vertex consist of a m-1

multiplexer (mux) to facilitate time-multiplexed com-
putations of the basic clusters j

xC and k
yC . For ex-

ample in Figure 1(c), the basic clusters 1
1C and 4

2C ,

and the basic clusters 2
1C and 5

2C are merged to pro-

duce the merged clusters 4
2

1
1 CC ⊕ and 5

2
2
1 CC ⊕ re-

spectively. The resulting merged clusters require an
additional component, which is a 2-1 multiplexer (m
= 2).

 ok
y

j
x EEEE UU= , where oE is a set of extra arcs and

10 ≤≤ oE . The extra arcs are introduced along with

the mux. For example in Figure 1(c), the introduction
of a 2-1 mux in the merged cluster 4

2
1
1 CC ⊕ has re-

sulted in an additional arc from the output port of the
mux to the input port of add. Note that the output
ports of vertex j

xVu∈ and k
yVv∈ are assigned to the

input ports of the mux. In addition, a select signal Sel
is required for the mux. The same can be observed for

5
2

2
1 CC ⊕ .

Cluster merging first identifies all combinations for
merging the basic clusters in order to further increase the
utilization of the FPGA resources by maximizing the
functionality of the logic groups. Basic clusters can be
merged only if they belong to different data-paths and the
resulting merged cluster can be implemented onto a sin-
gle FPGA logic group. Note that the generation of a
merged cluster may introduce an additional input for the
multiplexer select pin as shown in Figure 1(c). This poses
a limitation to the combination of basic clusters that can
be merged, as the number of inputs of the resulting
merged cluster cannot violate the input constraint of the
logic group. In cases where a multiplexer is introduced in
a merged cluster, the multiplexer select signal is used to
select the desired functionality between the correspond-
ing basic clusters in a time-multiplexed manner. This is
possible as the basic clusters that are associated with the
merged clusters do not execute concurrently as they be-
long to different data-paths. In order to ensure that each
basic cluster can only be merged in a unique fashion, a

4 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2

heuristic is used to select a unique set of merged clusters
with the aim to maximize the area utilization of the FPGA
resources.

In the final stage (data-path combination and resource
sharing), the basic clusters in the custom instruction data-
paths are replaced with the selected merged clusters. Cus-
tom instruction data-paths that incorporate common
merged clusters are then combined to construct a final
data-path such as that shown in Figure 1(c). Note that
multiplexers may be inserted to facilitate interconnect
sharing between the clusters. In the example, the result-
ing data-path consists of a set of merged clusters (i.e.

4
2

1
1 CC ⊕ and 5

2
2
1 CC ⊕) and one basic cluster (i.e. 3

1C). In
order to further minimize the area costs, we can perform
resource sharing on the clusters of separate data-paths
(data-paths that have not been combined) only if the re-
sulting data-path does not lead to higher area-delay
product. Since the example in Figure 1(c) has only one
single resulting data-path, resource sharing is not per-
formed.

It can be observed that the resulting data-path in Fig-
ure 1(c) contains equivalent number of operations and
interconnections as the original data-paths in Figure 1(a).
Hence, in contrast to the resource sharing based method,
our approach may not lead to lesser number of operations
and interconnections. However, it can be seen in Figure
1(c) that the actual FPGA implementation results of our
approach has higher area reduction when compared to
the resource sharing based approach (i.e. Figure 1(b)). In
addition, our approach leads to a lower critical path de-
lay.

The proposed method only attempts to merge basic
clusters that can be mapped uniformly onto logic ele-
ments to form logic groups that share the same hardware
configuration. This is applicable for most of the opera-
tions in our experiments. Operations, which cannot be
mapped uniformly onto the logic groups, form basic clus-
ters that will not be considered for merging. Note that
these operations are usually realized using embedded
FPGA IP cores. The current method also does not con-
sider optimized circuits (e.g. carry-select adder, compres-
sor tree, etc.), or specialized operations (e.g. counters) that
exploits the carry-chain and multiplexers within the logic
elements for efficient realization. These cir-
cuits/operations cannot be directly identified from the
high-level representation of the applications [29] and,
therefore, are not considered in the proposed method.

3 CLUSTER MERGING FOR AREA OPTIMIZATION
In this section, we begin by briefly describing the cluster
identification stage. Details of this work can be found in
[28]. In this paper, we focus on cluster merging. The re-
source sharing algorithm employed in the last stage of the
proposed method is adopted from [27].

3.1 Cluster Identification
Cluster identification incorporates the following steps: 1)
cluster enumeration and 2) cluster selection. The cluster

enumeration process decomposes the template into a list of
basic cluster instances. Two sets of legality checks have
been used to determine a basic cluster. The legality checks
have been formulated based on our understanding on
how the operations are mapped onto the logic elements of
the target FPGA.

The first set of legality checks determines the primitive
operations that can be included in the basic cluster. For
example, only a single arithmetic operation is allowed in
a basic cluster. A logical operation must execute before an
add/sub operation in a basic cluster but certain relational
operations (i.e. shift-by-constant) can execute after the
add/sub operation in the basic cluster. More complex
arithmetic operations such as multiplications cannot co-
exist in a basic cluster with other operations.

The second set of legality checks evaluates whether the
operations that have been included in a basic cluster con-
form to the input-output constraints of the FPGA logic
element. For example, the number of inputs of the opera-
tions cannot exceed K and the number of outputs is 1.
This legality check also takes into consideration the input
constraints for implementing addition/subtraction using
logic elements in certain FPGA technology (see [28]).

After all the basic clusters have been enumerated, a set
of basic clusters is then selected in the cluster selection
process to effectively cover the original data-path. The
basic clusters can be categorized into three cluster groups
as shown in Figure 2. The comb group (Figure 2(a)) con-
sists of only logical and/or relational operations (i.e. shl,
shra). The ari group (Figure 2(b)) consists of an add/sub
operation that may co-exist with a relational operation.
Relational operations in the ari group (i.e. shl, shra) must
execute after the add/sub operation (refer to the legality
check for including an operation in the cluster). Finally,
the third group consists of a combination of the comb and
an ari group (Figure 2(c)). Operations in the comb group
must execute before the operations in ari.

3.2 Cluster Merging
Figure 3 shows the algorithm for cluster merging. Ini-
tially, the basic clusters that are obtained from the cluster
identification stage are stored in both iCs and 0Cs (line
1). In the first iteration (lines 4-19), each pair of basic clus-
ters are evaluated for cluster merging. The resulting
merged clusters are stored in 1+iCs (line 14). In subse-

comb(a) (b) (c)

add

In1 In2

xor

andand

or

In1 In2 In3

In4

Examples

ari

Examples Examples

comb

ari

sub

In1 In2

and

or

and

In1 In2 In3

and

or

In3

add

In4

shl

or

shr

In1

add

In2

shra

and

add

shra

In1

In2

xor

shl

shra

In1 In2

add

shl

In2In1

shl

In1

and

or

In2 In3

Fig. 2. Cluster groups and their corresponding examples

LAM ET AL.: ARCHITECTURE-AWARE TECHNIQUE FOR MAPPING AREA-TIME EFFICIENT CUSTOM INSTRUCTIONS ONTO FPGAS 5

quent iterations, the newly computed merged clusters
from the previous iteration (i.e. iCs) are evaluated for
cluster merging with the original set of basic clusters (i.e.

0Cs). This iterative process is repeated until no merged
clusters are found in a particular iteration (i.e. condition
expression equates to false in line 4). In the second part of
the algorithm, a unique set of merged clusters is selected
from the merged cluster sets (i.e. from the sets

1,, CsCsi K) and the original set of basic clusters (i.e. 0Cs)
(line 20).

There are two ways for merging a pair of clusters: with
or without introducing a multiplexer. The pair of clusters
is first evaluated to determine if they can be merged
without incurring a multiplexer (line 8). If this is not pos-
sible, then the cluster pair is evaluated to determine if
they can be merged by introducing a multiplexer (line 10).
Preference is given to the former as introducing a multi-
plexer requires additional input pins (i.e. the multiplexer
select pin) and this may violate the input constraints of
the cluster. In the following sections, we will discuss
these two cluster merging methods.

1) Merging Clusters Without Multiplexer

Figure 4 describes the algorithm for determining if a
cluster pair can be merged without introducing a multi-
plexer. As mentioned earlier, a pair of clusters can be
merged if the resulting merged cluster can still be imple-
mented using a single logic group. The first step of the
algorithm partitions the cluster pair into their correspond-
ing comb and ari components (lines 2-3).

Figure 5 shows two approaches to merge clusters with-
out introducing a multiplexer. Let xC be a cluster, and

xcomb / xari the corresponding comb/ari components. In

Figure 5(a), xcomb consists of a multiplexer that has been
introduced in previous iterations. Note that there is an
external input to the multiplexer (i.e. In1) that is not con-
nected to any internal logic within xcomb . We denote
such an input as an unused-mux-input. For simplicity, we
have omitted all inputs/outputs of the clusters that are
irrelevant to the current discussion. Cluster merging of

xC and yC is achieved by connecting the output port of

ycomb to unused-mux-input. The second approach to

merge xC and yC is shown in Figure 5(b). In this sce-

nario, xC does not have a comb component and yC does
not have an ari component. Cluster merging is achieved
by simply connecting the output port of ycomb to the

input port of xari .
The cluster merging approaches discussed above can

only be achieved when certain conditions are satisfied.
These four conditions, which are evaluated in lines 4-21 of
Algorithm 2, are described below. When the necessary
Conditions 1 and 2 are met, Conditions 3 and 4 form the
sufficient conditions to merge a pair of clusters. Note that

0Cs

01 CsCs =
;1=i

i
i
x

i
x CsCwhereC ∈,

0
00 , CsCwhereC yy ∈

);,(0
y

i
x CC

);,(0
y

i
x CC

=+1iCs
;++i

);,,,(01 CsCsCs ii K−

);,(0
y

i
x CC

Fig. 3. Cluster merging algorithm

yx CC ,

)(xcomb

),(xx aricomb)(xC
),(yy aricomb)(yC

),,,,(yyxx aricombaricombK

)(φ≠xari)(φ≠yari
)(yx ariari ≠

)(xari

)(yx CC ≠
)(φ≠xcomb)(φ≠ycomb

)(φ≠xari)(φ≠ycomb
)(ycomb

)(φ≠xari)(φ=yari

Fig. 4. Algorithm to evaluate if a cluster pair can be merged without
a multiplexer

6 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2

the conditions for merging clusters xC and yC are com-
mutative.
 Necessary Condition 1: If xC and yC consist of ari

components (e.g. Figure 5(a)) and they can be merged,
then yx ariari = . Proof: We proof this by contradic-

tion. Suppose that xC and yC can be merged and
they both consist of different ari components
(yx ariari ≠). The merged cluster yx CC ⊕ is imple-

mented in a single logic group (according to Defini-
tion 3), which can perform the functionalities of xC

and yC including the arithmetic functions xari and

yari . However, this contradicts the fact that each

logic group can only implement one single ari com-
ponent (see Section 3.1). Hence, for xC and yC to

merge, xari and yari must be the same. This condi-

tion is evaluated in lines 4-8 of Algorithm 2.
 Necessary Condition 2: If only one of the clusters xC or

yC has an ari component (e.g. Figure 5(b)) and they can

be merged, then the ari component cannot have a shift-by-
constant operation. Proof: We proof this by contradic-
tion. Suppose that xC and yC can be merged and

only xC has an ari component (i.e. xari), which in-
cludes a shift-by-constant operation. The merged
cluster yx CC ⊕ is implemented in a single logic

group, which can perform the functionalities of xC

and yC . In order for the merged cluster to perform

the functionalities of yC , the ari component must be
convertible to an identity function (for example in
Figure 5(b), by assigning an identity operand to In2
(e.g. In2 = 0) in yx CC ⊕ , we can obtain the result of

ycomb if xari can be converted to an identity func-

tion). However it is not possible to convert xari with
a shift-by-constant operation (assuming the constant
is non-zero) to an identity function as the shift opera-
tion will always alter the input value (except when
the input value is zero). Hence, this contradicts the

assumption that xC and yC can be merged. This
condition is evaluated in lines 9-13 of Algorithm 2,
where the ShiftByConstantExist function checks if the
ari component has a shift-by-constant operation.

 Sufficient Condition 3: If Conditions 1 and 2 are met,
and if both xC and yC have a comb component, then clus-
ter merging is possible if one of the clusters have an un-
used-mux-input (e.g. Figure 5(a)). This condition is
evaluated in lines 15-17 in Algorithm 2 using function
UnusedMuxPinExist.

 Sufficient Condition 4: If Conditions 1 and 2 are met,
and if at least one of the clusters has a comb component
(e.g. ycomb in Figure 5(a) and Figure 5(b)) while the

other clusters have an ari component, then cluster merging
can be achieved if the comb component can be converted to
an identity function. This enables the merged cluster to
perform the functionality of the ari component. This
condition is evaluated in lines 18-20 of Algorithm 2
using the IsIdentity function.

 Figure 6 provides examples to show how two clusters
can be merged without introducing a multiplexer. In Fig-
ure 6(a), conditions 1, 2 and 4 are not applicable as none
of the clusters have an ari component. The clusters xC

and yC can be merged as they satisfy condition 3, i.e.

xC has an unused-mux-input. In Figure 6(b), conditions 1

and 3 are not applicable. Clusters xC and yC can be
merged as they satisfy condition 2 and 4, i.e. the ari com-
ponent in xC does not have a shift-by-constant operation

and the comb component in yC can be converted to an
identity function. Note that the latter condition allows the
merged cluster to perform the arithmetic operation in xC
by assigning 4In to ‘1’, and 5In to ‘0’. In Figure 6(c), con-

dition 1 is not applicable. Clusters xC and

yC satisfy conditions 2, 3 and 4. In this case, the clus-

ters are merged by connecting the output of yC to the

unused-mux-input of xC . In addition, the merged cluster

yx CC ⊕ can perform the arithmetic operation in xC by

assigning 5In to ‘1’, and 6In to ‘0’. Finally in Figure 6(d),
condition 2 is not applicable. Both clusters have an ari
component and hence they must first satisfy condition 1.
In addition, they also satisfy condition 3 so that the comb
component of yC can be connected to the unused-mux-

input of xC . Finally, condition 4 is also satisfied and the

merged cluster yx CC ⊕ can perform the arithmetic op-

eration in xC by assigning 62 InIn ⊕ to ‘0’.

xC yC
yx CC ⊕

1In

xcomb
ycomb

1In

1In

2In 2In

2In

2In

1In

2In

xC yC

yx CC ⊕

Fig. 5. Two approaches for merging clusters without introducing an
additional multiplexer

LAM ET AL.: ARCHITECTURE-AWARE TECHNIQUE FOR MAPPING AREA-TIME EFFICIENT CUSTOM INSTRUCTIONS ONTO FPGAS 7

The evaluation of the conditions for cluster merging re-
lies on three functions i.e. ShiftByConstantExist, Un-
usedMuxPinExist and IsIdentity. The first two functions
are trivial as long as the program maintains a record of all
the operations and the connectivity information between
the operations in each cluster. Hence, we will only de-
scribe the implementation of the IsIdentity function.

Implementation of the IsIdentity Function

The IsIdentity function aims at evaluating whether the
comb component of a cluster can produce an output that is
identical to one of the inputs. In order to evaluate
whether a particular input can be produced at the output,
the remaining inputs are first assigned to ‘0’s or ‘1’s. Then
the DFG of the comb component is progressively simpli-
fied as the inputs are propagated to the output by means
of dataflow identity and dominance laws [30]. If the input

is directly connected to the output when the process com-
pletes, then the comb component can be converted to an
identity function.

The proposed approach to determine if a DFG is an
identity function draws certain similarities with the
method presented in [31] to transform a complex DFG
pattern to a simpler pattern by applying identity oper-
ands to the nodes in order to eliminate them from the
pattern. However, the method presented in [31] assumes
that each node in the DFG have an external input that can
be assigned to an identity operand. In addition, the
method in [31] does not take into account shift-by-
constant operators, which cannot be converted into an
identity operation. The proposed method overcomes
these limitations.

Figure 7 shows the proposed algorithms for determin-
ing if xcomb can be converted to an identity function. We

xcomb

Sev ∈),(xCSev ∩∉),(
)',(' vie = SCev x −∈)','(

)(xCINodeu∈
vu ≠

);,0,,(xcombvu

);,1,,(xcombvu

xcomb

vuw ≠≠
φ=w

)(xcomb

);,0,,(xcombwu

);,1,,(xcombwu

xcomb

xcomb

Fig. 7. Algorithm to identify if a comb component can be converted to an identity function

and

shl

or

1In 2In

3In

xC

xor

xor

4In

5In4In
and

shl

or

1In 2In

63 InIn ⊕

+ xor

xor

5In

6In

yC yx CC ⊕

add

1In 2In

xC

3In

and

or

4In

5In

yC

+

31 InIn ⊕

and

or

4In

5In

add

yx CC ⊕

2In

1In

shr

add

2In

3In

xC

+

4In

and

xor

5In

6In

yC

1In

shr

add

3In

42 InIn ⊕

and

xor

5In

6In

yx CC ⊕

1In

and

or

2In

3In

add

5In

xor

6In

add

+

1In

and

or

62 InIn ⊕

add

53 InIn ⊕

xor

xC yC yx CC ⊕
4In 7In 74 InIn ⊕

(a)
(b)

(c) (d)

Fig. 6. Examples of cluster pairs that can be merged without a multiplexer

8 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2

will describe the algorithms based on the example in Fig-
ure 8. The first part of the algorithm (lines 1-6 of Algo-
rithm 3) removes all the nodes in the reverse sub-trees
rooted at the shift-by-constant operations (e.g. node 4 in
Figure 8(a)). The function first identifies all the root nodes
in xcomb (line 1 of Algorithm 3) before finding the re-
verse sub-tree members of the corresponding root nodes
using the depth-first-search algorithm (line 3 of Algo-
rithm 3). Each sub-tree can only have one shift operation
that must be a root node. Note that only the nodes that
are exclusive to the sub-tree are removed (line 4 of Algo-
rithm 3).

The rationale for removing the nodes in the reverse
sub-trees rooted at the shift-by-constant operations are as
follows. As discussed in [28], the inputs of these reverse
sub-trees are assigned dedicated input pins (e.g. shrIn1 in
Figure 8(b)), which are hardwired to the required shifted
operands. Each sub-tree can then be treated as a hypo-
thetical node with dedicated input pins. As the hypotheti-
cal nodes cannot be converted to an identity function (due
to the fact that the shift operations will alter any non-zero
input values), they are removed from xcomb by assigning
the dedicated input pins to ‘0’s. This produces ‘0’s at the
output of the hypothetical nodes as shown in Figure 8(c)
(line 5 of Algorithm 3).

Next, the inputs of xcomb are evaluated one at a time
to determine if they can be produced at the output after
eliminating all the operations within xcomb by means of
dataflow identity and dominance laws. This is achieved
by recursively assigning ‘0’s and ‘1’s to the remaining
inputs (using the AssignOperand function in lines 10 and
12 of Algorithm 3 and Algorithm 4) and propagating
these values through the operators in xcomb (using the
function EliminateOp in line 5 of Algorithm 4). The As-
signOperand function considers all the n2 Boolean as-
signments of the remaining n number of external inputs
to the comb component. For example in Figure 8(d), to

evaluate whether In3 can be produced at the output, In1
and In2 are assigned to ‘1’ and ‘0’ respectively (using the
AssignOperand function). In the subsequent steps (Figure
8(e)-(h)), these values are propagated to the operations
one at a time beginning from the predecessor nodes (us-
ing the EliminateOp function). As the operations in the
comb component have been sorted according to their or-
der of dependency, the operations are progressively re-
moved in the order of the dependency graph by means of
dataflow identity and dominance laws. At each step, the
output of an operation is produced based on whether the
operands are identity and dominating operands. The op-
eration is then removed. In this example, In3 is directly
connected to the output after all the operations have been
removed and, hence, xcomb can be converted to an iden-
tity function.

In the worst case, the time complexity of AssignOper-
and for a single iteration of Algorithm 3 (lines 8-14) is

)2(1−innO , where inn is the number of external inputs to

the comb component. In practice, inn is usually very small
(e.g. 4-6 depending on the target FPGA). The execution
time complexity of EliminateOp is)(opnO , where opn is

the number of operations in the comb component. Note
that the linear time complexity can be achieved as the
operations in the comb component have been sorted ac-
cording to their order of dependency.

Checking for Input Constraints Violation of Merged Cluster

As no additional multiplexer has been introduced in
the merging process, the input constraints of the merged
cluster will not be violated if all the input pins of the
original cluster with fewer inputs can be merged. For ex-
ample, in Figure 6(d), all the input pins of yC have been

merged with those of xC . Since both the original clusters
already conform to the input constraints, the number of
input pins of the resulting merged cluster will also not
exceed K. However, there is a possibility that the input
pins of the original clusters cannot be merged. This is
shown in Figure 6(a) and (c), whereby only a single input
pin of the original clusters is merged (i.e. 63 InIn ⊕ in

Figure 6(a) and 42 InIn ⊕ in Figure 6(c)). The reason for
this is that shifted values of the inputs affected by the
shift-by-constant operation (e.g. and-shl in Figure 6(a) and
shr in Figure 6(c)) will be hardwired to the logic elements
and, hence, cannot serve as valid inputs to other logic
functions (that do not require the same shifted values).
Hence, there is a need to check if the required inputs of
the merged cluster exceed K (line 22 of Figure 4). We have
employed the algorithm in [28] for checking the input
constraint violation of the merged clusters.

and

and

2

1

‘1’

‘1’
or

and

and

2

1

Out

‘0’

3

‘1’

and
1

‘1’

(d)

(e) (f) (g) (h)

or

xor

and

and

5

2

1

Out

3In

‘0’

3

‘0’‘1’
1In

shr

or

4

3

2In 3In

xor

and

and

5

2

1

Out

1In

or
3

2In 3In

xor

and

and

5

2

1

Out

shrIn1 1In

or

2In

xor

and

and

5

2

1

Out

3In

‘0’

3

(a) (b) (c)

3In

3In

3In

3In

Out

Out
Out

Fig. 8. Identifying if a comb component can be converted to an iden-
tity function

LAM ET AL.: ARCHITECTURE-AWARE TECHNIQUE FOR MAPPING AREA-TIME EFFICIENT CUSTOM INSTRUCTIONS ONTO FPGAS 9

2) Merging Clusters With Multiplexer
If the cluster pair cannot be merged with the method

described in the previous section, a multiplexer will be
introduced in an attempt to merge the cluster pair. Figure
9 shows the various scenarios for cluster pair xC and yC
to be merged by introducing a multiplexer. When both
the cluster pair do not consist of an ari component (e.g.
Figure 9(a)), the multiplexer is inserted at the output of

xC and yC . However, if at least one of the cluster pair
has an ari component (e.g. Figure 9(b) and (c)), the multi-
plexer must be inserted at the input of the arithmetic op-
eration. This is due to the fact that all logical operations
(we assume that the multiplexer is a logic operator) must
execute before the arithmetic operation in a cluster (see
Section 3.1).

The input pins of xC and yC are also merged when-
ever possible and an additional input pin is required for
the multiplexer select. The actual number of required in-
put pins of the merged cluster candidate must be recalcu-
lated using the algorithm in [28] to verify if the input pin
constraint is still met.

3) Choosing Unique Sets of Merged Clusters
The cluster merging method will result in a basic cluster
appearing in a number of merged clusters. In order to
ensure that each basic cluster can only be merged once,
there is a need to select a unique set of merged clusters
from the merged cluster set.
 A compatibility graph is constructed to select a unique
set of merged clusters from 0,, CsCsi K (line 20 in Figure

3). The set iCs for 0≠i is a set of merged clusters where
each merged cluster can be formed by merging a number
i of basic clusters. The compatibility graph approach is
similar to that proposed in [27] for selecting a set of re-
sources in two data-paths for merging. However, our ap-
proach differs from that in [27] as we consider the selec-
tion of basic clusters for merging in all the custom instruc-
tion data-paths (instead of two data-paths at a time as in
[27]). This global selection strategy can lead to better qual-
ity results.

Definition 4: A compatibility graph is an undirected
graph),(uuu EVG where:
 A vertex uVv∈ is a merged cluster which consists of

a number i of basic clusters that can be merged to
form v. A vertex v is associated with a weight

freqivw ×= 2)(, where freq is the number of occur-
rences of the basic clusters in v that is found across all
the custom instructions. The weight has been chosen
in order to maximize cluster sharing among the most
frequently occurring clusters in the custom instruc-
tion data-paths. The factor i2 is used as the value of i
is typically much lower than freq. Note that the value
of i varies according to the number of basic clusters
that are used to form the merged cluster (see line 14
of Algorithm 1).

 There is an arc uEvue ∈=),(if the merged clusters
represented by u and v are compatible.

Definition 5: Vertex u and vertex v are not compatible if
a basic cluster associated with u also exists in v.

In the worst case, the number of vertices uV in the

compatibility graph, is ∑
= −

i

r bc

bc

rnr
n

1)!(!
!

, where bcn is the

number of basic clusters in 0Cs . i is the number of basic
clusters that are used to form a merged cluster in the cor-
responding iteration in the while loop of Algorithm 1
(lines 4-19). This equation assumes that in iteration i, all
combination of i basic clusters can be merged. Hence, in
each iteration of the while loop, the number of possible
merged clusters can be calculated using the combination

function ()!!
!

ini
n

bc

bc

−
. Note that this assumption will not be

the case in practice. The maximum number of compatibil-
ity graph vertices in our experiments is less than 200. In
addition, the maximum value of i in our experiments is
five, as it is unlikely to find more than five clusters that
can be merged into a logic group. The time complexity to

construct the compatibility graph is)(2
uVO as there is a

need to check for the compatibility of each vertex with all
other vertices.

In order to identify a unique set of merged clusters that
would maximize the FPGA resource utilization, the
maximum weight clique is heuristically computed from
the compatibility graph. The following definition of
maximum weight clique is obtained from [27].

Definition 6: The maximum weight clique of a graph
),(ccc EVG is a set of vertices cVC ⊆ where for all verti-

ces Cvu ∈, , the arc cEvu ∈),(and ∑ ∈∀ Cv
vw)(is

maximum.
As mentioned in [27], the execution time to compute

the maximum weight clique can be polynomially
bounded by uV .

3.3 Resource Sharing of Clusters in the Combined
Data-path

The basic clusters in the custom instruction data-paths are
replaced with the selected merged clusters so as to de-

yx InIn ⊕ yx InIn ⊕

xC
yC

yx InIn ⊕ yx InIn ⊕

xC
yC

yx InIn ⊕ yx InIn ⊕

xC
yC

Fig. 9. Incorporating multiplexer into a merged cluster

10 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2

termine the resulting data paths. This involves combining
custom instruction data-paths based on the binding of
basic clusters that are associated with the unique merged
cluster set. This may necessitate introducing multiplexers
in order to maintain the correctness of data-path of the
associated custom instruction.

In order to further minimize the area costs without incur-
ring additional area-time overhead, resource sharing is per-
formed on the basic clusters and merged clusters that do not
reside on the same data-path. A cluster can only be consid-
ered for resource sharing only once to avoid increasing the
critical path delay. In addition, if resource sharing between
the clusters leads to more inferior area-time results, the solu-
tion prior to resource sharing is adopted. In this work, we
have employed the resource sharing method that was pre-
sented in [27] for merging a pair of clusters. It is noteworthy
that in most of the experiments considered, the proposed
approach leads to very little opportunity for resource shar-
ing.

4 EXPERIMENTAL RESULTS
In this section, we compare the results of the proposed
approach with results from 1) a commercial FPGA im-
plementation tool [32] that is targeted for area optimiza-
tion with resource sharing option selected [20], and 2) one
of the best known methods for resource sharing [27].

We have used eight applications from the MiBench
embedded benchmark [33] and MediaBench benchmark
[34] suites. Only integer operations are allowed in custom
instructions and the maximum number of inputs/outputs
for the custom instructions is 5/2. Previous work has
shown that inputs/outputs more than this range results
in little performance gain [35]. It is noteworthy that al-
though larger custom instructions can be obtained by pre-
processing the IR with certain advanced optimization
passes, such approaches are only viable if the resulting
instructions can be supported by the target processor. It is
worth mentioning that the proposed method in this paper
is not restricted to the number of input/output con-
straints of custom instructions. The outputs of custom
instruction data-paths of all three approaches are multi-
plexed to meet the two-output port constraint of the RFU.
In particular, single output custom instructions are mul-
tiplexed to the primary output port of the RFU, and dual-
output custom instructions are multiplexed to the pri-
mary and secondary output ports of the RFU.

Table 1 reports the total number of operations in the
resulting data-paths that are generated using the various
methods. The Original approach is based on custom in-
struction data-paths that have been obtained from [28]
without further optimization. The Resource Sharing ap-
proach is based on the method presented in [27] to obtain
an optimized data-path that maximizes the resource shar-
ing of the original data-paths. The approach in [27] per-
forms data-path merging on two data-paths at a time un-

til all the data-paths have been considered. For the Pro-
posed Method, the original custom instruction data-paths
are subjected to the methods presented in this paper.
Note that the data-paths in the three approaches will be
subjected to further optimization during implementation
with the FPGA tool.

In Table 1, the optimized data-paths that are generated
using Proposed Method are based on K = 4. The average
number of operations per instruction in each application
for Original ranges from 3 to 7. When compared to results
of Original, the Resource Sharing approach leads to an av-
erage reduction of over 29% in the number of operations.
In contrast, Proposed Method has an average percentage
reduction in the number of operations of less than 7%.
These results confirm that unlike the resource sharing
approach, the proposed method does not aim at maximiz-
ing resource sharing between the data-paths.

The optimized data-paths for each of these methods

have been designed in VHDL, implemented using Xilinx
ISE (version 9.1.01i) [32] and targeted on three state-of-
the-art FPGA architectures, i.e. Spartan-3
(xc3s5000fg1156-4) [8], Virtex-4 (xc4vlx200ff1513-10) [9]
and Virtex-5 (xc5vlx50ff1153-1) devices [10].

The Spartan-3 and Virtex-4 devices incorporate logic
elements with 4-input LUTs. The Virtex-5 devices incor-
porate logic elements with 6-input LUTs that can be used
to implement any 6-input function or two dual-output 5-
input functions [36]. For the Spartan-3 and Virtex-4 solu-
tions, the proposed method generates optimized data-
paths for K = 4 such that all the clusters produced cannot
have more than 4 inputs. For the Virtex-5 solution, two
sets of results for K = 5 and K = 6 are first generated. The
set which leads to the best area-time results is chosen. The
data-paths produced using the various methods are im-
plemented with the FPGA tool under the same design
constraints and optimization options. In particular, we
have enabled the implementation options for area optimi-
zation and resource sharing.

TABLE 1
NUMBER OF OPERATIONS

LAM ET AL.: ARCHITECTURE-AWARE TECHNIQUE FOR MAPPING AREA-TIME EFFICIENT CUSTOM INSTRUCTIONS ONTO FPGAS 11

4.1 Area Measures
Table 2 shows the optimized area for the various ap-
proaches. In order to compare the area utilization using a
common measure (i.e. number of slice LUTs), we have
disabled the option to map multiplication operations onto
embedded multipliers and DSP blocks in the FPGA. The
percentage values (in brackets) are the percentage area
reduction of Proposed Method over Resource Sharing. It is
worth mentioning that the original data-paths have also
undergone area optimizations (with resource sharing as
one of the optimization strategy) that are provided by the
commercial tool.

It can be observed that Resource Sharing and Proposed
Method both lead to notable area reduction when com-
pared to Original. The average area reduction of Resource
Sharing over Original is 17.2%, 17.3% and 33.6% on Spar-
tan-3, Virtex-4 and Virtex-5 respectively. For certain ap-
plications (e.g. Adpcm Enc and Bitcount) on Spartan-3
and Virtex-4, Resource Sharing results in lower area effi-
ciency than Original. This is due to the fact that custom
instructions in these two applications have little opportu-
nity for resource sharing and hence, the area of the multi-
plexers introduced through the limited sharing of re-
sources outweighs the area savings. In comparison, Pro-
posed Method is capable of achieving higher area efficiency
over Original in all cases. The average area reduction of
Proposed Method over Original is 34.3%, 34.2% and 42.4%
on the Spartan-3, Virtex-4 and Virtex-5 respectively.
These results demonstrate that unlike resource sharing
methods, the proposed method is still favorable for merg-
ing data-paths which do not have a high degree of simi-
larity in the operations. It can be observed that the area
reduction in both methods for Spartan-3 and Virtex-4 is
comparable due to the similar characteristics of the logic
elements in both architectures. The higher area reduction
for Virtex-5 is due to the larger LUTs in the architecture
that enables more operations to be mapped onto a logic
element. In the proposed method, the higher number of
input pins allowable in a logic group for the Virtex-5 ar-
chitecture also enables more clusters to be merged.

Proposed Method results in higher area efficiency than
Resource Sharing in almost all cases. The only case where
Resource Sharing leads to notably higher area efficiency
than Proposed Method is for application Rijndael Dec on
Spartan-3 and Virtex-4. Note that the percentage area dif-

ference for this case is lesser than the percentage area re-
duction of Proposed Method in all the other applications on
the Spartan-3 and Virtex-4 device. The custom instruc-
tions in Rijndael Dec have many similar operations and
hence the resource sharing method is more favorable in
terms of area minimization. However as shown in the
next sub-section, the area optimization of Resource Sharing
is achieved at the cost of incurring large critical path de-
lays. When compared to one of the best known resource
sharing based method, the proposed method can achieve
an average area reduction of 18%, 17.8% and 13.2% on the
Spartan-3, Virtex-4 and Virtex-5 respectively. These re-
sults demonstrate that an approach that maximizes re-
source sharing may not be the best method for FPGA area
optimization.

4.2 Critical Path Delay
While resource sharing based approaches can lead to area
savings, they may incur undesirable delay in the data-
paths due to the extensive introduction of multiplexers
whenever operations are shared across data-paths. In con-
trast, the proposed method judiciously introduces multi-
plexers at a coarser-grain, i.e. for interconnect sharing
when the clusters in different data-paths are merged. In
addition, the proposed method attempts to maximize the
logic utilization of the FPGA logic elements, which can
lead to lesser critical path delay in the data-paths. Table 3
shows the critical path delay of the optimized data-paths.
The percentage values (in brackets) are the percentage
delay reduction of Proposed Method over Resource Sharing.
The bracket below each critical path value shows the logic
and route delay that constitute the critical path.

It can be observed that Resource Sharing leads to high-
est critical path delay in almost all cases. In Virtex-5, Pro-
posed Method has a critical path delay that is marginally
higher than Resource Sharing for only one application, i.e.
Rijndael Enc (difference of less than 1ns). When com-
pared to the implementation results of Original, Resource
Sharing has an average increase in critical path delay of
20.0%, 28.8% and 18.9% on the Spartan-3, Virtex-4 and
Virtex-5 respectively. In comparison, Proposed Method has
an average increase in critical path delay over Original of
only 4.3%, 2.2% and 11.3% on the Spartan-3, Virtex-4 and
Virtex-5 respectively. In certain applications on the three
FPGA devices, it can be observed that Proposed Method
can lead to lower critical path delay than the original

TABLE 2
AREA (NUMBER OF SLICE LUTS)

12 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2

data-paths. This is contributed by two reasons. Firstly, in
certain applications, the combination of data-paths due to
cluster merging in the proposed method has resulted in
less complex output multiplexer. Secondly, in cases
where the Proposed Method has lower critical path delay
than the original data-paths, it can be observed that the
proposed method has led to a notable reduction in the
routing delay. This is due to the efficient packing of op-
erations within the logic blocks in the proposed method
that has enabled the implementation tool to perform
tighter placement which, in turn, leads to more effective
routing.

When compared to Resource Sharing, Proposed Method
has an average critical path delay reduction of 11.8%,
20.7% and 6.3% on the Spartan-3, Virtex-4 and Virtex-5
respectively. It can be observed that when compared to
the original data-paths, Proposed Method generally leads to
a lower increment in the routing delay than Resource Shar-
ing. This is due to the more compact designs generated by
the proposed method. In particular, when compared to
Original, Resource Sharing has an average increase in rout-
ing delay of 21.1%, 36.7% and 26.9% on the Spartan-3,
Virtex-4 and Virtex-5 respectively. In contrast, Proposed
Method leads to an average increase in routing delay of
less than 1% on the Spartan-3 and Virtex-4, and only
14.5% on Virtex-5. This confirms that the proposed
method is not only capable of achieving a higher degree
of area optimization when compared to resource sharing

based approaches, but it can also lead to lesser critical
path delay.

4.3 Area-Time Measures
The authors in [37] have observed that FPGA LUT size is
the most useful architectural parameter for making area-
delay trade-offs. Their analysis is consistent with results
in this paper, which shows that the implementations on
the Virtex-5 architecture generally leads to higher area
but lower delay when compared to implementations on
Spartan-3 and Virtex-4 architectures. In addition, the
work in [37] concludes that for minimum area-delay
product, a FPGA LUT size of 4 (e.g. Virtex-4 devices) pro-
vides the best results. In order to compare the overall
benefits of the proposed method, we use the metric area-
delay product which is obtained by multiplying the area
(in terms of number of slice LUTs) with the critical path
delay (in terms of nanoseconds). Table 4 shows the area-
delay product of the optimized data-paths. The percent-
age values (in brackets) are the percentage area-delay
product reduction of Proposed Method over Resource Shar-
ing.
 Table 4 confirms that Proposed Method has lower area-
delay product than Original and Resource Sharing in all
cases. It can also be observed that in certain applications,
the implementation of original data-paths using the op-
timization provided by the commercial tool can lead to
lower area-delay product than the resource sharing ap-

TABLE 3
CRITICAL PATH (NS)

TABLE 4
AREA-DELAY PRODUCT

LAM ET AL.: ARCHITECTURE-AWARE TECHNIQUE FOR MAPPING AREA-TIME EFFICIENT CUSTOM INSTRUCTIONS ONTO FPGAS 13

proach. In particular when compared to Original, Proposed
Method has an average area-delay product reduction of
31.4%, 32.5% and 36.3% on the Spartan-3, Virtex-4 and
Virtex-5 respectively. When compared to Resource Sharing,
Proposed Method has an average area-delay product reduc-
tion of 27.8%, 34.5% and 19.2% on the Spartan-3, Virtex-4
and Virtex-5 respectively. These results reinforce the
benefits of the proposed method for area-time optimiza-
tion on FPGA.

4.4 Execution Time
The execution time of the proposed method is longer than
that required by the resource sharing approach to gener-
ate the optimized data-paths. However, both methods
(resource sharing and proposed) can be executed in the
order of milliseconds on a HP Workstation with two
2.66GHz processors and 2GB RAM. This is an insignifi-
cant overhead when compared to the time taken for the
commercial FPGA tool to implement the optimized data-
paths, which is typically in the order of seconds/minutes.

4.5 Performance Gain Over Base Processor

We have performed cycle-accurate simulations for sev-
eral frequently executed functions in the benchmark ap-
plications using the SimpleScalar toolset [38], in order to
evaluate the performance gain of the three approaches
(Original, Resource Sharing and Proposed Method) over the
base processor. Since the methodology for custom in-
struction generation in [28] relies on the Trimaran com-
piler [39] infrastructure, the Trimaran’s IR is first con-
verted to ARM assembly code. The custom instructions
are then manually inserted into the assembly code. This
process requires code motion and register allocation in
order to maintain the correctness of the program. Finally,
the ARM assembler is used to generate the binaries for
simulation. The processor configuration in SimpleScalar
is set as follows: pipeline depth = 5; cache size = 64KByte;
line size = 8 byte; multiplication cycles = 3 and division
cycles = 20. The remaining configurations are similar to
the synthesizable OpenRiSC soft-core processor configu-
ration in [40]. All division operations are handled in soft-
ware. Multi-cycle custom instructions implementation is
enabled and the critical path values for the three ap-

proaches are obtained from Table 3 (Virtex-4 device).

Figure 10 shows the percentage performance gain of
the three approaches over the base processor implementa-
tion. It can be observed that Proposed Method and Original
outperforms Resource Sharing in most of the functions
considered (except Bitcount) due to the lower critical path
delays of their custom instructions. It is noteworthy that
the proposed method has an area reduction of more than
34% when compared to Resource Sharing for Bitcount (see
Table 2). As shown in Figure 10, the proposed method
can still achieve an average performance gain of over 22%
over the base processor, while Resource Sharing can
achieve an average performance gain of less than 15%
over the base processor. Although the performance gain
of Original and Proposed Method is comparable as their
critical path delays are very close, it can be observed from
Table 2 that Proposed Method has an average area reduc-
tion of more than 34% compared to Original.

5 CONCLUSION
In this paper, we have proposed a novel technique to

realize area-time efficient custom instructions on com-
mercial FPGA architectures. It leverages on our existing
technique to partition the custom instructions into a set of
basic clusters such that the basic clusters can be efficiently
mapped onto the LUT and carry-look-ahead structure of
the FPGA logic blocks. We have proposed conditions to
aid the merging of basic clusters without introducing
multiplexers. We have employed a heuristic based on the
degree of cluster merging and the frequency of occur-
rences of the basic clusters to accelerate the selection of a
unique set of merged clusters. Resource sharing is then
performed on clusters only if the resulting data-paths do
not lead to an increase in the area-delay product. When
compared to the area optimization capabilities of the
commercial tool and to one of the most efficient methods
reported in the literature for resource sharing, the pro-
posed method can achieve significantly lower area-delay
product for all cases considered in this study due to its
architecture-aware cluster merging strategy to maximize
utilization of FPGA logic blocks.

REFERENCES
[1] P. Garcia, K. Compton, M. Schulte, E. Blem and W. Fu, “An Over-

view of Reconfigurable Hardware in Embedded Systems”, EURASIP
Journal on Embedded Systems, Vol. 2006, pp. 1–19

[2] P. Lysaght and P.A. Subrahmanyam, "Guest Editors' Introduction:
Advances in Configurable Computing", IEEE Design & Test of Com-
puters, Vol. 22, No. 2, March-April 2005, pp. 85-89

[3] Altera: NIOS II Processors. Available:
http://www.altera.com/products-/ip/processors/nios2/ni2-index.html

[4] J. Gould, "Designing Flexible, High Performance Embedded Sys-
tems”, Xcell Journal, No. 58, 2006, pp. 66-69

[5] Stretch Processors. Available: http://www.stretchinc.com/
[6] F. Barat, R. Lauwereins and G. Deconinck, "Reconfigurable Instruc-

tion Set Processors from a Hardware/Software Perspective", IEEE
Transactions on Software Engineering, Vol. 28, No. 9, September
2002, pp. 847-862

[7] W. Marx and V. Aggarwal, “FPGAs Are Everywhere – In Design,
Test & Control”, RTC Magazine, April 2008. Available:
http://rtcmagazine.com/articles/view/100953

[8] Xilinx User Guide, "Spartan-3 Generation FPGA User Guide",
UG331, Version 1.4, June 2008

0

5

10

15

20

25

30

Bitcount
(Bitcount)

Encrypt (BF
Dec)

Cfb64 (BF
Dec)

Encrypt (BF
Enc)

Cfb64 (BF
Enc)

Transform
(Sha)

Update (Sha)

Function (Application)

Sp
ee

du
p

(%
)

Original Resource Sharing Proposed

Fig. 10. Performance gain of custom processor over base processor

14 IEEE TRANSACTIONS ON COMPUTERS, TC-2009-01-0028.R2

[9] Xilinx User Guide, "Virtex-4 User Guide", UG270, Version 2.5, June
2008

[10] Xilinx User Guide, "Virtex-5 User Guide", UG190, Version 3.0, Feb-
ruary 2007

[11] R. Kastner, A. Kaplan, S.O. Memik and E. Bozorgzadeh, "Instruction
Generation for Hybrid Reconfigurable Systems", ACM Transactions
on Design Automation of Embedded Systems, Vol. 7, No. 4, October
2002, pp. 605-627

[12] N.T. Clark, H. Zhong and S.A. Mahlke, "Automated Custom Instruc-
tion Generation for Domain-Specific Processor Acceleration", IEEE
Transactions on Computers, Vol. 54, No. 10, October 2005, pp. 1258-
1270

[13] F. Sun, S. Ravi, A. Raghunathan and N.K. Jha, "Custom-Instruction
Synthesis for Extensible-Processor Platforms", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 23,
No. 2, February 2004, pp. 216-228

[14] K. Atasu, L. Pozzi and P. Ienne, "Automatic Application-Specific
Instruction-Set Extensions Under Microarchitectural Constraints",
Proceedings of the 40th IEEE/ACM Design Automation Conference,
June 2003, pp. 256-261

[15] P. Yu and T. Mitra, "Scalable Custom Instructions Identification for
Instruction-Set Extensible Processors", Proceedings of the Interna-
tional Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems, September 2004, pp. 69-78

[16] J. Cong, Y. Fan, G. Han and Z. Zhang, "Application-Specific Instruc-
tion Generation for Configurable Processor Architectures", Proceed-
ings of the ACM/SIGDA 12th International Symposium on Field Pro-
grammable Gate Arrays, February 2004, pp. 183-189

[17] D.D. Gajski, N.D. Dutt, C.H. Allen Wu and Y.L. Steve Lin, “High-
Level Synthesis: Introduction to Chip and System Design”, Kluwer
Academic Publishers, 1992

[18] D. Chen and J. Cong, "DAOmap: A Depth-Optimal Area Optimiza-
tion Mapping Algorithm for FPGA Designs", IEEE International Con-
ference on Computer-Aided Design, November 2004, pp. 752-759

[19] J. Lin, D. Chen, and J. Cong, "Optimal Simultaneous Mapping and
Clustering for FPGA Delay Optimization", Proceedings of Design
Automation Conference, July 2006

[20] Xilinx, “XST User Guide”, UG627, Version 11.2, June 2009
[21] N. Shirazi, W. Luk and Y.K. Peter Cheung, “Automating Production

of Run-Time Reconfigurable Designs”, IEEE Symposium on Field-
Programmable Custom Computing Machines, April 1998, pp. 147-
156

[22] Z. Huang and S. Malik, “Managing Dynamic Reconfiguration Over-
head in Systems-on-a-Chip Design using Reconfigurable Data-paths
and Optimized Interconnection Networks”, Proceedings of Design
Automation and Test in Europe, 2001, pp. 735-740

[23] P. Brisk, A. Kaplan and M. Sarrafzadeh, “Area-Efficient Instruction
Set Synthesis for Reconfigurable System-on-Chip Designs”, Proceed-
ings of Design Automation Conference, June 2004, pp. 395-400

[24] P. Ienne and R. Leupers, “Customizable Embedded Processors: De-
sign Technologies and Applications”, Morgan Kaufmann Publishers,
2006

[25] K. Seto and M. Fujita, “Custom Instruction Generation with High-
Level Synthesis”, Symposium on Application Specific Processors,
2008, pp.14-19

[26] W. Geurts, F. Catthoor, S. Vernalde and H.D. Man, “Accelerator
Data-Path Synthesis for High-Throughput Signal Processing Applica-
tions”, Kluwer Academic Publishers, 1997

[27] N. Moreano, E. Borin, C. de Souza, and G. Araujo, “Efficient
Datapath Merging for Partially Reconfigurable Architectures,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 24, No. 7, pp. 969-980, July 2005

[28] S.K Lam and T. Srikanthan, “Rapid Design of Area-Efficient Custom
Instructions for Reconfigurable Embedded Processing”, Journal of
Systems Architecture, Vol. 55, No. 1, January 2009, pp. 1-14

[29] A.K.Verma, P. Brisk and P. Ienne, “Data-Flow Transformations to
Maximize the Use of Carry-Save Representation in Arithmetic Cir-
cuits”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 27, No. 10, October 2008, pp. 1761-1774

[30] M. Ramsay, “Dataflow Dominance: A Definition and Characteriza-
tion”, University of Wisconsin-Madison, December 2003

[31] G. Dittmann, “Organizing Libraries of DFG patterns”, IEEE Proceed-
ings of the Design, Automation and Test in Europe Conference and
Exhibition, 2004

[32] Xilinx ISE Foundation. Available: http://www.xilinx.com/ise/-
logic_design_prod/foundation.htm

[33] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge and
R.B. Brown, "MiBench: A Free, Commercially Representative Em-
bedded Benchmark Suite", IEEE International Workshop on Work-
load Characterization, December 2001, pp. 3-14

[34] C. Lee, M. Potkonjak and W.H. Mangione-Smith, "MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communica-
tions Systems", Proceedings of the 13th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, December 1997, pp. 330-335

[35] P. Yu and T. Mitra, "Characterizing Embedded Applications for In-
struction-Set Extensible Processors", Proceedings of the 41st
IEEE/ACM on Design Automation Conference, June 2004, pp. 723-
728

[36] T. Ahmed, P.D. Kundarewich, J.H. Anderson, B.L. Taylor and R.
Aggarwal, “Architecture-Specific Packing for Virtex-5 FPGAs”, Pro-
ceedings of the ACM/SIGDA Symposium on Field programmable
Gate Arrays, February 2008, pp. 5-13

[37] I. Kuon and J. Rose, “Area and Delay Trade-Offs in the Circuit and
Architecture Design of FPGAs”, Proceedings of the ACM/SIGDA
Symposium on Field programmable Gate Arrays, February 2008, pp.
149-158

[38] SimpleScalar Tool Set. Available:
http://www.simplescalar.com/v4test.html

[39] Trimaran: An Infrastructure for Research in Instruction-Level Paral-
lelism. Available: http://www.trimaran.org

[40] D. Mattson and M. Christensson, “Evaluation of Synthesizable CPU
Cores”, Master's Thesis, Chalmers University of Technology, 2004

Siew-Kei Lam (M’03) received the B.A.Sc.
(Hons.) degree and the M.Eng. degree in
computer engineering from Nanyang Technologi-
cal University (NTU), Singapore. Since 1994, has
been with NTU, where he is currently a Research
Associate with the Centre for High Performance
Embedded Systems and has worked on a
number of challenging projects that involved the
porting of complex algorithms in VLSI. He is also

familiar with rapid prototyping and applicationspecific integrated-
circuit design flow methodologies. His research interests include
embedded system design algorithms and methodologies, algorithms-
to-architectural translations, and high-speed arithmetic units.

Thambipillai Srikanthan (SM’92) joined
Nanyang Technological University (NTU),
Singapore in 1991. At present, he holds a full
professor and joint appointments as Director of
a 100 strong Centre for High Performance
Embedded Systems (CHiPES) and Director of
the Intelligent Devices and Systems (IDeAS)
cluster. He founded CHiPES in 1998 and
elevated it to a university level research centre
in February 2000. He has published more than

250 technical papers. His research interests include design method-
ologies for complex embedded systems, architectural translations of
compute intensive algorithms, computer arithmetic, and high-speed
techniques for image processing and dynamic routing.

Christopher T. Clarke received the B.Eng. degree
in engineering electronics and the Ph.D. degree in
computer science from the University of Warwick,
Coventry, U.K., in 1989 and 1994, respectively.
From 1994 to 1997, he was a Lecturer with Nan-
yang Technological University, Singapore, where he
was the Cofounder of the Centre for High Perform-
ance Embedded Systems. Since then, he has spent
time in industry, both as an in-house Engineering

Manager and independent Consultant for U.K. silicon design houses,
system integrators, and multinationals such as Philips Semiconduc-
tors. Since March 2003, he has been with the Microelectronics and
Optoelectronics Research Group, Department of Electronic and
Electrical Engineering, University of Bath, Bath, U.K. He has been
involved with many European union funded research projects includ-
ing PEPS, CIRCE, SENS, and IMANE. Dr. Clarke is a member of the
Centre for Advanced Sensor Technologies.

