
Rapid Design of Area-Efficient Custom Instructions

for Reconfigurable Embedded Processing

Siew-Kei Lam* and Thambipillai Srikanthan+

Centre for High Performance Embedded Systems
Nanyang Technological University

50 Nanyang Drive, Research TechnoPlaza
3rd Storey, BorderX Block,

SINGAPORE 637553

Tel. No.: 65-67906643
Fax No.: 65-67920774

Email: *assklam@ntu.edu.sg, +astsrikan@ntu.edu.sg

Abstract
RISPs (Reconfigurable Instruction Set Processors) are increasingly becoming popular

as they can be customized to meet design constraints. However, existing instruction

set customization methodologies do not lend well for mapping custom instructions on

to commercial FPGA architectures. In this paper, we propose a design exploration

framework that provides for rapid identification of a reduced set of profitable custom

instructions and their area costs on commercial architectures without the need for time

consuming hardware synthesis process. A novel clustering strategy is used to estimate

the utilization of the LUT (Look-Up Table) based FPGAs for the chosen custom

instructions. Our investigations show that the area costs computations using the

proposed hardware estimation technique on 20 custom instructions are shown to be

within 8% of those obtained using hardware synthesis. A systematic approach has

been adopted to select the most profitable custom instruction candidates. Our

investigations show that this leads to notable reduction in the number of custom

instructions with only marginal degradation in performance. Simulations based on

domain-specific application sets from the MiBench and MediaBench benchmark

suites show that on average, more than 25% area utilization efficiency

(performance/area) can be achieved with the proposed technique.

Keywords: Area estimation, design exploration, FPGA, look-up table, reconfigurable

logic

2

1. Introduction
Future embedded systems will require a higher degree of customization to manage the

growing complexity of the applications. At the same time, they must continue to

facilitate a high degree of flexibility to meet the shrinking TTM (Time-To-Market)

window. In recent years, configurable processors [1]-[4] have emerged to offer the

possibility of extending the instruction set for a specific application by introducing

custom functional units within the processor architecture. This provides an efficient

mechanism to meet the growing performance and TTM demands. While configurable

processors have been proven successful for features sizes below 90nm, rising

developing costs for ASIC designs tend to favor reconfigurable approaches [5].

A RISP (Reconfigurable Instruction Set Processor) consists of a microprocessor core

that is tightly coupled with a RFU (Reconfigurable Functional Unit) [6].

Commercially available reconfigurable processors include the Altera Nios II [7],

Xilinx MicroBlaze [8], and Stretch [9] processors. As opposed to loosely couple

schemes where data is communicated between the microprocessor and RFU through a

shared memory, the tightly coupled scheme employs the internal register files for data

transfer. Similar to configurable processors, the RISP facilitates critical parts of the

application to be implemented in hardware using a specialized instruction set.

It has been shown that circuits implemented on an FPGA (Field Programmable Gate

Array) are about 3 to 5 times slower, and about 35 times larger than the equivalent

standard-cell implementation [10]. However, FPGAs are becoming more popular than

their ASIC counterparts as the increasing NRE costs of ASIC begin to outweigh the

per-unit-cost of FPGAs for high-volume applications [11]. This is corroborated by the

increasing adoption of re-configurable technologies such as FPGAs in high-volume

designs [12]. In addition, recent FPGA architectures are often viewed as SoC

(System-On-a-Chip) designs as they incorporate a large range of IP (Intellectual

Property) cores. It has been projected that by 2010, more than 40% of all FPGA

designs will contain a microprocessor [13]. Logic suppliers are also driven towards

embedding FPGA cores in SoC designs to address TTM and mitigate design risk

issues [14].

3

Hence, it is envisioned that RISPs will play an important role in future embedded SoC

platforms due to its promising ability to overcome the technological and market

challenges [15]. Even though RISPs has lower performance, area and power

efficiency than its configurable counterparts [1][3], the design flexibility of RISPs in

the presence of reconfigurable logic leads to off-the-shelf products that can be

customized for each application. This eliminates the need for ASIC tape-out for each

design, thereby eliminating the need to manage exorbitant NRE (Non-Recurring

Engineering) costs of configurable processors. This is increasingly preferred by

designers who develop products for uncertain markets and shorter product life cycles.

For example, the design flexibility of reconfigurable logic is especially attractive for

applications in ubiquitous computing with evolving standards, which require frequent

functionality updates [16]. The major challenges to increase the proliferation of RISPs

lie in the development of supporting compilation and computer-aided design tools that

enable rapid design exploration and efficient mapping of applications on such

platforms [17].

This paper presents a framework that enables rapid design exploration for RISPs,

which incorporate reconfigurable structures that are similar to commercially available

technologies (i.e. LUT-based FPGAs with coarse-grained arithmetic units). In

particular, the proposed framework can effectively select custom instructions that

maximize the area utilization of the reconfigurable space without compromising on

the performance gain. We envisage that the reconfigurable space available for custom

instructions will be limited in future embedded SoC designs, particularly due to

tighter design constraints of embedded systems. Hence, we believe that strategies for

reducing the area utilization of FPGAs will be an important step for satisfying the

design constraints of systems consisting of reconfigurable space. The proposed

framework can also be used for determining the optimal size of FPGAs to be

embedded in cost and power sensitive SoC platforms.

The remainder of this paper is organized as follows: In the following section, we

discuss some existing work and state the main contributions of this paper. Section 2

describes the architecture model of the RFU. In Section 3 and Section 4, we describe

the main stages of the proposed framework. Section 5 provides experimental results

for a set of application domains to demonstrate that considerable area savings can be

4

achieved using the proposed framework with marginal loss in performance gain.

Finally we conclude in Section 6.

1.1. Related Work

Instruction set customization is defined as a process to automatically generate custom

instructions from an application in order to meet certain design objectives. Existing

work in instruction set customization generally consists of two steps: 1) Custom

instruction identification and 2) Custom instruction selection.

Custom instruction identification can be loosely described as a process of detecting a

group of operations or sub-graphs from the application DFG (Dataflow Graph) that is

to be collapsed into a single custom instruction to maximize some metric (typically

performance). This step generates a set of custom instruction candidates, which will

be evaluated for custom instruction implementation. In [18], an approach that

combines template matching and generation have been proposed to identify sub-

graphs based on recurring patterns. Other approaches [19][20] rely on heuristics to

identify good custom instruction candidates while discarding less promising ones. The

pattern enumeration method proposed in [21] employs a binary tree search approach

to identify all possible custom instruction candidates in a DFG. In order to speed up

the search process, unexplored sub-graphs are pruned from the search space if they

violate a certain set of constraints (i.e. number of input-output ports, convexity,

operation type, etc.). Other pattern enumeration approaches for custom instruction

identification have been presented in [22][23][24].

Custom instruction selection evaluates the custom instruction candidates in terms of

their performance, area or power, and selects a subset of them that meets the design

constraints. In [18], a covering algorithm was presented to select a minimal set of

templates that maximizes the number of covered nodes. The templates are custom

instruction candidates that are derived from the custom instruction identification

process. The authors analyzed the trade-off between the number of templates and the

percentage of node coverage. It was observed that increasing the number of templates

in the covering algorithm will lead to notable increase in the number of covered nodes

only up to a certain point. After which, employing more templates in the covering

algorithm will not significantly impact the number of nodes covered. This implies that

5

selecting larger number of custom instruction candidates may not necessary lead to

better performance gain. Although this is an interesting observation, the work in [18]

however, have not studied the effect on the actual hardware resources that is incurred

when varying number of templates are selected.

In order to facilitate effective custom instruction selection, rapid design exploration

must be undertaken without delaying the short TTM requirements for embedded

systems. Rapid design exploration can be achieved with the presence of a fast and

accurate method to estimate the performance-cost mapping of custom instructions on

hardware. While previously reported design flows for instruction set customization

have focused on efficient algorithms for custom instruction identification and

selection, they do not incorporate an effective technique for area-time estimation that

takes into account the architectural constraints of commercial FPGAs. For example,

the estimation process in [19][21][25] is obtained by pre-computing the area-time of

the custom instruction operations using standard-cell design tools. The area and delay

of a custom instruction is then derived by summing up the pre-computed area-time

values of the corresponding operations. In a similar manner, the delay estimation

strategy in [23] predicts the relative speedup of the custom instructions on FPGA by

utilizing a rough approximation of the throughput of each instruction. While these

approaches may provide reasonable estimations for standard-cell implementations,

they do not lend themselves well towards FPGA estimations. This is due to the fact

that these methods do not take into consideration FPGA optimization strategies that

maximize the resource utilization of the programmable logic structures. Other

reported design flows (e.g. [20]) incorporates a hardware synthesis flow to facilitate

the selection of custom instruction candidates that maximizes performance under a

given area constraint.

In this paper, we incorporate high-level FPGA area estimation in the design flow to

facilitate rapid design exploration for RISPs. The estimation is directly performed on

the high-level algorithmic representations of an application (e.g. Data-Control Flow

Graphs, C-language, Matlab, etc.) without the need for time consuming hardware

design entry and implementation. It is worth mentioning that high level estimation

techniques differ from existing technology mapping approaches for area-time FPGA

6

optimizations (e.g. [26][27]) as the latter relies on the availability of gate-level

representations of the applications.

The work in [28] estimates the FPGA data-path area by using a formula, which is a

function of the operator and register properties that are derived from the RTL code

(generated from MATLAB). The number of CLBs (Configurable Logic Blocks) that

corresponds to the operators is obtained by pre-characterizing the area that is

consumed by each operator type and size. The area estimation error is within 16% of

those reported by the commercial FPGA implementation tools. The work in [29]

derives area-time estimation from a DFG that is generated from an execution trace

(obtained from simulating a MATLAB program), which contains information on the

type and frequency of the operations. A FPGA performance model is used to estimate

the area-time of the operations in the DFG. The performance model incorporates

information of the operations which includes the characterized FPGA area-time

measures. Accuracy of the estimation is within 10% of actual implementations.

The authors in [30] presented a two-level model to estimate the area of System-C

designs. The high-level model analyzes the System-C description and estimates the

number of intermediate variables. The low-level model substitutes these high-level

variables into a set of equations to estimate the number of LUTs (Look-Up Tables)

and FFs (Flip Flops). The proposed models must be re-tuned for a new set of

benchmarks, when tool changes and for different target devices. For the applications

and models considered, the authors reported an average error of about 17% for the

LUT estimation.

The work presented in [31] estimates the FPGA data-path area (in terms of LUTs)

from a DFG that is generated from high-level SA-C codes. The estimation method

relies on a formula that is derived from characterizing the resource consumption of all

DFG nodes. In order to take into account some synthesis optimizations in the

estimation for improved accuracy, some heuristics are employed on patterns that are

frequently optimized by the synthesis tool. However the work does not consider more

complex optimizations that aim to maximize the FPGA resource utilization. The area

estimation error is within 5%.

7

A recently reported work in [32] performs area-delay estimations of the RTL solution

using a two-step approach. In the first step, a structural exploration is performed to

obtain several RTL solutions. In the second step, the area-time estimation of mapping

the RTL solutions is undertaken. The physical mapping estimation relies on a FPGA

characterization file for a target device. The information of the FPGA characterization

file is obtained from the data-sheet of the target device, and from synthesis of basic

operators. Experimental results performed on FPGA devices from different vendors

reported an average area estimation error of 18%.

Recently, run-time reconfiguration has been investigated for cost effective realizations

on FPGA based RISPs [33]-[35]. These works have demonstrated the benefits of

runtime reconfiguration on the JPEG and H.264 encoder/decoder. The feasibility of

runtime reconfiguration on RISPs depend largely on the type of application and the

ability of the compiler to extract custom instructions that can mitigate the high

reconfiguration overhead of existing FPGA architectures. For example, the DISC

(Dynamic Instruction Set Computer) processor proposed in [36] requires a

reconfiguration time that is projected to contribute up to 16% of an application’s total

execution time. The Stretch S6000 processor requires 20 µs to change an instruction

on their proprietary programmable logic [9]. Partial reconfiguration on the Xilinx

Virtex FPGA is accomplished in the order of milliseconds [35]. This high

reconfiguration overhead could suppress the benefits of dynamically reusing the

FPGA hardware resources, if the reconfiguration overhead cannot be compensated by

the speedup obtained from the acceleration of custom instructions.

1.2. Main Contributions

This paper presents a rapid design exploration framework to select custom

instructions for RISPs. Unlike previously reported approaches that are targeted

towards the eventual porting of a configurable processor (e.g. Xtensa processor [20])

with custom instructions to ASIC, our approach targets commercial fine grained

reconfigurable architectures (i.e. Xilinx). We believe that appropriate design

methodologies will pave the way for the emergence of off-the-shelf processors that

consist of fine grained FPGA architectures to facilitate custom instruction

acceleration. As opposed to the methods in [37][38], the proposed techniques targets

reconfigurable structures that are similar to commercially available technologies (i.e.

8

LUT-based FPGAs with coarse-grained arithmetic units), and hence they can be more

readily integrated with existing hardware synthesis tools. The contributions in this

work include the following:

1. We will show that while a set of domain specific applications can exhibit large

number of custom instruction instances, only a fraction of it is required for

evaluation in the custom instruction selection process. Although the results in this

paper are based on domain-specific application sets, the framework can also be

adopted for application-centric solutions.

2. In order to facilitate rapid design exploration, a novel clustering strategy is

proposed to estimate the area utilization of the RFU without the need for lengthy

hardware synthesis such as that required in [20]. In contrast to existing high-level

estimation methods [28]-[32], the proposed technique takes into account the

FPGA architectural constraints and synthesis optimizations for maximizing the

utilization of the FPGA resources. It also does not rely on a pre-characterization

step, which limits the scope of representing all possible combinations of the

design under examination. In addition, unlike the methods in [28]-[31], the

proposed area estimation strategy is performed on the intermediate representation

of ANSI C applications, which are commonly employed in embedded

applications. It is noteworthy that the proposed strategy are targeted towards state-

of-the-art FPGA architectures (e.g. the Xilinx Virtex devices), and can be easily

extended for newer and future FPGA devices that are likely to incorporate similar

programmable logic elements.

3. The rapid estimation strategy enables the use of a simple approach for selecting a

reduced set of candidates that will lead to high area-time efficiency. When

compared to existing commercial tools (e.g. Mimosys Clarity [39]) that are

capable of automatically identifying only a single performance-optimal solution

set, the proposed framework facilitates the exploration of the design space for

selecting custom instructions that meets the area-time constraints of the

application. We show that the proposed approach can achieve a significant area

reduction of over 27% with an efficiency (performance/area) gain of over 25% for

a wide range of applications.

9

2. Target Architecture Model
The target architecture model of a RISP is shown in Figure 1(a), which is a four-wide

VLIW (Very Long Instruction Word) architecture that has been extended with a RFU

for implementing custom instructions. The RFU obtains the input data from the

register file, and outputs the results to the interconnection network, which facilitate

the sharing of register files between the functional units and custom logic.

Figure 1(b) illustrates the proposed FPGA-based RFU, which consists of a 2D array

of programmable logic elements that are interconnected by the switches and routing

bus. Each logic element is a simplified version of a logic element that is found in the

commercially available Xilinx FPGA devices [40]. As illustrated in Figure 1(c), each

logic element is composed of a K-input LUT (K-LUT) and fast carry-logic (K is 4 in

the example). The fine-grained programmable LUTs allow any function of up to K

inputs to be implemented, providing for generic logic realization. The fast carry-logic

aims to speed up carry-based computations, such as addition, parity, etc. [41]. The

logic elements can be organized in groups of 32 to implement a sequence of 32-bit

wide operations, which could comprise of logical, shift and addition/subtraction

operations, with up to K operands.

Figure 1: RISP model

10

Increasingly, commercial FPGAs are incorporating coarse-grained functional blocks

to significantly improve the density, speed and power of the device. For example, the

Xilinx Virtex device contains embedded 18x18-bit multiplier units. Although not

shown in Figure 1, the RFU can also incorporate 32-bit CGAUs (Coarse-Grained

Arithmetic Units) to facilitate high-speed complex arithmetic operations such as

multiplication and division that cannot be efficiently mapped onto the fine-grained

logic blocks.

In the following section, we will describe a methodology to explore the area-time

trade-offs of the FPGA-based RFU in Figure 1. Given a set of applications, the

proposed framework in the following section can rapidly estimate the number of logic

elements and critical path delays to realize the custom instructions on the RFU. This

enables one to quickly decide on a suitable RISP for a given problem, or determine a

new set of custom instructions that meet the area-time constraints.

3. Design Exploration Framework
The proposed framework in Figure 2 consists of three stages: 1) Pattern Library

Generation, 2) Template Library Generation, and 3) Hardware Generation.

In the Pattern Library Generation stage, a pattern enumeration method is combined

with graph isomorphism to identify unique custom instruction instances from a set of

embedded applications. Application profiling is also performed to compute the

frequency of occurrences of the custom instruction instances bases on an input data-

set. This is a one-time effort that is required for the second stage of the framework to

select a set of templates from the custom instruction instances based on some user-

specified criteria. These templates form a set of potential custom instruction

candidates to be mapped on the RFU. In the Template Library Generation stage, the

effects of the number of templates used on the potential performance gain are rapidly

explored. This performance estimation is made possible through a pattern matching

and selection process to identify a set of custom instructions (from the selected

templates) based on the runtime application characteristics obtained from application

profiling.

11

Figure 2: Overview of framework

In the Hardware Generation Stage, a cluster enumeration process for a given K value

is performed to identify all the cluster instances from the selected custom instructions.

Each cluster comprises of a custom instruction data-path that can be mapped onto a

group of 32 LUTs or a CGAU. A heuristic based approach is then employed to select

a set of clusters that aim to minimize the reconfigurable resources. An area estimation

model is used to evaluate the hardware requirements of the selected clusters when

they are realized on the RFU. If the selected clusters do not meet the constraints of the

system, a new set of templates is then obtained and the design exploration repeats

until the constraints are met. It is noteworthy that the design exploration process is

performed without actual hardware synthesis. Finally, the hardware configurations are

generated using FPGA synthesis tools.

In the following sections, we will describe the steps in the framework based on the

example in Figure 3.

12

Pattern

Enumeration

and

Grouping

Template
Selection

Number
of templates

T1 (P1)

T2 (P2)

T3 (P5/6)

Template
Library

T4 (P3)

T5 (P4)

0.50

Gain

0.50

0.50

0.25

0.25

Frequency

97460

779680

389840

97460

97460

O
ne

-ti
m

e
pr

oc
es

s

P1

P2

P3

Pattern
Library

P4

P5/6

and and

and
or

or

shl shr

or

load

addl

addl

addl

P1

P3

P2

P5

P4

P6Application
Profiling

Cluster
Enumeration

Cluster
Selection

Ite
ra

tiv
e

Pattern Selection

and Performance

Estimation

Area
Estimation

FPGA Implementation

Pattern
Matching

(d) Conflict Graph

(a)(b)

(c)

(e)

(f)

(g)

T1 T2

T4

T3

T5

P2P1

P4

P6

P3

P5

. . .

Frequency

97460

779680

389840

97460

97460

. . .

Figure 3: Example of instruction set customization with the proposed framework

13

3.1. Pattern Library Generation

In the first stage of the framework, a one-time effort is required to construct a pattern

library that consists of a set of unique custom instruction patterns. Pattern Library

Generation is divided into two steps: 1) Pattern enumeration, and 2) Pattern grouping.

3.1.1. Pattern Enumeration

The objective of this step is to enumerate the custom instruction pattern instances

from the application’s DFG. For example Figure 3(a) shows a DFG and the

corresponding custom instruction pattern instances (P1, P2, …, P6). Each of the

pattern instances is a sub-graph of the DFG that satisfies a set of constraints that have

been imposed in the pattern enumeration algorithm. Note that for simplicity, we have

only shown six enumerated pattern instances in this example. The pattern instances

are stored in the pattern library (Figure 3(b)) and their frequency of occurrences based

on an input data-set is obtained from application profiling.

We have adopted the pattern enumeration algorithm in [21] to identify all the custom

instruction pattern instances from the given application set. As mentioned earlier, the

method in [21] employs a binary tree search approach that prunes unexplored sub-

graphs from the search space if they violate a certain set of constraints. We have used

the Trimaran [43] IR (Intermediate Representation) for the enumeration process. In

order to avoid false dependencies within the DFG, the IR is generated prior to register

allocation. For the purpose of this study, we have imposed the following constraints

on the custom instructions to increase the efficiency of the identification process:

1. Only integer operations are allowed in the custom instruction instance. Including

memory accesses in custom instructions can lead to non-deterministic latencies

and increased complexity in the RFU [44]. In addition, custom instructions with

floating-point operations often do not lead to notable speedup [25].

2. Each custom instruction instance must be a connected sub-graph as we assume the

parallelism in custom instructions associated with disconnected sub-graphs are not

exploited in the target architecture.

3. Maximum number of input ports is 5 and maximum number of output ports is 2.

Previous work [25] has shown that input-output ports more than this range results

in little performance gain. It is noteworthy that even if the actual number of input-

output ports of the RFU is lesser than the imposed constraints, existing techniques

14

that exploits pipelining and multi-cycle register file access can be employed to

efficiently map the custom instructions on the RFU [45]. For simplicity, we

assume that pipelining and multi-cycle register file accesses are not supported in

the target architecture.

4. Only convex sub-graphs are allowed in the custom instructions instance to ensure

a feasible schedule exists when the sub-graph is collapsed into a custom

instruction [21].

5. An operation that feeds an input to the custom instruction instance must execute

before the first operation in that instance, to avoid dependency violation when the

instance is realized as a custom instruction.

In the subsequent sections, we will describe efficient techniques for selecting custom

instructions from the set of enumerated custom instruction instances. It is worth

mentioning that more recent methods for pattern enumeration (e.g. [24]) can be

readily incorporated into the proposed framework in order to accelerate the custom

instruction identification process.

3.1.2. Pattern Grouping

The custom instruction pattern instances are subjected to pattern grouping, whereby

identical patterns that occur in different basic blocks and applications are grouped to

create a unique set of custom instruction patterns. Patterns are considered identical if

they have the same internal sub-graphs, without considering their input and output

operands. We have used the graph isomorphism method in the vflib graph-matching

library [46] for the pattern grouping process. Graph isomorphism is performed for

each pattern instance in the pattern library with the rest of the pattern instances. For

example, in Figure 3(b), pattern instances P5 and P6 are isomorphic, and hence they

are grouped. The unique custom instruction patterns are stored in the pattern library to

be used for subsequent stages of the framework.

The pattern enumeration, pattern grouping and application profiling process in our

framework needs to be performed only once on a set of applications.

15

3.2. Template Library Generation

The contents of the pattern library form an initial set of templates, where a template

refers to an instance of a computational pattern with repeated occurrence [18]. This

initial set of templates is first stored in the template library. Design exploration is then

performed to identify a reduced set of templates, which will be evaluated in the

custom instruction selection process. Although it is desirable to limit the number of

templates to reduce the hardware costs, we need to ensure that the resulting

performance gain is not heavily compromised. As such, we employ a pattern

matching and selection approach to estimate the performance gain when varying

number of templates is used. The main tasks of the Template Library Generation stage

is 1) Template selection, 2) Pattern matching and selection, and 3) Performance

estimation.

3.2.1. Template Selection

We employ a heuristic approach for template selection, which accounts for the

performance gain and area utilization of the custom instruction in hardware. Each

pattern p in the pattern library is assigned a gain as shown in (1), where the speedup

obtained by mapping p on hardware is calculated as shown in (2). TSW(p) denotes the

number of clock cycles taken for the custom instruction p to run on a processor.

THW(p) denotes the number of clock cycles taken for the custom instruction p in

hardware, and we estimate this by the length of the critical path in the custom

instruction sub-graph. For example, THW(p) = 5 for custom instruction sub-graph p if

the number of operations in the critical path is five. A DFS (Depth First Search)

algorithm is employed to compute the length of the critical paths of each custom

instruction sub-graph. Pattern size(p) denotes the size of the custom instruction p and

is estimated by the number of primitive operations of p. If we assume that each

operation for the custom instruction p takes 1 software clock cycle, then TSW(p) =

Pattern size(p), and hence Gain(p) = 1/THW(p).

)(
)()(
psizePattern

pSpeeduppGain = (1)

)(
)()(

pT
pTpSpeedup

HW

SW= (2)

16

The templates in the template library are then sorted in decreasing gain and varying

range of templates (each range includes the templates with highest gain) is iteratively

selected for performance evaluation. In the iteration example in Figure 3(c), five

templates (T1, T2, …, T5) that correspond to patterns (P1, P2, …, P6) are selected for

evaluation. Based on the performance estimation results, a range of templates that

lead to insignificant performance degradation (compared to the case when all the

templates are used for performance evaluation) will be selected and stored in the

template library. The performance estimation is facilitated by pattern matching and

selection.

3.2.2. Pattern Matching

The problem of pattern matching can be described as follows: Given an application

DFG that is represented as a directed labeled graph),(EVGd and a set of templates in

the template library, where each template is a directed graph),(EVTi , find every sub-

graph of Gd that is isomorphic to Ti. This problem is essentially equivalent to the sub-

graph isomorphism problem, which is simplified due to the directed edges. We have

used the vflib graph-matching library [46] to identify all the pattern matches in the

application DFG.

3.2.3. Pattern Selection

We have adopted the technique presented in [47] for pattern selection, which is based

on the conflict graph approach. A conflict graph is an undirected graph),(EVGu = ,

where each vertex Vv∈ is a match that is a member of the template set associated

with Ti for ti ≤≤1 and t is the number of templates in the template library with the

highest gain as described in (1). We denote the template set associated with Ti as Si.

An edge Ee∈ between two matches vx and vy signify that the matches have one or

more nodes in common. The number of nodes in a match vx is denoted as size(vx).

The algorithm first constructs a conflict graph from the template matches, and then

iteratively computes the MIS (Maximum Independent Set) of each template set to

select the custom instructions. The MIS of template set Si, denoted as MISi is defined

as the largest subset of vertices in Si that are mutually non-adjacent. The adjacent

matches of the MIS within each template set are temporarily removed.

17

In order to facilitate custom instruction selection, an objective function w(MISi) is

computed in each iteration. We used the objective function in (3), where ix Sv ∈ , to

give preference to the selection of larger matches. The algorithm proceeds to select

MISi with the largest objective function and the matches corresponding to the selected

MIS are chosen as custom instructions. These matches and their adjacent neighbors

are then permanently removed from the conflict graph. The rest of the matches are

restored and the algorithm repeats until the conflict graph is empty.

)()(xi vsizeMSIw = (3)

Figure 3(d) shows an example of a conflict graph and the patterns P4 and P6 are

selected as custom instructions. It is worth mentioning that the conflict graph needs

only to be built once using the full range of templates in the template library. In the

subsequent iterations, where a reduced set of templates are used for pattern matching

and selection, the conflict graph can be easily modified by temporarily removing the

irrelevant nodes/edges.

3.2.4. Performance Evaluation

The estimated performance based on the selected custom instructions is calculated for

varying number of templates used in pattern matching and selection. The performance

estimation is reported in terms of percentage of SCS (Software Cycle Savings) for

application A, which is computed as shown in (4), where pi for i = 1 to n, represent the

n custom instructions selected for the application A, F(pi) is the execution frequency

of the custom instruction pi in application A, and TSW(A) denotes the number of clock

cycles of application A. The values of F(pi) and TSW(A) are obtained from application

profiling.

%100
)(

)()(
)%(1 ×

×
=
∑
=

AT

pFpT
ASCS

SW

n

i
iiSW

 (4)

18

4. Hardware Generation
This stage incorporates a method to estimate the area costs and critical path delays of

the selected custom instructions in the template library when they are realized on the

FPGA-based RFU.

The hardware estimation process consists of the following steps 1) Cluster

enumeration, 2) Cluster selection, and 3) Area Estimation. Steps 1) and 2) are

illustrated in Figure 3, where Figure 3(e) shows an example custom instruction data-

path. The cluster enumeration process decomposes the data-path into a list of clusters

instances, where each instance represents a connected sub-graph that can be realized

with a single K-LUT based logic element or a CGAU. Since the data width of the

custom instruction data-path is 32-bits, each cluster can be essentially mapped to a set

of 32 logic elements with the same configuration. As shown in Figure 3(f), there are

32 enumerated cluster instances for K = 4. A set of clusters is then selected to

effectively cover the original data-path in order to meet a certain criteria. For example

in Figure 3(g), clusters 1 and 20 are selected from the enumerated set such that the

number of clusters required to cover the data-path is minimized. In this example, two

4-input LUTs will be required to realize the data-path in Figure 3(e). An area

estimation model is then used to evaluate the hardware requirements for

implementing the selected clusters on the RFU.

The steps discussed above facilitate rapid design exploration to identify a suitable

RFU or to select a new set of templates with different selection criteria. The hardware

estimation process does not require actual hardware synthesis as it directly maps the

high-level operations of the custom instruction data-paths onto the FPGA. The high-

level mapping is based on certain rule-sets that take into account the size of the LUT

for mapping logical and relational operations, and the carry-logic architecture for

mapping addition/subtraction operations. The validity of the proposed rules for the

correct mapping of each cluster to a single logic element has been verified by

implementing the clusters in VHDL and synthesizing them Xilinx ISE Foundation

Version 6.1.03i [42].

19

It is worth mentioning that the proposed approaches in this paper are targeted towards

FPGAs that consist of logic elements with LUT of any arbitrary input K and a carry-

logic as shown in Figure 1(c). Hence, although the experiments in this paper is based

on FPGA devices which consist of logic elements with 4-input LUT (similar to Xilinx

Virtex-2 and Virtex-4 devices), the proposed approaches can be easily extended for

newer and future FPGA architectures. For example, the recent Virtex-5 devices

incorporates 6-input LUTs with similar carry-chain primitives that can be used to

implement any 6-input function or two dual-output 5-input functions [48]. The

proposed method can be used to estimate the hardware area-time of these devices by

specifying the appropriate value of K (e.g. K = 5 or 6). Further optimization

techniques can be incorporated to enable the mapping of two 5-input functions onto a

single logic element in the Virtex-5 devices. It has also been predicted that future

FPGAs are likely to incorporate similar programmable logic elements that incorporate

K-LUTs and carry-logic [15].

4.1. Cluster Enumeration

The primitive operations of the Trimaran IR [43] can be categorized into 1) logical

operations (e.g. and, or, xor), 2) shift operations (e.g. shl, shr) that shift the data to the

left/right by a constant, and 3) arithmetic operations (e.g. add, sub, mult, div). We

have adopted the pattern enumeration algorithm in [21] to identify all the cluster

instances from the selected templates. The method employs a binary tree search

approach that prunes unexplored sub-graphs from the search space if they violate a

certain set of rules. Valid cluster instances, comprising of connected sub-graphs

where each node is a primitive operation, must comply with a set of rules that enable

them to be mapped onto the logic elements or CGAUs. We will describe these rules

with the help of the example data-path in Figure 4(a), and Figure 4(b) that shows the

implementation of an add operation using a programmable logic element similar to

those found in the 4-input LUT based Xilinx Virtex device [40].

20

() ()ABxorACinBxorACout

CinxorBxorASum

+=

=

BxorA

A

CinxorBxorA

...

M
U

X
C

Y

Figure 4: (a) Custom instruction with 3 clusters, and (b) implementing an add

operation in a logic element

Two sets of rules are used to determine a valid cluster. The first set of rules is used to

evaluate whether an operation can be included in the cluster during enumeration

process. An operation can be included in a cluster if:

1. It is a logical or shift operation and the cluster does not consist of any arithmetic

operations (e.g. Cluster 1 in Figure 4(a)). The programmable K-LUTs (K-input

LUTs) can implement non-arithmetic functions of up to K inputs.

2. It is a logical operation that is executed before a single add/sub operation in the

cluster (e.g. Cluster 2 in Figure 4(a)). The add/sub operation can be mapped onto

the LUT-based logic elements to exploit the fast carry chains as shown in Figure

4(b) [49]. Since the output of the LUT is the partial sum (BA⊕), all logical

operations must be executed first to generate the required operands (i.e. A and B)

for the add operation.

3. It is a shift operation and the cluster contains a single add/sub operation (e.g.

Cluster 3 in Figure 4(a)). The shifted value of an addition/subtraction result by a

constant can be realized by configuring the routing architecture to feed the

suitable data range as inputs to another logic element.

4. It is an add/sub operation and the cluster does not contain any other arithmetic

operations. A LUT-based logic element can only implement a single add/sub

operation effectively by exploiting the fast carry chain. Other arithmetic

operations (e.g. multiplication, division, etc.) are mapped to the CGAUs.

21

The second set of rules is used to evaluate the permissible inputs/outputs of the

cluster:

1. The total number of cluster inputs is at most K with only one output. The

maximum number of input ports and output ports for a LUT is K and 1

respectively.

2. One of the inputs to the add/sub operation must be directly connected to an

external input of the cluster (e.g. Cluster 2 in Figure 4(a)). As shown in Figure

4(b), the carry-out (i.e. Cout) is selected from either the carry-in (i.e. Cin or an

input operand (i.e. A) that is also fed directly to the input pin of the LUT.

If the cluster contains only logical and add/sub operations, the number of inputs can

be easily derived by evaluating the external inputs to the cluster. For example in

Figure 4(a), Cluster 2 and Cluster 3 consist of 4 inputs and 2 inputs respectively.

However, clusters with shift operations must be evaluated differently. For example

the hardware synthesis tool will not be able to map the two physical inputs (i.e. In1

and In2) of Cluster 1 in Figure 4(a) to only two LUT pins. The shl and shr operations

will result in In1 and In2 being routed to four input pins in order to realize the

required operands for node 6. To illustrate this, Figure 4(a) shows an equivalent

representation of the and-shl-shr operations of the original data-path. It can be

observed that node 0 can be duplicated in order to produce a pair of operands for node

6. The inputs to the duplicated and operations comprises of the shifted values of In1

and In2. It is evident from this representation that Cluster 1 requires 4 inputs (i.e.

In1shl, In2shl, In1shr, In2shr) instead of 2.

Given a cluster in the form of a directed graph),(EVCi , the pseudo code in Figure 5

computes the number of inputs of the cluster and returns the result as input_count.

The function identifies sub-trees in the cluster that are rooted at a shift operation or

the output node. For example in Figure 4(a), the root nodes of Cluster 1 are nodes 3,

4, and 6. The function first identifies all the root nodes in the cluster Ci (line 1 in

Figure 5) before finding the sub-tree members of the corresponding root nodes using

the reverse depth-first-search algorithm (line 4). A sub-tree can only have one shift

operation that must be a root node. Hence in Cluster 1, there are three sub-trees with

22

the following node members: {3, 0}, {4, 0}, and {6}. Each of these sub-trees is

evaluated independently and the variable input_count is incremented whenever a new

operand is detected in one of the node members (lines 5-6 of Figure 5). In the

example, two new operands will be detected for each of the sub-tree {3, 0} and {4,

0}. It is noteworthy that the approach discussed in this section can be easily adapted

for different values of K.

Figure 5: Pseudo code to compute number of inputs in a cluster

4.2. Cluster Selection

We have adopted the conflict graph approach described earlier to select a set of

clusters to cover the selected custom instructions. The objective function in (3) is used

to heuristically select clusters with large number of primitive operations, as we aim to

minimize the required number of clusters of the RFU, which will indirectly maximize

the hardware utilization.

4.3. Area Estimation

An area estimation model is used to rapidly evaluate the hardware area requirements

of the selected clusters. We have employed the area model that is presented in [50] for

a generic island-style FPGA architecture. The area of a RFU with K-input LUTs is

shown in (5), where K
LA and K

RA corresponds to the area incurred by the logic

elements and routing resources respectively.

K
R

K
L

K
RFU AAA += (5)

The area of the logic elements consisting of K-input LUTs is shown in (6), where nc

corresponds to the number of clusters that are computed in the Cluster Selection step.

23

Ab represents the area to store 1 bit in the LUT and the term K
bA 2⋅ corresponds to the

area required by the LUT as a K-LUT can store up to 2K bits of information. Af

represents the remaining area of the logic and routing resources within a logic

element.

()f
K

bc
K
L AAnA +⋅⋅⋅= 232 (6)

The area model of the routing architecture is shown in (7). The area of each routing

track must be considered in order to model the routing architecture area. Since, each

routing track requires at least one bit of information to control the opening and closing

of the programmable switch, the pitch of a routing track is approximated as the square

root of the area required by a single bit (i.e. bA) [50]. The routing channel width is

denoted as WK.

()2232 KbKb
K
Lc

K
R WAWAAnA ⋅+⋅⋅⋅⋅⋅= (7)

5. Experimental Results
We have evaluated the benefits of the proposed framework using sixteen benchmarks

from the MiBench embedded benchmark [51] and MediaBench benchmark [52] suite.

In this section, we provide experimental results for the three stages of the proposed

framework: 1) Pattern Library Generation, 2) Template Library Generation, and 3)

Hardware Generation. We will also report on the efficiency (performance/area) gain

of the proposed approach.

5.1. Pattern Library Generation

Table 1 shows the results obtained from the Pattern Library Generation stage. The

first two columns signify the corresponding domain and application names of the

sixteen applications. The remaining columns report the number of custom instruction

instances (derived from the pattern enumeration) and the number of unique patterns in

the pattern library (after pattern grouping) for different application sets. The results in

the third and forth columns are obtained using five domain-specific application sets

(i.e. automotive-industrial, image, network, security and telecommunications). In the

last two columns, results are obtained by using all sixteen applications as the

24

application set. We denote this application set as the generic application set.

Domain-Specific Generic
Domain Application CI

Inst.
Unique

Pat.
CI

Inst.
Unique

Pat.
Basicmath
Bitcount Automotive/

Industrial
Qsort

121 51

Cjpeg

Epic Image

Mpeg2

446 133

Crc32

Dijkstra Network

Patricia

36 26

BlowfishDec

Pegwit

RijndaelDec
Security

Sha

2156 102

AdpcmDec

AdpcmEnc Telecomm

FFT

51 24

2810 280

Table 1: Results of pattern library generation

It can be observed from Table 1 that most of the enumerated pattern instances are

duplicates and can be grouped. For example, only about 10% and 5% of the custom

instruction instances are unique in the generic and security application set

respectively. The significant reduction in the custom instruction patterns after pattern

grouping implies that custom instructions across various applications share common

patterns. While it has been previously shown that domain-specific applications exhibit

common dataflow sub-graph patterns [53], it is interesting to note that this property

exists across custom instructions found in generic applications as well. The unique

custom instruction patterns obtained from the pattern-grouping step are stored in the

pattern library.

5.2. Template Library Generation

Figure 6 shows the performance estimation results for domain-specific and generic

application sets.

25

Generic

0

5

10

15

20

25

30

35

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Templates

S
of

tw
ar

e
cy

cl
e

sa
vi

ng
s

(%
)

Adpcm-Dec
Adpcm-Enc
Basicmath
Bitcount
Blowfish-Dec
Cjpeg
CRC32
Dijkstra
Epic
FFT
Mpeg2
Patricia
Pegwit
Qsort
Rijndael-Dec
Sha
Average

Automotive-Industrial

0

5

10

15

20

25

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Templates

S
of

tw
ar

e
cy

cl
e

sa
vi

ng
s

(%
)

Basicmath
Bitcount
Qsort
Average

Network

0

5

10

15

20

25

30

35

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Templates

S
of

tw
ar

e
cy

cl
e

sa
vi

ng
s

(%
)

CRC32
Dijkstra
Patricia
Average

Image

0

2

4

6

8

10

12

14

16

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Templates

S
of

tw
ar

e
cy

cl
e

sa
vi

ng
s

(%
)

Cjpeg
Epic
Mpeg2
Average

Telecommunications

0

2

4

6

8

10

12

14

16

18

20

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Templates

So
ftw

ar
e

cy
cl

e
sa

vi
ng

s
(%

)

Adpcm-Dec
Adpcm-Enc
FFT
Average

Security

0

5

10

15

20

25

30

35

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Templates

S
of

tw
ar

e
cy

cl
e

sa
vi

ng
s

(%
)

Blowfish-Dec
Pegwit
Rijndael-Dec
Sha
Average

Figure 6: Performance estimation with varying number of templates

It is evident that increasing the number of templates for custom instruction selection

will not lead to any notable gain after a certain point for each of the application sets.

For example in the generic application set, selecting 60% of the original set of

templates (168 templates) leads to negligible degradation in the average percentage

software cycle savings for all sixteen applications. Similarly, selecting 30% (15

templates), 60% (80 templates), 70% (18 templates), 40% (41 templates) and 60% (14

templates) of the original set of templates in the automotive/industrial, image,

network, security, and telecommunications application sets respectively, do not lead

to significant degradation in the average percentage software cycle savings.

Specifically, when compared to the case where the full set of templates are used for

custom instruction selection, the average percentage software cycle savings difference

for the automotive/industrial, image, network, security, telecommunications, and

26

generic application sets are only 0.88%, 0.28%, 7.33%, 5.15%, 5.53%, and 2.92%

respectively. These observations imply that it is possible to reduce the number of

custom instructions for mapping onto the RFU without compromising heavily on the

performance gain.

0

20

40

60

80

100

120

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of templates (%)

Nu
m

be
r o

f c
us

to
m

 in
st

ru
ct

io
ns

Auto-Ind Image Network Security Telecom Generic

Figure 7: Number of selected custom instructions with varying number of templates

Figure 7 shows how the number of selected custom instruction varies with the number

of templates used in the custom instruction selection process. It can be observed that

the gradient of the plots are steeper for smaller number of templates and gradually

flattens when higher number of templates is used for custom instruction selection.

This implies that employing a reduced set of templates for custom instruction

selection can lead to reduction in the area utilization of the FPGA-based RFU without

compromising heavily on the performance gain.

5.3. Hardware Generation

Table 2 compares the hardware estimation with the synthesis results of equivalent

hand-crafted designs for 20 custom instructions from the benchmark applications. The

hand-crafted designs are realized using VHDL and synthesized with Xilinx ISE

Foundation Version 6.1.03i [42] that is targeted for area optimization. The target

FPGA device is the Xilinx Virtex-II 1000-bg575-4, which incorporates 4-input LUTs

in the logic elements. Information pertaining to the custom instructions being

evaluated (e.g. application source and size) are shown in columns 1 to 2.

27

For each custom instruction, we compare the number of logic elements obtained from

the Cluster Generation stage (column 5) with the number of 4-input LUTs reported in

the synthesis results (column 3). It can be observed that the automatic hardware

generation results have an average of only 7.88% more hardware resources than the

equivalent hand-crafted synthesized designs. These results are very encouraging as

the number of logic elements is directly estimated from the high-level primitive

operations and their dependences, without time-consuming hardware synthesis. It is

noteworthy that in this paper, the hardware estimation process assumes that each

cluster group requires 32 logic elements. In order to approximate the number of logic

elements in each cluster group, the hardware estimation process can take into account

the logic shift offsets and the effect of commonly used technology mapping

techniques.

 Synthesized Estimated

Application Nodes 4-input LUT Time
 (s)

Logic
Elements

Time
 (ms)

Basicmath 4 31 3 32 0.07
Bitcount 3 31 3 32 0.56
Bitcount 20 289 4 320 0.56
CRC32 5 30 3 32 0.19

Blowfish Dec 6 92 4 96 0.12
Blowfish Dec 6 96 4 96 0.12

Pegwit 5 125 3 128 2.76
Pegwit 18 152 6 160 2.76
Pegwit 3 60 3 64 2.76
Pegwit 9 161 4 160 2.76
Pegwit 5 90 4 96 2.76
Pegwit 6 48 3 96 2.76
Pegwit 7 97 3 96 2.76

Sha 3 96 4 96 0.15
Sha 8 96 5 96 0.15
Sha 4 32 3 32 0.15
Sha 10 64 4 64 0.15
Sha 9 96 4 96 0.15

Adpcm Enc 4 30 3 32 0.09
Adpcm Enc 3 32 3 32 0.09

Table 2: Comparing the hardware estimation results with synthesis results

The time taken for the hardware synthesis engine (column 4) and the average time to

estimate each custom instruction (column 6) is also shown. The time taken for the

estimation process is calculated as the average time to perform cluster enumeration

and selection for each custom instruction data-path in a particular application. The

synthesis and estimation process are both executed on a HP Workstation with two

28

2.66GHz processors and 2GB RAM. It is evident that the estimation process can be

achieved significantly faster than the time taken to synthesize the custom instructions,

hence facilitating rapid design exploration. It is noteworthy that the time required for

designing and compiling the custom instructions using the commercial design flow

have not been taken into account in column 4 of Table 2.

Based on (5), the estimated area of the RFU (in terms of µm2) that is incurred due to

the reduced set of templates that are chosen for custom instruction selection is shown

in Figure 8. We have used the values for the constants Ab and Af, and the average

values for WK that is provided in [54], where K = 4. The area of the RFU

corresponding to the selected templates (‘Reduced Templates’) in Figure 6 is

compared to the case when the full set of templates (‘Full Templates’) are used for

custom instruction selection.

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

Auto-Ind Image Network Security Telecom Generic

Domain

A
re

a

0

5

10

15

20

25

30

35

40

45

50

A
re

a
R

ed
uc

tio
n

(%
)

Reduced Templates Full Templates Area Reduction (%)

Figure 8: Estimated area when reduced set and full set of templates are used for

template selection

It is evident that selecting a smaller set of templates can significantly reduce the

number of required clusters to be implemented on the RFU. For example, compared

to the case when the full set of templates are employed for custom instruction

selection, the percentage reduction in the area when a reduced set of templates are

selected are 30%, 12.4%, 20%, 46.3%, 40.9%, and 16.5% for the

automotive/industrial, image, network, security, telecommunications, and generic

29

application sets respectively. In particular, employing a reduced set of templates for

template selection leads to an average area reduction of over 27%.

Finally, Table 3 reports on the efficiency that is obtained when the reduced set of

templates and the full set of templates are used for template selection. The efficiency

is calculated as shown in (8), where ESCS is the Effective Software Cycle Savings

which accounts for the hardware execution delay of the custom instructions pi

(TC(pi)), where i = 1, … , n, and is calculated as shown in (9). TC(pi) is obtained by

calculating the number of clusters in the critical path of the custom instructions. For

example, TC of the custom instruction in Figure 4(a) is 2. Note that we have assumed

that the delay of each cluster is equivalent to two software clock cycle executions.

This is a reasonable assumption as the FPGA logic can generally execute at a

significantly higher clock frequency than a commercially available soft processor core

which is implemented on the same fabric [55].

K
RFUA

ESCSEfficiency = (8)

∑
=

⋅−×=
n

i
iCiSWi pTpTpFESCS

1
))(2)(()((9)

Reduced Templates Full Templates Domain ESCS Area Efficiency ESCS Area Efficiency

Automotive-
Industrial

14664576 45182539.6 0.325 14814576 64546485.15 0.230

Image 1538018 364687641.1 0.004 1559449 416324829.2 0.004

Network 102859967 64546485.15 1.594 129603704 80683106.43 1.606

Security 19207719 142002267.3 0.135 22467162 264640589.1 0.085

Telecomm 5823638 41955215.34 0.139 6873517 71001133.66 0.097

Generic 146359636 635782878.68 0.230 176180091 761648524.7 0.231

Table 3: Comparing the efficiency when reduced set and full set of templates are used

for template selection

It can be observed in Table 3 that the efficiency of the proposed method is higher than

the case when the full set of templates is used in a number of application domains

(with comparable results in the remaining domains). In particular, the average

efficiency gain when a reduced set of templates is used is over 25%.

30

6. Conclusion

A design exploration framework for RISPs has been presented for the rapid selection

of a minimal set of profitable custom instruction candidates. Simulations reveal that

domain-specific applications share common custom instruction patterns, and hence

domain-specific instruction set customization can lead to area efficient solutions.

Experimental results for the generic, automotive/industrial, image, network, security

and telecommunications application sets, show that the number of candidates for

custom instruction selection can be significantly reduced by 30% to 70% with

marginal degradation in the resulting performance gain. A novel clustering strategy

for mapping the operations on the LUT based RFU is also proposed to estimate the

reconfigurable resources for realizing the selected custom instructions. It has been

shown that the runtime of the proposed estimation process is negligible when

compared to the time taken for hardware synthesis. Experiments reveal that the

estimated area costs are within 8% of those obtained using hardware synthesis.

Finally, investigations based on domain-specific application sets from the MiBench

and MediaBench benchmark suites show that the design exploration framework can

lead to an average area reduction of 27%, and an average efficiency gain of over 25%.

References
[1] ARC Configurable Processor. Available: http://www.arc.com/

[2] N. Dutt and K. Choi, "Configurable Processors for Embedded Computing", Computer, Vol. 36,

No. 1, January 2003, pp.120-123

[3] R.E. Gonzalez, "Xtensa: A Configurable and Extensible Processor", IEEE Micro, Vol. 20, No. 2,

March-April 2000, pp. 60-70

[4] J. Henkel, "Closing the SoC Design Gap", Computer, Vol. 36, No. 9, September 2003, pp. 119-

121

[5] N. Flaherty, "On the Chip or On the Fly", IEE Review, Vol. 50, No. 9, September 2004, pp. 48-

51

[6] F. Barat, R. Lauwereins and G. Deconinck, "Reconfigurable Instruction Set Processors from a

Hardware/Software Perspective", IEEE Transactions on Software Engineering, Vol. 28, No. 9,

September 2002, pp. 847-862

[7] Altera: NIOS II Processors. Available: http://www.altera.com/products/ip/processors/-nios2/ni2-

index.html

[8] Xilinx Platform FPGAs. Available: http://www.xilinx.com

[9] Video/Imaging Design Line, “Analysis: Stretch's Second-Gen Configurable Processor”, March

2007, Available: http://www.videsignline.com/howto/-videoprocessing/201311209

31

[10] I. Kuon and J. Rose, “Measuring the Gap between FPGAs and ASICs”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No. 2, February 2007, pp.

203-215

[11] P. Garcia, K. Compton, M. Schulte, E. Blem and W. Fu, “An Overview of Reconfigurable

Hardware in Embedded Systems”, EURASIP Journal on Embedded Systems, Vol. 2006, pp. 1–

19

[12] P. Lysaght and P.A. Subrahmanyam, "Guest Editors' Introduction: Advances in Configurable

Computing", IEEE Design & Test of Computers, Vol. 22, No. 2, March-April 2005, pp. 85-89

[13] W. Marx and V. Aggarwal, “FPGAs Are Everywhere – In Design, Test & Control”, NI

Developer Zone, June 2008. Available: http://zone.ni.com/devzone/cda/pub/p/id/401

[14] Y. Tanurhan, “Logic Suppliers Seek Ways to Embed FPGAs”, EE Times India, March 2001.

Available: http://www.eetindia.co.in/ART_8800387951_1800009_TA_7f011aab.HTM

[15] B. Zeidman, “The Future of Programmable Logic”, Embedded.com, 2003. Available:

http://www.embedded.com/columns/technicalinsights/15201141?_requestid=477944

[16] M. Glesner, T. Hollstein, L.S. Indrusiak, P. Zipf, T. Pionteck, M. Petrov, H. Zimmer and T.

Murgan, “Reconfigurable Platforms for Ubiquitous Computing”, Proceedings of the 1st

conference on Computing Frontiers, April 2004, pp. 377-389

[17] T.J. Todman, G.A. Constantinides, S.J.E Wilton, O. Mencer, W. Luk and P.Y.K. Cheung,

"Reconfigurable Computing: Architecture and Design Methods", IEE Proceedings on Computers

and Digital Techniques, Vol. 152, No. 2, March 2005, pp. 193-207

[18] R. Kastner, A. Kaplan, S.O. Memik and E. Bozorgzadeh, "Instruction Generation for Hybrid

Reconfigurable Systems", ACM Transactions on Design Automation of Embedded Systems, Vol.

7, No. 4, October 2002, pp. 605-627

[19] N.T. Clark, H. Zhong and S.A. Mahlke, "Automated Custom Instruction Generation for Domain-

Specific Processor Acceleration", IEEE Transactions on Computers, Vol. 54, No. 10, October

2005, pp. 1258-1270

[20] F. Sun, S. Ravi, A. Raghunathan and N.K. Jha, "Custom-Instruction Synthesis for Extensible-

Processor Platforms", IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 23, No. 2, February 2004, pp. 216-228

[21] L. Pozzi, K. Atasu and P. Ienne, "Exact and Approximate Algorithms for the Extension of

Embedded Processor Instruction Sets", IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 25, No. 7, July 2006, pp. 1209-1229

[22] P. Yu and T. Mitra, "Scalable Custom Instructions Identification for Instruction-Set Extensible

Processors", Proceedings of the International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, September 2004, pp. 69-78

[23] J. Cong, Y. Fan, G. Han and Z. Zhang, "Application-Specific Instruction Generation for

Configurable Processor Architectures", Proceedings of the ACM/SIGDA 12th International

Symposium on Field Programmable Gate Arrays, February 2004, pp. 183-189

32

[24] X. Chen, D.L. Maskell and Y. Sun, “Fast Identification of Custom Instructions for Extensible

Processors”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Vol. 26, No. 2, February 2007, pp. 359-368

[25] P. Yu and T. Mitra, "Characterizing Embedded Applications for Instruction-Set Extensible

Processors", Proceedings of the 41st IEEE/ACM on Design Automation Conference, June 2004,

pp. 723-728

[26] D. Chen and J. Cong, "DAOmap: A Depth-Optimal Area Optimization Mapping Algorithm for

FPGA Designs", IEEE International Conference on Computer-Aided Design, November 2004,

pp. 752-759

[27] J. Lin, D. Chen, and J. Cong, "Optimal Simultaneous Mapping and Clustering for FPGA Delay

Optimization", Proceedings of Design Automation Conference, July 2006

[28] A. Nayak, M. Haldar, A. Choudhary and P. Banerjee, “Accurate Area and Delay Estimators for

FPGAs”, Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,

March 2002, pp. 862-869

[29] P. Bjureus, M. Millberg and A. Jantsch, “FPGA Resource and Timing Estimation from

MATLAB Execution Traces”, Proceedings of the International Symposium on

Hardware/Software Codesign, May 2002, pp. 31-36

[30] C. Brandolese, W. Fornaciari and F. Salice, “An Area Estimation Methodology for FPGA Based

Designs at SystemC-Level”, Proceedings of the 41st Design Automation Conference, 2004, pp.

129-132

[31] D. Kulkarni, W.A. Najjar, R. Rinker and F. J. Kurdahi, “Compile-Time Area Estimation for

LUT-based FPGAs”, ACM Transactions on Design Automation of Electronic Systems, Vol. 11,

No. 1, January 2006, pp. 104-122

[32] S. Bilavarn, G. Gogniat, J.L. Philippe and L. Bossuet, “Design Space Pruning Through Early

Estimations of Area/Delay Tradeoffs for FPGA Implementations”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 10, October 2006, pp.

1950-1968

[33] H.P. Huynh, J.E. Sim and T. Mitra, “An Efficient Framework for Dynamic Reconfiguration of

Instruction-Set Customization”, Proceedings of the International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, September 2007, pp. 135-144

[34] L. Bauer, M. Shafique, S. Kramer and J. Henkel, "RISPP: Rotating Instruction Set Processing

Platform", ACM/IEEE/EDA Design Automation Conference, June 2007, pp. 791-796

[35] L. Bauer, M. Shafique and J. Henkel, “Efficient Resource Utilization for an Extensible Processor

through Dynamic Instruction Set Adaptation”, 5th Workshop on Application Specific Processors,

October 2007, pp. 39-46

[36] M.J. Wirthlin and B.L. Hutchings, "A Dynamic Instruction Set Computer", Proceedings of the

IEEE Symposium on FPGAs for Custom Computing Machines, April 1995, pp. 99-107

[37] N.T. Clark, J. Blome, M. Chu, S.A. Mahlke, Stuart Biles and Krisztian Flautner, "An

Architecture Framework for Transparent Instruction Set Customization in Embedded

33

Processors", Proceedings of the 32nd Annual International Symposium on Computer

Architecture, June 2005

[38] S. Yehia, N.T. Clark, S.A. Mahlke and K. Flautner, "Exploring the design space of LUT-based

transparent accelerators", Proceedings of the International Conference on Compilers,

Architectures and Synthesis for Embedded Systems, September 2005, pp. 11-21

[39] J. Brown and M. Epalza, “Automatically Identifying and Creating Accelerators Directly from C

Code”, Xcell Journal, Issue 58, 2006. Available:

http://www.xilinx.com/publications/xcellonline/xcell_58/index.htm#Letter

[40] Xilinx Data Sheet, "Virtex 2.5V FPGA Detailed Functional Description", DS003-2, Version

2.8.1, December 2002

[41] K. Compton and S. Hauck, "Reconfigurable Computing: A Survey of Systems and Software",

ACM Computing Surveys, Vol. 34, No. 2, June 2002, pp. 171- 210

[42] Xilinx ISE Foundation. Available: http://www.xilinx.com/ise/logic_design_prod/ foundation.htm

[43] Trimaran: An Infrastructure for Research in Instruction-Level Parallelism. Available:

http://www.trimaran.org

[44] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne and N. Dutt, "Introduction of Local

Memory Elements in Instruction Set Extensions", Proceedings of the 41st Annual IEEE/ACM

Design Automation Conference, June 2004, pp. 729-734

[45] L. Pozzi and P. Ienne, “Exploiting Pipelining to Relax Register-File Port Constraints of

Instruction-Set Extensions”, Proceedings of the International Conference on Compilers,

Architectures and Synthesis for Embedded Systems, 2005, pp. 2-10

[46] L.P. Cordella, P. Foggia, C. Sansone and M. Vento, "Performance Evaluation of the VF Graph

Matching Algorithm", Proceedings of the International Conference on Image Analysis and

Processing, September 1999, pp. 1172-1177

[47] Y. Guo, G.J.M. Smit, H. Broersma and P.M. Heysters, "A Graph Covering Algorithm for a

Coarse Grain Reconfigurable System", Proceedings of the ACM SIGPLAN Conference on

Language, Compiler, and Tool for Embedded Systems, June 2003, pp. 199-208

[48] Xilinx User-Guide, “Virtex-5 FPGA User-Guide”, UG190, Version 3.2, December 2007

[49] Xilinx Application Note, "Design Tips for HDL Implementation of Arithmetic Functions",

XAPP215, Version 1.0, June 2000

[50] H. Gao, Y. Yang, X. Ma and G. Dong, “Analysis of the Effect of LUT Size on FPGA Area and

Delay Using Theoretical Derivations”, Proceedings of the Sixth International Symposium on

Quality of Electronic Design, March 2005, pp. 370-374

[51] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge and R.B. Brown, "MiBench: A

Free, Commercially Representative Embedded Benchmark Suite", IEEE International Workshop

on Workload Characterization, December 2001, pp. 3-14

[52] C. Lee, M. Potkonjak and W.H. Mangione-Smith, "MediaBench: A Tool for Evaluating and

Synthesizing Multimedia and Communications Systems", Proceedings of the 13th Annual

IEEE/ACM International Symposium on Microarchitecture, December 1997, pp. 330-335

34

[53] P.G. Sassone and D.S. Wills, “On the Extraction and Analysis of Prevalent Dataflow Patterns”,

Proceedings of the Workshop on Workload Characterization, 2004

[54] J. Rose, R.J. Francis, D. Lewis and P. Chow, “Architecture of Field Programmable Gate Arrays:

The Effect of Logic Block Functionality on Area Efficiency”, IEEE Journal of Solid-State

Circuits, Vol. 25, No. 5, October 1990, pp. 1217-1225

[55] R. Lysecky and F. Vahid, “A Study of the Speedups and Competitiveness of FPGA Soft

Processor Cores using Dynamic Hardware/Software Partitioning”, Proceedings of the

Conference on Design, Automation and Test in Europe, 2005, pp. 18-23

