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Abstract. Runtime reconfiguration provides an efficient means to reduce the 
hardware cost, while satisfying the performance, flexibility and power 
requirements of embedded systems. The growing complexity of the applications 
necessitates methods that can rapidly identify a suitable set of configurations by 
splitting the computational structures into temporal partitions in order to 
evaluate the benefits of runtime reconfiguration early in the design cycle. In this 
paper, we present a hierarchical loop partitioning strategy that reduces the 
complexity of the search space for determining the runtime custom instruction 
configurations for reconfigurable processors. Experimental results show that the 
proposed partitioning strategy can lead to an average and maximum 
performance gain (in terms of clock cycle savings) of over 14% and 31% 
respectively when compared to a recently reported technique. In addition, when 
compared to the existing technique, the proposed partitioning method has 
significantly lower runtime in many of the cases considered.  
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1   Introduction 

Emerging embedded applications for portable battery operated devices (e.g. mobile 
phones, PDAs, mobile gaming devices, etc.) necessitates computing platforms that are 
capable of meeting the increasing performance demands at low cost and low energy 
budget. At the same time, these computing platforms must maintain a high degree of 
flexibility to meet the shrinking time-to-market window. To this end, the instruction 
set extension capability of reconfigurable processors (e.g. [1]-[3]) provides an 
attractive means to meet these stringent requirements of embedded systems. A 
reconfigurable processor consists of a microprocessor core that is coupled with a RFU 
(Reconfigurable Functional Unit), which facilitates critical parts of the application to 



be implemented in hardware e.g. FPGA (Field Programmable Gate Array) in the form 
of custom instructions. 

Runtime reconfiguration offers the potential to realize cost efficient systems that 
can still lead to high performance by changing the configuration of a small 
reconfigurable hardware at runtime. The two main drawbacks that discourage the use 
of runtime reconfiguration in embedded real-time systems is the large reconfiguration 
overhead in commercial FPGA architectures, and the lack of supporting tools and 
methodologies. 

In this paper, we present a framework that rapidly generates custom instruction 
configurations for a given application and evaluate the benefits of runtime 
reconfiguration on a reconfigurable processor with an area-constrained RFU. 

 
 

 
Figure 1: Target architecture 

 
 
The target RFU model in Figure 1, which is described in detail in [4], consists of a 

set of multi-bit logic blocks that is organized around an interconnection network. 
Each multi-bit logic block incorporates programmable fine-grained logic elements 
that are similar to those found in commercial FPGA architectures. However, unlike 
commercial architectures, the logic elements within each multi-bit block shares the 
same configuration memory, which leads to reduce runtime reconfiguration overhead. 
In this paper, we assume that the full reconfiguration model is adopted, i.e. each 
reconfiguration will result in new configurations loaded onto all the logic blocks in 
the RFU. If the computation resource requirement of the custom instructions exceeds 
the number of available logic blocks in the RFU, then the custom instructions are 
mapped to different configurations. At runtime, a reconfiguration manager 
automatically loads the required configurations onto the logic blocks for computing 
the custom instructions. The proposed runtime management scheme relies on the 
dynamic execution profile to replace the functionality of the logic blocks with the 
goal of minimizing the overall reconfiguration overhead (see [4]). 



1.1   Related Work 

The potential benefits of instruction set extension have led to numerous amount of 
research work that focuses on generating custom instructions from a given application 
(see [5] for a list of references). In order to select custom instructions for different 
runtime configurations, temporal partitioning must be performed to divide the design 
into mutually exclusive configurations such that the computational resource 
requirement of each configuration is less than or equal to the reconfigurable resource 
capacity of the RFU. 

The task partitioning algorithm presented in [6] for minimizing the communication 
cost is achieved in two steps. In the first step, an initial partition is obtained by using a 
network flow based algorithm to produce a set of feasible mean cuts. In the second 
step, a scheduling technique is employed to select an optimal global solution. 

The work in [7] employs ILP (Integer Linear Programming) to achieve near-
optimal latency designs for temporal partitioning of the application task graph. A loop 
transformation strategy was used to maximize the throughput while minimizing the 
runtime reconfiguration overhead.  

The framework presented in [8] automatically partitions loops to a target platform 
consisting of a processor, RFU and memory hierarchy. A hierarchical loop clustering 
strategy is used to partition a loop into smaller clusters in order to perform optimal 
hardware-software partitioning of the loop clusters. The loop clustering strategy 
traverses the hierarchical loop graph in a top-down fashion and recursively clusters 
the nested loops until the sizes of all the clusters are within a pre-defined limit. The 
current framework in [8] does not allow multiple loops in a single configuration. 

The work in [9] describes an architecture-aware temporal partitioning strategy for 
mapping custom instructions on an adaptive extensive processor, which incorporates 
coarse-grained functional units. The strategy partitions and modifies custom 
instructions that violate the RFU constraints, in order to map them onto the RFU. 

Recently, a framework was presented in [10] to select custom instruction versions 
to be mapped onto appropriate configurations. A custom instruction version consists 
of a set of custom instructions from a particular loop that satisfy the area constraint of 
the RFU. The partitioning scheme consists of temporal partitioning of frequently 
executed application loops with custom instructions into one or more configurations, 
and spatial partitioning to select an appropriate custom instruction version for each 
loop within a configuration. The temporal partitioning problem has been modeled as a 
k-way graph partitioning problem, and spatial partitioning is resolved using dynamic 
programming. The framework assumes the availability of the custom instruction 
versions and their corresponding hardware area-time measures. This necessitates 
time-consuming hardware implementation of the custom instructions prior to the 
partitioning process if no high level estimation strategy is in place. In the worst case, 
the temporal partitioning algorithm in [10] iterates l times, where l is the number of 
hot loops. 



1.2   Our Work 

This paper presents a framework that rapidly partitions loops, which constitute the 
most frequently executed segments of embedded applications, into configurations and 
selects profitable custom instructions in the respective configurations. This enables 
the benefits of runtime reconfiguration to be evaluated early in the design cycle 
without undergoing time consuming hardware implementation. Unlike methods in [8] 
and [10], the proposed strategy takes into consideration the nested loop paths, and is 
not restricted to only hot loops which will vary with the input data. This can 
potentially lead to higher performance gain by leveraging on the target architecture’s 
capability to perform dynamic execution profiling for determining suitable 
configurations to be loaded onto the RFU at runtime. Unlike the framework in [10], 
our work does not generate custom instruction versions and their corresponding 
hardware area-time measures prior to the partitioning process. Instead, we employ an 
efficient strategy that rapidly estimates the hardware area-time information of the 
custom instructions. In addition, the proposed framework relies on a hierarchical loop 
partitioning strategy that is similar to [8] for rapid partitioning of the application loops 
with custom instructions into one or more configurations. The proposed strategy 
utilizes efficient heuristics that takes into account the reconfiguration cost for 
partitioning loops into configurations. Finally, custom instructions for the respective 
configurations are then selected using a greedy algorithm. It is worth mentioning that 
the proposed method can be adopted in commercial FPGA tools as the target RFU 
model incorporates programmable logic elements that are similar to those found in 
commercial FPGA architectures. 

2   Proposed Framework 

Figure 2 gives an overview of the proposed framework. We have relied on the 
Trimaran compiler infrastructure [11] to generate the IR (Intermediate 
Representation) of the applications in the form of DFG (Data-Flow Graph). The IR 
serves as input to the Custom Instruction Generation stage to identify a set of custom 
instruction candidates. Details of the Custom Instruction Generation stage can be 
found in [5]. 

 

 
 

Figure 2: Proposed framework 
 



The hardware area-time information of the custom instruction candidates are then 
rapidly estimated without undergoing time-consuming hardware implementation. This 
step estimates the area costs and critical path delays of the custom instruction 
candidates when they are implemented on the multi-bit logic blocks of the RFU. In 
this paper, we target programmable logic elements similar to those found in the Xilinx 
Virtex device [12]. It is noteworthy that the hardware area-time results using the 
proposed estimation technique have been shown to be within 8% of those obtained 
using hardware synthesis. In addition, the hardware estimation can be achieved in the 
order of milliseconds. The details of the hardware estimation process can be found in 
[5].  

A hierarchical loop graph is then generated to enable rapid temporal partitioning of 
loops using the proposed hierarchical loop partitioning strategy. Note that the 
partitioning strategy relies on the hardware estimation results to obtain a profitable set 
of custom instruction configurations. 

Finally, performance evaluation is performed using Trimaran’s simulation 
environment, which converts the IR into executable codes and emulates the execution 
on a virtual HPL-PD processor [11]. 

3   Hierarchical Loop Generation 

The proposed partitioning strategy relies on a HLG (Hierarchical Loop Graph) 
representation of the application in order to reduce the complexity of the search space 
for determining the runtime configurations. Figure 3 shows the HLG representation of 
a CFG (Control Flow Graph). Each node in the HLG (except for the root node R) 
represents a unique loop in the CFG. For example loop L1 consists of the nested loop 
path with basic blocks 1, 2, 3, 5, 7 and 8. A directed edge between two nodes s, d in 
the HLG, where s, d are at different HLG levels (s is not the root node), signifies that 
d is a nested loop of loop s. The nodes in the HLG are also associated with a value fx, 
which denotes the execution frequency of the corresponding loop. 

 
 

 
 
Figure 3: Hierarchical Loop Graph of CFG 



Due to the difficulty in identifying loops across function boundaries in the 
Trimaran CFG, our current framework constructs the HLG from the application loop 
trace, which is derived from the basic block trace (see Figure 2). The basic block trace 
records the dynamic execution flow of the application basic blocks. The loop trace 
can be derived from the basic block trace by reading each basic block entry in the 
trace file and checking if it is part of a new loop or existing loop. A loop is identified 
when a particular segment of a trace consists of duplicated basic blocks. New or 
existing loops can be determined by maintaining a history of loops that have been 
identified so far. Finally, information pertaining to how the loops are nested within 
one another and the execution frequency of each unique loop are determined from the 
loop trace to construct the HLG. 

4   Hierarchical Loop Partitioning Strategy 

The proposed hierarchical loop partitioning consists of two main tasks: 1) 
temporally partition the application loops based on the HLG into one or more 
configurations, such that the overall performance gain of runtime reconfiguration is 
maximized, and 2) select profitable custom instructions from the loops in each 
configuration. The final output of the algorithm is a set of configurations and the 
selected custom instructions in each configuration. 

4.1   Temporal Partitioning  

Figure 4 illustrates the proposed temporal partitioning strategy, where Lx is a node 
in the HLG and Cy denotes a configuration. The partitioning algorithm aims to reduce 
the search space by giving preference to loops at the lower levels in the HLG and 
considering the higher levels (nested loops) only when they are necessary. Figure 4(a) 
shows an example of the Level 1 nodes in the HLG. The dummy root node, which is 
the parent of the Level 1 nodes, is included for programming consistency. 

 
 

 
Figure 4: Example of proposed temporal partitioning strategy 



The partitioning strategy evaluates the first loop in Level 1 of the HLG (i.e. L1) and 
found that it can directly map onto a configuration (see Figure 4(b)). The loop can be 
directly mapped onto the configuration if the logic requirement of the custom 
instructions in that loop can efficiently utilize the resource capacity of the 
configuration. The partitioning algorithm then moves on to evaluate the next loop in 
Level 1 without the need to consider the nested loops of L1. In the event that the 
custom instructions of a loop under-utilizes the resource capacity of the configuration, 
it is considered for merging with the next loop on the same level. This is shown in 
Figure 4(c) where L2 and L3 are merged into a single configuration. Note that the 
nested loops of L2 and L3 are not evaluated further. However, if the logic requirement 
of the custom instructions in the loop (e.g. L4 in Figure 4(d)) is larger that the resource 
capacity of a configuration, an unfolding process may take place to allow the nested 
loops to be evaluated. It can be observed that only the immediate nested loops (or 
child nodes in the next higher level) are unfolded at a time. The evaluation process for 
direct mapping, merging and unfolding is then performed on these nested loops. For 
example in Figure 4(e), it can be observed that the nested loop L5 can be directly 
mapped to a configuration, while the nested loop L6 is further unfolded to the next 
higher level. In subsequent iterations, some of the nested loops of L6 are merged into a 
configuration (i.e. L7 and L8), while others are directly mapped onto a configuration 
L9). The process is repeated until all the loops in Level 1 of the HLG have been 
evaluated. 

Figure 5 shows the algorithm for temporal partitioning. The temporal partitioning 
strategy consists of three main processes: 1) unfolding, 2) merging, and 3) direct 
mapping. Heuristics are employed to determine which of these three processes that 
the loop will be subjected to (i.e. line 3, 7 and 11). These heuristics are based on 
comparing the estimated area of all profitable custom instruction candidates in loop x, 
with a constant that is a product of the resource capacity of the configuration (i.e. A) 
and a pre-defined factor (i.e. u or m). The output of the temporal partitioning 
algorithm is a configuration set C, where each configuration in the set is associated 
with one or more loops in the HLG. 

Let’s first define a profitable custom instruction candidate i in loop x as one that 
satisfy the constraint in (1), where x

ig  is the gain of the profitable custom instruction 
candidate and tlb is the reconfiguration time of a single multi-bit logic block, in terms 
of number of software clock cycles. ai is the estimated area of i that is obtained using 
the method discussed in [5]. x

ig  is calculated as shown in (2), where fx is the 

execution frequency of loop x, and x
in  is the number of software clock cycles for i. 

We assume that each operation in the Trimaran IR takes one software execution clock 
cycle. 
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Procedure Temporal_Partiion (node)

Procedure Hierarchical_Loop_Partitioning (HLG, Ci)

2. Temporal_Partitioning (root);
3. Sel_CI = Cusom_Instruction_Selection (C, Ci); 
4. return;

Input:   Hierarchical Loop Graph (HLG), 
             custom instruction candidates (Ci)
Result: Selected custom instructions for each 
             configuration (Sel_CI)

1. for each loop x that is a child of node
2. if Ax > u*A then

1. configuration set C = empty;

4. else if Ax < m*A then
5. Put loop x into stack for merging;
6. else if m*A < Ax < u*A then
7. Direct_Map (x);
8.  end if

10. if stack is not empty then
 11. Merge_Loop (stack);
12. end if

9.  end for

14. if Compute_Effective_Gain (c) > 
Compute_Effective_Gain (                 with nested     

         loops of node) then

3. Unfold_Loop (x);

Procedure Unfold_Loop (x)

18. if loop x has nested loops in HLG then
19. Temporal_Partition (x);
20. else
21. Direct_Map (x);

23. return;
22. end if

Procedure  Direct_Map (x)

25. if Compute_Effective_Gain (c) > 0 then
26.       Insert c as a new configuration in C
27. end if
28. return;

Inputs: HLG, configuration set (C), configuration area (A),
             area of profitable custom instructions for each 
             loop x in HLG (Ax)
Output: Set of configurations C

Procedure Merge_Loop (stack)

29.  Initialize new configuration c with unutilized area Ac = A; 
30. for each loop x in stack
31.       if Ac > Ax then    
32. Include loop x in configuration c;
33. Ac = Ac – Ax;
34. else
35. if Compute_Effective_Gain (c) > 0 then
36.                 Insert c as a new configuration in C;

38.            Initialize new configuration c with unutilized  
                 area Ac = A - Ax; 

37. end if

39. Include loop x in new configuration c;
40. end if
41. end for
42. if c != { } && Compute_Effective_Gain (c) > 0 then
43.       Insert c as a new configuration in C;
44. end if
45. return;

Cci ∈∀

15. Replace ci with c in C;

24.  Initialize new configuration c and insert loop x in c; 

13. Initialize new configuration c and insert node in c; 

16. end if
17. return;  

 
Figure 5: Algorithm for temporal partitioning 
 
 
The constraint in (1) ensures that only custom instruction candidates that can still 

lead to notable performance gain after taking into account the runtime reconfiguration 
overhead are considered as profitable custom instructions. Line 2 in Figure 5 shows 
the heuristic used to evaluate if the current loop x needs to be unfolded to the next 
higher level in the HLG. The unfolding process can only take place when the 
following conditions are satisfied. Firstly, given a configuration area A, the estimated 

area of all the profitable custom instruction candidates ( ∑=
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i
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 , where n_pro is 

the number of profitable custom instructions in loop x) must be larger than u x A, 
where u is a pre-defined unfolding factor ( 21 <≤ u ). 

Secondly, in order for the loop to be unfolded, it must contain nested loops (see 
line 18). If these conditions are met, the unfolding process recursively calls the 
temporal partitioning algorithm, where the immediate nested loops of loop x will be 
unfolded (line 19). If the first condition is met but the second condition is violated, 
loop x is directly mapped onto a single configuration (line 21). 



The heuristic that is used to consider if loop x should be merged with other loops in 
the same nested level of the HLG is shown in Line 4 of Figure 5. In particular, if the 
estimated area of all the profitable custom instruction candidates in loop x is less than 
m x A, where m is a pre-defined merge factor ( 1<m ), then the loop will be pushed 
into a stack to be considered for merging (Line 5). Note that these loops have been 
inserted into the stack as each of them will under utilize the logic capacity of the 
RFU. 

When all the loops in a particular level have been considered, the loops that are 
inserted in the stack are partitioned into configurations. The merging process (line 29-
44) employs a greedy approach to merge the loops in the stack until the total 
estimated area of the profitable custom instruction candidates in the merged loops 
exceed the given configuration area A (line 31-33). When the current configuration 
cannot accommodate a loop in the stack due to the area constraint, a new 
configuration is created for the loop (line 38-39). A configuration of merged loops is 
considered as a valid configuration only if the effective gain of the configuration is 
larger than 0 (line 35 and 42). 

The effective gain of configuration c (Gc), that is calculated using the 
Compute_Effective_Gain function, is the total gain of all the profitable custom 
instruction candidates in the loops of c that have been greedily selected by taking into 
account the runtime reconfiguration overhead. Gc is calculated as shown in (3), where 
n_rtrc is the number of times configuration c will be reconfigured in the application 
and n_ml is the number of loops that have been merged in configuration c. n_rtrc can 
be determined from the loop trace. tconfig is the overhead to reconfigure all the logic 
blocks (i.e. tconfig = n_lb x tlb, where n_lb is the number of logic blocks). The merging 
process terminates when all the loops in the stack has been considered for merging. 
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The heuristic in Line 6 of Figure 5 is used to determine if loop x can be directly-

mapped to a single configuration. In particular, loop x can be directly mapped to a 
single configuration if the estimated area of all the profitable custom instruction 
candidates in loop x is 1) larger than m x A, and 2) less than u x A. It can be observed 
that similar to the merging process, a configuration is valid only if its effective gain is 
larger than 0 (line 25-26).  

    Note that the algorithm may eventually discard the configurations resulting from 
the unfolding process if it does not lead to higher performance gain (lines 14-15). 

4.2   Custom Instruction Selection  

In the temporal partitioning process, we have identified a set of configurations and 
their associated loops. The next step in the proposed partitioning strategy is to select 
custom instructions for each of the configurations. This is achieved by employing a 
greedy algorithm to select custom instructions with the highest gain in each 
configuration such that the total area required by the selected custom instruction does 



not exceed the logic capacity of the RFU. The gain of the custom instructions in the 
loops associated with the configuration is first estimated using (2) and sorted in 
decreasing gain. The greedy algorithm then selects the custom instructions by giving 
preference to those with the highest gain in the sorted list such that the area of the 
selected custom instructions does not exceed the logic capacity. This process is 
repeated for all the configurations. 

5   Experimental Results 

In order to evaluate the benefits of the proposed partitioning strategy, we have 
employed six widely-used embedded benchmarks from [13]-[15]. We compare the 
proposed hierarchical partitioning strategy (denoted as Hierarchical) with a recently 
reported iterative method [10] (denoted as Iterative). Both methods perform temporal 
partitioning of the application loops and selection of custom instructions from the 
temporal partitions. For the Hierarchical method, we have empirically determined 
suitable values of u and m to be 1.2 and 0.6 respectively. We also assume that tlb = 
3K clock cycles (similar to the configuration time of one hardware unit in [10]). We 
have employed the full basic block trace for all the applications considered except for 
mpeg2 enc, where a partial basic block trace file is used to generate the loop trace and 
HLG as the original basic block trace file is very large. Similar to [10], we assume 
that the hardware area constraint is about 20-30% of the maximum hardware area that 
is required to accommodate all the custom instructions such that runtime 
reconfiguration is not necessary. 

Table 1 compares the performance gain of the two methods. The performance gain 
is measured in terms of the clock cycle savings that resulted from instruction 
customization after taking into account the runtime reconfiguration cost. It can be 
observed that Hierarchical outperforms Iterative in all cases. This is due to the fact 
that Hierarchical takes into consideration the nested loop paths and is not restricted to 
hot loops. Hierarchical achieves an average and maximum performance gain of over 
14% and 31% respectively when compared to Iterative. 

 
 

Table 1: Comparison of performance gain 

 
 
 



Table 2 compares the partitioning runtime between the two methods. For the 
proposed Hierarchical method, the runtime is measured for the tasks described in 
Section 4. Similarly, the runtime for the Iterative method is only measured for 
temporal and spatial partitioning. The time taken to generate the custom instruction 
versions and the corresponding hardware area-time measures in [10] is not 
considered. Both methods rely on the custom instruction generation process discussed 
in [5], and hence the time taken to identify the custom instructions is not considered 
in the comparison.  

     It can be observed that the runtime of Hierarchical is significantly lower than 
Iterative in most cases (i.e. Adpcm Enc, Cjpeg and Virterbi00), and comparable in the 
remaining cases (the difference in runtime in these remaining cases is less than 0.04s). 
This is due to the fact that the proposed strategy significantly reduces the search space 
of the loop partitioning process by evaluating the nested loops only when the 
profitable custom instructions in the corresponding larger loops cannot be mapped 
entirely onto the RFU area. 

 
 

Table 2: Comparison of partitioning runtime 

 

6   Conclusion 

We have presented a framework for reconfigurable processors that employs a 
hierarchical partitioning strategy which aims to maximize the performance of custom 
instruction realization through runtime reconfiguration, while minimizing the 
reconfiguration overhead. The proposed hierarchical partitioning strategy heuristically 
determines whether the loops in the HLG can be directly mapped to a configuration, 
merged with other loops or unfolded to the nested loops. Nested loops are only 
evaluated when the profitable custom instructions in larger loops cannot be mapped 
entirely onto a restricted RFU area. This strategy significantly reduces the search 
space of the partitioning process, resulting in rapid identification of temporal 
partitions. A greedy algorithm is then used to select custom instructions in each 
temporal partition. Experimental results show that the proposed hierarchical 
partitioning strategy can lead to a higher performance gain than a recently reported 
iterative partitioning approach. In addition, the partitioning runtime of the proposed 
partitioning strategy is significantly lesser than the iterative method in many of the 
cases considered. This enables rapid design exploration for maximizing the utilization 



of reconfigurable space through runtime reconfiguration. Future work includes 
devising a method to generate the HLG from the application CFG and profiling 
information from Trimaran, as generating the HLG from the basic block trace is not 
feasible when the trace file is too large.  
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