
HIERARCHICAL LOOP PARTITIONING FOR
RAPID GENERATION OF RUNTIME

CONFIGURATIONS

Siew-Kei Lam1, Yun Deng1, Jian Hu2, Xilong Zhou2,
Thambipillai Srikanthan1

1 Centre for High Performance Embedded Systems,

Nanyang Technological University,
 50 Nanyang Avenue, Singapore

{assklam, dengyun, astsrikan}@ntu.edu.sg

2 School of Software and Microelectronics,
Peking University, P.R. China

Abstract. Runtime reconfiguration provides an efficient means to reduce the
hardware cost, while satisfying the performance, flexibility and power
requirements of embedded systems. The growing complexity of the applications
necessitates methods that can rapidly identify a suitable set of configurations by
splitting the computational structures into temporal partitions in order to
evaluate the benefits of runtime reconfiguration early in the design cycle. In this
paper, we present a hierarchical loop partitioning strategy that reduces the
complexity of the search space for determining the runtime custom instruction
configurations for reconfigurable processors. Experimental results show that the
proposed partitioning strategy can lead to an average and maximum
performance gain (in terms of clock cycle savings) of over 14% and 31%
respectively when compared to a recently reported technique. In addition, when
compared to the existing technique, the proposed partitioning method has
significantly lower runtime in many of the cases considered.

Keywords: FPGA, Runtime reconfiguration, temporal partitioning

1 Introduction

Emerging embedded applications for portable battery operated devices (e.g. mobile
phones, PDAs, mobile gaming devices, etc.) necessitates computing platforms that are
capable of meeting the increasing performance demands at low cost and low energy
budget. At the same time, these computing platforms must maintain a high degree of
flexibility to meet the shrinking time-to-market window. To this end, the instruction
set extension capability of reconfigurable processors (e.g. [1]-[3]) provides an
attractive means to meet these stringent requirements of embedded systems. A
reconfigurable processor consists of a microprocessor core that is coupled with a RFU
(Reconfigurable Functional Unit), which facilitates critical parts of the application to

be implemented in hardware e.g. FPGA (Field Programmable Gate Array) in the form
of custom instructions.

Runtime reconfiguration offers the potential to realize cost efficient systems that
can still lead to high performance by changing the configuration of a small
reconfigurable hardware at runtime. The two main drawbacks that discourage the use
of runtime reconfiguration in embedded real-time systems is the large reconfiguration
overhead in commercial FPGA architectures, and the lack of supporting tools and
methodologies.

In this paper, we present a framework that rapidly generates custom instruction
configurations for a given application and evaluate the benefits of runtime
reconfiguration on a reconfigurable processor with an area-constrained RFU.

Figure 1: Target architecture

The target RFU model in Figure 1, which is described in detail in [4], consists of a

set of multi-bit logic blocks that is organized around an interconnection network.
Each multi-bit logic block incorporates programmable fine-grained logic elements
that are similar to those found in commercial FPGA architectures. However, unlike
commercial architectures, the logic elements within each multi-bit block shares the
same configuration memory, which leads to reduce runtime reconfiguration overhead.
In this paper, we assume that the full reconfiguration model is adopted, i.e. each
reconfiguration will result in new configurations loaded onto all the logic blocks in
the RFU. If the computation resource requirement of the custom instructions exceeds
the number of available logic blocks in the RFU, then the custom instructions are
mapped to different configurations. At runtime, a reconfiguration manager
automatically loads the required configurations onto the logic blocks for computing
the custom instructions. The proposed runtime management scheme relies on the
dynamic execution profile to replace the functionality of the logic blocks with the
goal of minimizing the overall reconfiguration overhead (see [4]).

1.1 Related Work

The potential benefits of instruction set extension have led to numerous amount of
research work that focuses on generating custom instructions from a given application
(see [5] for a list of references). In order to select custom instructions for different
runtime configurations, temporal partitioning must be performed to divide the design
into mutually exclusive configurations such that the computational resource
requirement of each configuration is less than or equal to the reconfigurable resource
capacity of the RFU.

The task partitioning algorithm presented in [6] for minimizing the communication
cost is achieved in two steps. In the first step, an initial partition is obtained by using a
network flow based algorithm to produce a set of feasible mean cuts. In the second
step, a scheduling technique is employed to select an optimal global solution.

The work in [7] employs ILP (Integer Linear Programming) to achieve near-
optimal latency designs for temporal partitioning of the application task graph. A loop
transformation strategy was used to maximize the throughput while minimizing the
runtime reconfiguration overhead.

The framework presented in [8] automatically partitions loops to a target platform
consisting of a processor, RFU and memory hierarchy. A hierarchical loop clustering
strategy is used to partition a loop into smaller clusters in order to perform optimal
hardware-software partitioning of the loop clusters. The loop clustering strategy
traverses the hierarchical loop graph in a top-down fashion and recursively clusters
the nested loops until the sizes of all the clusters are within a pre-defined limit. The
current framework in [8] does not allow multiple loops in a single configuration.

The work in [9] describes an architecture-aware temporal partitioning strategy for
mapping custom instructions on an adaptive extensive processor, which incorporates
coarse-grained functional units. The strategy partitions and modifies custom
instructions that violate the RFU constraints, in order to map them onto the RFU.

Recently, a framework was presented in [10] to select custom instruction versions
to be mapped onto appropriate configurations. A custom instruction version consists
of a set of custom instructions from a particular loop that satisfy the area constraint of
the RFU. The partitioning scheme consists of temporal partitioning of frequently
executed application loops with custom instructions into one or more configurations,
and spatial partitioning to select an appropriate custom instruction version for each
loop within a configuration. The temporal partitioning problem has been modeled as a
k-way graph partitioning problem, and spatial partitioning is resolved using dynamic
programming. The framework assumes the availability of the custom instruction
versions and their corresponding hardware area-time measures. This necessitates
time-consuming hardware implementation of the custom instructions prior to the
partitioning process if no high level estimation strategy is in place. In the worst case,
the temporal partitioning algorithm in [10] iterates l times, where l is the number of
hot loops.

1.2 Our Work

This paper presents a framework that rapidly partitions loops, which constitute the
most frequently executed segments of embedded applications, into configurations and
selects profitable custom instructions in the respective configurations. This enables
the benefits of runtime reconfiguration to be evaluated early in the design cycle
without undergoing time consuming hardware implementation. Unlike methods in [8]
and [10], the proposed strategy takes into consideration the nested loop paths, and is
not restricted to only hot loops which will vary with the input data. This can
potentially lead to higher performance gain by leveraging on the target architecture’s
capability to perform dynamic execution profiling for determining suitable
configurations to be loaded onto the RFU at runtime. Unlike the framework in [10],
our work does not generate custom instruction versions and their corresponding
hardware area-time measures prior to the partitioning process. Instead, we employ an
efficient strategy that rapidly estimates the hardware area-time information of the
custom instructions. In addition, the proposed framework relies on a hierarchical loop
partitioning strategy that is similar to [8] for rapid partitioning of the application loops
with custom instructions into one or more configurations. The proposed strategy
utilizes efficient heuristics that takes into account the reconfiguration cost for
partitioning loops into configurations. Finally, custom instructions for the respective
configurations are then selected using a greedy algorithm. It is worth mentioning that
the proposed method can be adopted in commercial FPGA tools as the target RFU
model incorporates programmable logic elements that are similar to those found in
commercial FPGA architectures.

2 Proposed Framework

Figure 2 gives an overview of the proposed framework. We have relied on the
Trimaran compiler infrastructure [11] to generate the IR (Intermediate
Representation) of the applications in the form of DFG (Data-Flow Graph). The IR
serves as input to the Custom Instruction Generation stage to identify a set of custom
instruction candidates. Details of the Custom Instruction Generation stage can be
found in [5].

Figure 2: Proposed framework

The hardware area-time information of the custom instruction candidates are then
rapidly estimated without undergoing time-consuming hardware implementation. This
step estimates the area costs and critical path delays of the custom instruction
candidates when they are implemented on the multi-bit logic blocks of the RFU. In
this paper, we target programmable logic elements similar to those found in the Xilinx
Virtex device [12]. It is noteworthy that the hardware area-time results using the
proposed estimation technique have been shown to be within 8% of those obtained
using hardware synthesis. In addition, the hardware estimation can be achieved in the
order of milliseconds. The details of the hardware estimation process can be found in
[5].

A hierarchical loop graph is then generated to enable rapid temporal partitioning of
loops using the proposed hierarchical loop partitioning strategy. Note that the
partitioning strategy relies on the hardware estimation results to obtain a profitable set
of custom instruction configurations.

Finally, performance evaluation is performed using Trimaran’s simulation
environment, which converts the IR into executable codes and emulates the execution
on a virtual HPL-PD processor [11].

3 Hierarchical Loop Generation

The proposed partitioning strategy relies on a HLG (Hierarchical Loop Graph)
representation of the application in order to reduce the complexity of the search space
for determining the runtime configurations. Figure 3 shows the HLG representation of
a CFG (Control Flow Graph). Each node in the HLG (except for the root node R)
represents a unique loop in the CFG. For example loop L1 consists of the nested loop
path with basic blocks 1, 2, 3, 5, 7 and 8. A directed edge between two nodes s, d in
the HLG, where s, d are at different HLG levels (s is not the root node), signifies that
d is a nested loop of loop s. The nodes in the HLG are also associated with a value fx,
which denotes the execution frequency of the corresponding loop.

Figure 3: Hierarchical Loop Graph of CFG

Due to the difficulty in identifying loops across function boundaries in the
Trimaran CFG, our current framework constructs the HLG from the application loop
trace, which is derived from the basic block trace (see Figure 2). The basic block trace
records the dynamic execution flow of the application basic blocks. The loop trace
can be derived from the basic block trace by reading each basic block entry in the
trace file and checking if it is part of a new loop or existing loop. A loop is identified
when a particular segment of a trace consists of duplicated basic blocks. New or
existing loops can be determined by maintaining a history of loops that have been
identified so far. Finally, information pertaining to how the loops are nested within
one another and the execution frequency of each unique loop are determined from the
loop trace to construct the HLG.

4 Hierarchical Loop Partitioning Strategy

The proposed hierarchical loop partitioning consists of two main tasks: 1)
temporally partition the application loops based on the HLG into one or more
configurations, such that the overall performance gain of runtime reconfiguration is
maximized, and 2) select profitable custom instructions from the loops in each
configuration. The final output of the algorithm is a set of configurations and the
selected custom instructions in each configuration.

4.1 Temporal Partitioning

Figure 4 illustrates the proposed temporal partitioning strategy, where Lx is a node
in the HLG and Cy denotes a configuration. The partitioning algorithm aims to reduce
the search space by giving preference to loops at the lower levels in the HLG and
considering the higher levels (nested loops) only when they are necessary. Figure 4(a)
shows an example of the Level 1 nodes in the HLG. The dummy root node, which is
the parent of the Level 1 nodes, is included for programming consistency.

Figure 4: Example of proposed temporal partitioning strategy

The partitioning strategy evaluates the first loop in Level 1 of the HLG (i.e. L1) and
found that it can directly map onto a configuration (see Figure 4(b)). The loop can be
directly mapped onto the configuration if the logic requirement of the custom
instructions in that loop can efficiently utilize the resource capacity of the
configuration. The partitioning algorithm then moves on to evaluate the next loop in
Level 1 without the need to consider the nested loops of L1. In the event that the
custom instructions of a loop under-utilizes the resource capacity of the configuration,
it is considered for merging with the next loop on the same level. This is shown in
Figure 4(c) where L2 and L3 are merged into a single configuration. Note that the
nested loops of L2 and L3 are not evaluated further. However, if the logic requirement
of the custom instructions in the loop (e.g. L4 in Figure 4(d)) is larger that the resource
capacity of a configuration, an unfolding process may take place to allow the nested
loops to be evaluated. It can be observed that only the immediate nested loops (or
child nodes in the next higher level) are unfolded at a time. The evaluation process for
direct mapping, merging and unfolding is then performed on these nested loops. For
example in Figure 4(e), it can be observed that the nested loop L5 can be directly
mapped to a configuration, while the nested loop L6 is further unfolded to the next
higher level. In subsequent iterations, some of the nested loops of L6 are merged into a
configuration (i.e. L7 and L8), while others are directly mapped onto a configuration
L9). The process is repeated until all the loops in Level 1 of the HLG have been
evaluated.

Figure 5 shows the algorithm for temporal partitioning. The temporal partitioning
strategy consists of three main processes: 1) unfolding, 2) merging, and 3) direct
mapping. Heuristics are employed to determine which of these three processes that
the loop will be subjected to (i.e. line 3, 7 and 11). These heuristics are based on
comparing the estimated area of all profitable custom instruction candidates in loop x,
with a constant that is a product of the resource capacity of the configuration (i.e. A)
and a pre-defined factor (i.e. u or m). The output of the temporal partitioning
algorithm is a configuration set C, where each configuration in the set is associated
with one or more loops in the HLG.

Let’s first define a profitable custom instruction candidate i in loop x as one that
satisfy the constraint in (1), where x

ig is the gain of the profitable custom instruction
candidate and tlb is the reconfiguration time of a single multi-bit logic block, in terms
of number of software clock cycles. ai is the estimated area of i that is obtained using
the method discussed in [5]. x

ig is calculated as shown in (2), where fx is the

execution frequency of loop x, and x
in is the number of software clock cycles for i.

We assume that each operation in the Trimaran IR takes one software execution clock
cycle.

lb
i

x
i t

a
g

×> 2 (1)

x
ix

x
i nfg ×= (2)

Procedure Temporal_Partiion (node)

Procedure Hierarchical_Loop_Partitioning (HLG, Ci)

2. Temporal_Partitioning (root);
3. Sel_CI = Cusom_Instruction_Selection (C, Ci);
4. return;

Input: Hierarchical Loop Graph (HLG),
 custom instruction candidates (Ci)
Result: Selected custom instructions for each
 configuration (Sel_CI)

1. for each loop x that is a child of node
2. if Ax > u*A then

1. configuration set C = empty;

4. else if Ax < m*A then
5. Put loop x into stack for merging;
6. else if m*A < Ax < u*A then
7. Direct_Map (x);
8. end if

10. if stack is not empty then
 11. Merge_Loop (stack);
12. end if

9. end for

14. if Compute_Effective_Gain (c) >
Compute_Effective_Gain (with nested

 loops of node) then

3. Unfold_Loop (x);

Procedure Unfold_Loop (x)

18. if loop x has nested loops in HLG then
19. Temporal_Partition (x);
20. else
21. Direct_Map (x);

23. return;
22. end if

Procedure Direct_Map (x)

25. if Compute_Effective_Gain (c) > 0 then
26. Insert c as a new configuration in C
27. end if
28. return;

Inputs: HLG, configuration set (C), configuration area (A),
 area of profitable custom instructions for each
 loop x in HLG (Ax)
Output: Set of configurations C

Procedure Merge_Loop (stack)

29. Initialize new configuration c with unutilized area Ac = A;
30. for each loop x in stack
31. if Ac > Ax then
32. Include loop x in configuration c;
33. Ac = Ac – Ax;
34. else
35. if Compute_Effective_Gain (c) > 0 then
36. Insert c as a new configuration in C;

38. Initialize new configuration c with unutilized
 area Ac = A - Ax;

37. end if

39. Include loop x in new configuration c;
40. end if
41. end for
42. if c != { } && Compute_Effective_Gain (c) > 0 then
43. Insert c as a new configuration in C;
44. end if
45. return;

Cci ∈∀

15. Replace ci with c in C;

24. Initialize new configuration c and insert loop x in c;

13. Initialize new configuration c and insert node in c;

16. end if
17. return;

Figure 5: Algorithm for temporal partitioning

The constraint in (1) ensures that only custom instruction candidates that can still

lead to notable performance gain after taking into account the runtime reconfiguration
overhead are considered as profitable custom instructions. Line 2 in Figure 5 shows
the heuristic used to evaluate if the current loop x needs to be unfolded to the next
higher level in the HLG. The unfolding process can only take place when the
following conditions are satisfied. Firstly, given a configuration area A, the estimated

area of all the profitable custom instruction candidates (∑=
pron

i
ix aA

_

 , where n_pro is

the number of profitable custom instructions in loop x) must be larger than u x A,
where u is a pre-defined unfolding factor (21 <≤ u).

Secondly, in order for the loop to be unfolded, it must contain nested loops (see
line 18). If these conditions are met, the unfolding process recursively calls the
temporal partitioning algorithm, where the immediate nested loops of loop x will be
unfolded (line 19). If the first condition is met but the second condition is violated,
loop x is directly mapped onto a single configuration (line 21).

The heuristic that is used to consider if loop x should be merged with other loops in
the same nested level of the HLG is shown in Line 4 of Figure 5. In particular, if the
estimated area of all the profitable custom instruction candidates in loop x is less than
m x A, where m is a pre-defined merge factor (1<m), then the loop will be pushed
into a stack to be considered for merging (Line 5). Note that these loops have been
inserted into the stack as each of them will under utilize the logic capacity of the
RFU.

When all the loops in a particular level have been considered, the loops that are
inserted in the stack are partitioned into configurations. The merging process (line 29-
44) employs a greedy approach to merge the loops in the stack until the total
estimated area of the profitable custom instruction candidates in the merged loops
exceed the given configuration area A (line 31-33). When the current configuration
cannot accommodate a loop in the stack due to the area constraint, a new
configuration is created for the loop (line 38-39). A configuration of merged loops is
considered as a valid configuration only if the effective gain of the configuration is
larger than 0 (line 35 and 42).

The effective gain of configuration c (Gc), that is calculated using the
Compute_Effective_Gain function, is the total gain of all the profitable custom
instruction candidates in the loops of c that have been greedily selected by taking into
account the runtime reconfiguration overhead. Gc is calculated as shown in (3), where
n_rtrc is the number of times configuration c will be reconfigured in the application
and n_ml is the number of loops that have been merged in configuration c. n_rtrc can
be determined from the loop trace. tconfig is the overhead to reconfigure all the logic
blocks (i.e. tconfig = n_lb x tlb, where n_lb is the number of logic blocks). The merging
process terminates when all the loops in the stack has been considered for merging.

)_(
_

cconfig

mln

x i

x
ic rtrntgG ×−= ∑∑ (3)

The heuristic in Line 6 of Figure 5 is used to determine if loop x can be directly-

mapped to a single configuration. In particular, loop x can be directly mapped to a
single configuration if the estimated area of all the profitable custom instruction
candidates in loop x is 1) larger than m x A, and 2) less than u x A. It can be observed
that similar to the merging process, a configuration is valid only if its effective gain is
larger than 0 (line 25-26).

 Note that the algorithm may eventually discard the configurations resulting from
the unfolding process if it does not lead to higher performance gain (lines 14-15).

4.2 Custom Instruction Selection

In the temporal partitioning process, we have identified a set of configurations and
their associated loops. The next step in the proposed partitioning strategy is to select
custom instructions for each of the configurations. This is achieved by employing a
greedy algorithm to select custom instructions with the highest gain in each
configuration such that the total area required by the selected custom instruction does

not exceed the logic capacity of the RFU. The gain of the custom instructions in the
loops associated with the configuration is first estimated using (2) and sorted in
decreasing gain. The greedy algorithm then selects the custom instructions by giving
preference to those with the highest gain in the sorted list such that the area of the
selected custom instructions does not exceed the logic capacity. This process is
repeated for all the configurations.

5 Experimental Results

In order to evaluate the benefits of the proposed partitioning strategy, we have
employed six widely-used embedded benchmarks from [13]-[15]. We compare the
proposed hierarchical partitioning strategy (denoted as Hierarchical) with a recently
reported iterative method [10] (denoted as Iterative). Both methods perform temporal
partitioning of the application loops and selection of custom instructions from the
temporal partitions. For the Hierarchical method, we have empirically determined
suitable values of u and m to be 1.2 and 0.6 respectively. We also assume that tlb =
3K clock cycles (similar to the configuration time of one hardware unit in [10]). We
have employed the full basic block trace for all the applications considered except for
mpeg2 enc, where a partial basic block trace file is used to generate the loop trace and
HLG as the original basic block trace file is very large. Similar to [10], we assume
that the hardware area constraint is about 20-30% of the maximum hardware area that
is required to accommodate all the custom instructions such that runtime
reconfiguration is not necessary.

Table 1 compares the performance gain of the two methods. The performance gain
is measured in terms of the clock cycle savings that resulted from instruction
customization after taking into account the runtime reconfiguration cost. It can be
observed that Hierarchical outperforms Iterative in all cases. This is due to the fact
that Hierarchical takes into consideration the nested loop paths and is not restricted to
hot loops. Hierarchical achieves an average and maximum performance gain of over
14% and 31% respectively when compared to Iterative.

Table 1: Comparison of performance gain

Table 2 compares the partitioning runtime between the two methods. For the
proposed Hierarchical method, the runtime is measured for the tasks described in
Section 4. Similarly, the runtime for the Iterative method is only measured for
temporal and spatial partitioning. The time taken to generate the custom instruction
versions and the corresponding hardware area-time measures in [10] is not
considered. Both methods rely on the custom instruction generation process discussed
in [5], and hence the time taken to identify the custom instructions is not considered
in the comparison.

 It can be observed that the runtime of Hierarchical is significantly lower than
Iterative in most cases (i.e. Adpcm Enc, Cjpeg and Virterbi00), and comparable in the
remaining cases (the difference in runtime in these remaining cases is less than 0.04s).
This is due to the fact that the proposed strategy significantly reduces the search space
of the loop partitioning process by evaluating the nested loops only when the
profitable custom instructions in the corresponding larger loops cannot be mapped
entirely onto the RFU area.

Table 2: Comparison of partitioning runtime

6 Conclusion

We have presented a framework for reconfigurable processors that employs a
hierarchical partitioning strategy which aims to maximize the performance of custom
instruction realization through runtime reconfiguration, while minimizing the
reconfiguration overhead. The proposed hierarchical partitioning strategy heuristically
determines whether the loops in the HLG can be directly mapped to a configuration,
merged with other loops or unfolded to the nested loops. Nested loops are only
evaluated when the profitable custom instructions in larger loops cannot be mapped
entirely onto a restricted RFU area. This strategy significantly reduces the search
space of the partitioning process, resulting in rapid identification of temporal
partitions. A greedy algorithm is then used to select custom instructions in each
temporal partition. Experimental results show that the proposed hierarchical
partitioning strategy can lead to a higher performance gain than a recently reported
iterative partitioning approach. In addition, the partitioning runtime of the proposed
partitioning strategy is significantly lesser than the iterative method in many of the
cases considered. This enables rapid design exploration for maximizing the utilization

of reconfigurable space through runtime reconfiguration. Future work includes
devising a method to generate the HLG from the application CFG and profiling
information from Trimaran, as generating the HLG from the basic block trace is not
feasible when the trace file is too large.

References

1. Altera: NIOS II Processors, http://www.altera.com/products/ip/processors/nios2/ni2-
index.html

2. Xilinx Platform FPGAs, http://www.xilinx.com
3. Video/Imaging Design Line: Analysis: Stretch's Second-Gen Configurable Processor,

http://www.videsignline.com/howto/videoprocessing/201311209 (2007)
4. Lam S.K. Huang F., Srikanthan T. and Wu J.: Run-Time Management of Custom

Instructions on a Partially Reconfigurable Architecture, IEEE International Conference on
Electronic Design (2008)

5. Lam S.K and Srikanthan T.: Rapid Design of Area-Efficient Custom Instructions for
Reconfigurable Embedded Processing, Journal of Systems Architecture, Vol. 55, No. 1,
pp. 1-14 (2009)

6. Jiang Y.C. and Wang J.F.: Temporal Partitioning Data Flow Graphs for Dynamically
Reconfigurable Computing, IEEE Transactions on Very Very Large Scale Systems, Vol.
15, No. 12, pp. 1351-1361 (2007)

7. Kaul M., Vemuri R., Govindarajan S. and Ouaiss I.: An Automated Temporal Partitioning
and Loop Fission Approach for FPGA based Reconfigurable Synthesis of DSP
Applications, Design Automation Conference, pp. 616-622 (1999)

8. Li Y., Callahan T., Darnell E., Harr O., Kurkure U. and Stockwood J.: Hardware-Software
Co-Design of Embedded Reconfigurable Architectures, Design Automation Conference,
pp. 507-512 (2000)

9. Mehdipour F., Noori H., Zamani M.S., Murakami K., Sedighi M. and Inoue K.: An
Integrated Temporal Partitioning and Mapping Framework for Handling Custom
Instructions on a Reconfigurable Functional Unit, Asia-Pacific Computer Systems
Architecture Conference, pp. 219-230 (2006)

10. Huynh H.P., Sim J.E. and Mitra T.: An Efficient Framework for Dynamic Reconfiguration
of Instruction-Set Customization, Design Automation for Embedded Systems (2008)

11. Trimaran: An Infrastructure for Research in Instruction-Level Parallelism,
http://www.trimaran.org

12. Xilinx Data Sheet: Virtex 2.5V FPGA Detailed Functional Description, DS003-2, Version
2.8.1, (2002)

13. The Embedded Microprocessor Benchmark Consortium: http://eembc.org
14. Lee C., Potkonjak M. and Mangione-Smith W.H.: MediaBench: A Tool for Evaluating

and Synthesizing Multimedia and Communications Systems, Proceedings of the 13th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 330-335 (1997)

15. Guthaus M.R., Ringenberg J.S., Ernst D., Austin T.M., Mudge T. and Brown R.B.:
MiBench: A Free, Commercially Representative Embedded Benchmark Suite, IEEE
International Workshop on Workload Characterization, pp. 3-14 (2001)

