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Abstract 
RISPs (Reconfigurable Instruction Set Processors) are increasingly becoming popular 

as they can be customized to meet design constraints. However, existing instruction 

set customization methodologies do not lend well for mapping custom instructions on 

to commercial FPGA architectures. In this paper, we propose a design exploration 

framework that provides for rapid identification of a reduced set of profitable custom 

instructions and their area costs on commercial architectures without the need for time 

consuming hardware synthesis process. A novel clustering strategy is used to estimate 

the utilization of the LUT (Look-Up Table) based FPGAs for the chosen custom 

instructions. Our investigations show that the area costs computations using the 

proposed hardware estimation technique on 20 custom instructions are shown to be 

within 8% of those obtained using hardware synthesis. A systematic approach has 

been adopted to select the most profitable custom instruction candidates. Our 

investigations show that this leads to notable reduction in the number of custom 

instructions with only marginal degradation in performance. Simulations based on 

domain-specific application sets from the MiBench and MediaBench benchmark 

suites show that on average, more than 25% area utilization efficiency 

(performance/area) can be achieved with the proposed technique. 

 

Keywords: Area estimation, design exploration, FPGA, look-up table, reconfigurable 

logic 
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1. Introduction 
Future embedded systems will require a higher degree of customization to manage the 

growing complexity of the applications. At the same time, they must continue to 

facilitate a high degree of flexibility to meet the shrinking TTM (Time-To-Market) 

window. In recent years, configurable processors [1]-[4] have emerged to offer the 

possibility of extending the instruction set for a specific application by introducing 

custom functional units within the processor architecture. This provides an efficient 

mechanism to meet the growing performance and TTM demands. While configurable 

processors have been proven successful for features sizes below 90nm, rising 

developing costs for ASIC designs tend to favor reconfigurable approaches [5].  

 

A RISP (Reconfigurable Instruction Set Processor) consists of a microprocessor core 

that is tightly coupled with a RFU (Reconfigurable Functional Unit) [6]. 

Commercially available reconfigurable processors include the Altera Nios II [7], 

Xilinx MicroBlaze [8], and Stretch [9] processors. As opposed to loosely couple 

schemes where data is communicated between the microprocessor and RFU through a 

shared memory, the tightly coupled scheme employs the internal register files for data 

transfer. Similar to configurable processors, the RISP facilitates critical parts of the 

application to be implemented in hardware using a specialized instruction set.  

 

It has been shown that circuits implemented on an FPGA (Field Programmable Gate 

Array) are about 3 to 5 times slower, and about 35 times larger than the equivalent 

standard-cell implementation [10]. However, FPGAs are becoming more popular than 

their ASIC counterparts as the increasing NRE costs of ASIC begin to outweigh the 

per-unit-cost of FPGAs for high-volume applications [11]. This is corroborated by the 

increasing adoption of re-configurable technologies such as FPGAs in high-volume 

designs [12]. In addition, recent FPGA architectures are often viewed as SoC 

(System-On-a-Chip) designs as they incorporate a large range of IP (Intellectual 

Property) cores. It has been projected that by 2010, more than 40% of all FPGA 

designs will contain a microprocessor [13]. Logic suppliers are also driven towards 

embedding FPGA cores in SoC designs to address TTM and mitigate design risk 

issues [14]. 
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Hence, it is envisioned that RISPs will play an important role in future embedded SoC 

platforms due to its promising ability to overcome the technological and market 

challenges [15]. Even though RISPs has lower performance, area and power 

efficiency than its configurable counterparts [1][3], the design flexibility of RISPs in 

the presence of reconfigurable logic leads to off-the-shelf products that can be 

customized for each application. This eliminates the need for ASIC tape-out for each 

design, thereby eliminating the need to manage exorbitant NRE (Non-Recurring 

Engineering) costs of configurable processors. This is increasingly preferred by 

designers who develop products for uncertain markets and shorter product life cycles. 

For example, the design flexibility of reconfigurable logic is especially attractive for 

applications in ubiquitous computing with evolving standards, which require frequent 

functionality updates [16]. The major challenges to increase the proliferation of RISPs 

lie in the development of supporting compilation and computer-aided design tools that 

enable rapid design exploration and efficient mapping of applications on such 

platforms [17].  

 

This paper presents a framework that enables rapid design exploration for RISPs, 

which incorporate reconfigurable structures that are similar to commercially available 

technologies (i.e. LUT-based FPGAs with coarse-grained arithmetic units). In 

particular, the proposed framework can effectively select custom instructions that 

maximize the area utilization of the reconfigurable space without compromising on 

the performance gain. We envisage that the reconfigurable space available for custom 

instructions will be limited in future embedded SoC designs, particularly due to 

tighter design constraints of embedded systems. Hence, we believe that strategies for 

reducing the area utilization of FPGAs will be an important step for satisfying the 

design constraints of systems consisting of reconfigurable space. The proposed 

framework can also be used for determining the optimal size of FPGAs to be 

embedded in cost and power sensitive SoC platforms.  

 

The remainder of this paper is organized as follows: In the following section, we 

discuss some existing work and state the main contributions of this paper. Section 2 

describes the architecture model of the RFU. In Section 3 and Section 4, we describe 

the main stages of the proposed framework. Section 5 provides experimental results 

for a set of application domains to demonstrate that considerable area savings can be 
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achieved using the proposed framework with marginal loss in performance gain. 

Finally we conclude in Section 6. 

 

1.1. Related Work 

Instruction set customization is defined as a process to automatically generate custom 

instructions from an application in order to meet certain design objectives. Existing 

work in instruction set customization generally consists of two steps: 1) Custom 

instruction identification and 2) Custom instruction selection. 

 

Custom instruction identification can be loosely described as a process of detecting a 

group of operations or sub-graphs from the application DFG (Dataflow Graph) that is 

to be collapsed into a single custom instruction to maximize some metric (typically 

performance). This step generates a set of custom instruction candidates, which will 

be evaluated for custom instruction implementation. In [18], an approach that 

combines template matching and generation have been proposed to identify sub-

graphs based on recurring patterns. Other approaches [19][20] rely on heuristics to 

identify good custom instruction candidates while discarding less promising ones. The 

pattern enumeration method proposed in [21] employs a binary tree search approach 

to identify all possible custom instruction candidates in a DFG. In order to speed up 

the search process, unexplored sub-graphs are pruned from the search space if they 

violate a certain set of constraints (i.e. number of input-output ports, convexity, 

operation type, etc.). Other pattern enumeration approaches for custom instruction 

identification have been presented in [22][23][24].  

 

Custom instruction selection evaluates the custom instruction candidates in terms of 

their performance, area or power, and selects a subset of them that meets the design 

constraints. In [18], a covering algorithm was presented to select a minimal set of 

templates that maximizes the number of covered nodes. The templates are custom 

instruction candidates that are derived from the custom instruction identification 

process. The authors analyzed the trade-off between the number of templates and the 

percentage of node coverage. It was observed that increasing the number of templates 

in the covering algorithm will lead to notable increase in the number of covered nodes 

only up to a certain point. After which, employing more templates in the covering 

algorithm will not significantly impact the number of nodes covered. This implies that 
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selecting larger number of custom instruction candidates may not necessary lead to 

better performance gain. Although this is an interesting observation, the work in [18] 

however, have not studied the effect on the actual hardware resources that is incurred 

when varying number of templates are selected.  

 

In order to facilitate effective custom instruction selection, rapid design exploration 

must be undertaken without delaying the short TTM requirements for embedded 

systems. Rapid design exploration can be achieved with the presence of a fast and 

accurate method to estimate the performance-cost mapping of custom instructions on 

hardware. While previously reported design flows for instruction set customization 

have focused on efficient algorithms for custom instruction identification and 

selection, they do not incorporate an effective technique for area-time estimation that 

takes into account the architectural constraints of commercial FPGAs. For example, 

the estimation process in [19][21][25] is obtained by pre-computing the area-time of 

the custom instruction operations using standard-cell design tools. The area and delay 

of a custom instruction is then derived by summing up the pre-computed area-time 

values of the corresponding operations. In a similar manner, the delay estimation 

strategy in [23] predicts the relative speedup of the custom instructions on FPGA by 

utilizing a rough approximation of the throughput of each instruction. While these 

approaches may provide reasonable estimations for standard-cell implementations, 

they do not lend themselves well towards FPGA estimations. This is due to the fact 

that these methods do not take into consideration FPGA optimization strategies that 

maximize the resource utilization of the programmable logic structures. Other 

reported design flows (e.g. [20]) incorporates a hardware synthesis flow to facilitate 

the selection of custom instruction candidates that maximizes performance under a 

given area constraint.  

 

In this paper, we incorporate high-level FPGA area estimation in the design flow to 

facilitate rapid design exploration for RISPs. The estimation is directly performed on 

the high-level algorithmic representations of an application (e.g. Data-Control Flow 

Graphs, C-language, Matlab, etc.) without the need for time consuming hardware 

design entry and implementation. It is worth mentioning that high level estimation 

techniques differ from existing technology mapping approaches for area-time FPGA 
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optimizations (e.g. [26][27]) as the latter relies on the availability of gate-level 

representations of the applications.  

The work in [28] estimates the FPGA data-path area by using a formula, which is a 

function of the operator and register properties that are derived from the RTL code 

(generated from MATLAB). The number of CLBs (Configurable Logic Blocks) that 

corresponds to the operators is obtained by pre-characterizing the area that is 

consumed by each operator type and size. The area estimation error is within 16% of 

those reported by the commercial FPGA implementation tools. The work in [29] 

derives area-time estimation from a DFG that is generated from an execution trace 

(obtained from simulating a MATLAB program), which contains information on the 

type and frequency of the operations. A FPGA performance model is used to estimate 

the area-time of the operations in the DFG. The performance model incorporates 

information of the operations which includes the characterized FPGA area-time 

measures. Accuracy of the estimation is within 10% of actual implementations.  

 

The authors in [30] presented a two-level model to estimate the area of System-C 

designs. The high-level model analyzes the System-C description and estimates the 

number of intermediate variables. The low-level model substitutes these high-level 

variables into a set of equations to estimate the number of LUTs (Look-Up Tables) 

and FFs (Flip Flops). The proposed models must be re-tuned for a new set of 

benchmarks, when tool changes and for different target devices. For the applications 

and models considered, the authors reported an average error of about 17% for the 

LUT estimation.  

 

The work presented in [31] estimates the FPGA data-path area (in terms of LUTs) 

from a DFG that is generated from high-level SA-C codes. The estimation method 

relies on a formula that is derived from characterizing the resource consumption of all 

DFG nodes. In order to take into account some synthesis optimizations in the 

estimation for improved accuracy, some heuristics are employed on patterns that are 

frequently optimized by the synthesis tool. However the work does not consider more 

complex optimizations that aim to maximize the FPGA resource utilization. The area 

estimation error is within 5%.  
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A recently reported work in [32] performs area-delay estimations of the RTL solution 

using a two-step approach. In the first step, a structural exploration is performed to 

obtain several RTL solutions. In the second step, the area-time estimation of mapping 

the RTL solutions is undertaken. The physical mapping estimation relies on a FPGA 

characterization file for a target device. The information of the FPGA characterization 

file is obtained from the data-sheet of the target device, and from synthesis of basic 

operators. Experimental results performed on FPGA devices from different vendors 

reported an average area estimation error of 18%. 

 

Recently, run-time reconfiguration has been investigated for cost effective realizations 

on FPGA based RISPs [33]-[35]. These works have demonstrated the benefits of 

runtime reconfiguration on the JPEG and H.264 encoder/decoder. The feasibility of 

runtime reconfiguration on RISPs depend largely on the type of application and the 

ability of the compiler to extract custom instructions that can mitigate the high 

reconfiguration overhead of existing FPGA architectures. For example, the DISC 

(Dynamic Instruction Set Computer) processor proposed in [36] requires a 

reconfiguration time that is projected to contribute up to 16% of an application’s total 

execution time. The Stretch S6000 processor requires 20 µs to change an instruction 

on their proprietary programmable logic [9]. Partial reconfiguration on the Xilinx 

Virtex FPGA is accomplished in the order of milliseconds [35]. This high 

reconfiguration overhead could suppress the benefits of dynamically reusing the 

FPGA hardware resources, if the reconfiguration overhead cannot be compensated by 

the speedup obtained from the acceleration of custom instructions.  

 

1.2. Main Contributions 

This paper presents a rapid design exploration framework to select custom 

instructions for RISPs. Unlike previously reported approaches that are targeted 

towards the eventual porting of a configurable processor (e.g. Xtensa processor [20]) 

with custom instructions to ASIC, our approach targets commercial fine grained 

reconfigurable architectures (i.e. Xilinx). We believe that appropriate design 

methodologies will pave the way for the emergence of off-the-shelf processors that 

consist of fine grained FPGA architectures to facilitate custom instruction 

acceleration. As opposed to the methods in [37][38], the proposed techniques targets 

reconfigurable structures that are similar to commercially available technologies (i.e. 
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LUT-based FPGAs with coarse-grained arithmetic units), and hence they can be more 

readily integrated with existing hardware synthesis tools. The contributions in this 

work include the following: 

1. We will show that while a set of domain specific applications can exhibit large 

number of custom instruction instances, only a fraction of it is required for 

evaluation in the custom instruction selection process. Although the results in this 

paper are based on domain-specific application sets, the framework can also be 

adopted for application-centric solutions.  

2. In order to facilitate rapid design exploration, a novel clustering strategy is 

proposed to estimate the area utilization of the RFU without the need for lengthy 

hardware synthesis such as that required in [20]. In contrast to existing high-level 

estimation methods [28]-[32], the proposed technique takes into account the 

FPGA architectural constraints and synthesis optimizations for maximizing the 

utilization of the FPGA resources. It also does not rely on a pre-characterization 

step, which limits the scope of representing all possible combinations of the 

design under examination. In addition, unlike the methods in [28]-[31], the 

proposed area estimation strategy is performed on the intermediate representation 

of ANSI C applications, which are commonly employed in embedded 

applications. It is noteworthy that the proposed strategy are targeted towards state-

of-the-art FPGA architectures (e.g. the Xilinx Virtex devices), and can be easily 

extended for newer and future FPGA devices that are likely to incorporate similar 

programmable logic elements. 

3. The rapid estimation strategy enables the use of a simple approach for selecting a 

reduced set of candidates that will lead to high area-time efficiency. When 

compared to existing commercial tools (e.g. Mimosys Clarity [39]) that are 

capable of automatically identifying only a single performance-optimal solution 

set, the proposed framework facilitates the exploration of the design space for 

selecting custom instructions that meets the area-time constraints of the 

application. We show that the proposed approach can achieve a significant area 

reduction of over 27% with an efficiency (performance/area) gain of over 25% for 

a wide range of applications.  
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2. Target Architecture Model 
The target architecture model of a RISP is shown in Figure 1(a), which is a four-wide 

VLIW (Very Long Instruction Word) architecture that has been extended with a RFU 

for implementing custom instructions. The RFU obtains the input data from the 

register file, and outputs the results to the interconnection network, which facilitate 

the sharing of register files between the functional units and custom logic. 

 

Figure 1(b) illustrates the proposed FPGA-based RFU, which consists of a 2D array 

of programmable logic elements that are interconnected by the switches and routing 

bus. Each logic element is a simplified version of a logic element that is found in the 

commercially available Xilinx FPGA devices [40]. As illustrated in Figure 1(c), each 

logic element is composed of a K-input LUT (K-LUT) and fast carry-logic (K is 4 in 

the example). The fine-grained programmable LUTs allow any function of up to K 

inputs to be implemented, providing for generic logic realization. The fast carry-logic 

aims to speed up carry-based computations, such as addition, parity, etc. [41]. The 

logic elements can be organized in groups of 32 to implement a sequence of 32-bit 

wide operations, which could comprise of logical, shift and addition/subtraction 

operations, with up to K operands. 

 

 

Figure 1: RISP model 
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Increasingly, commercial FPGAs are incorporating coarse-grained functional blocks 

to significantly improve the density, speed and power of the device. For example, the 

Xilinx Virtex device contains embedded 18x18-bit multiplier units. Although not 

shown in Figure 1, the RFU can also incorporate 32-bit CGAUs (Coarse-Grained 

Arithmetic Units) to facilitate high-speed complex arithmetic operations such as 

multiplication and division that cannot be efficiently mapped onto the fine-grained 

logic blocks. 

 

In the following section, we will describe a methodology to explore the area-time 

trade-offs of the FPGA-based RFU in Figure 1. Given a set of applications, the 

proposed framework in the following section can rapidly estimate the number of logic 

elements and critical path delays to realize the custom instructions on the RFU. This 

enables one to quickly decide on a suitable RISP for a given problem, or determine a 

new set of custom instructions that meet the area-time constraints. 

 

3. Design Exploration Framework 
The proposed framework in Figure 2 consists of three stages: 1) Pattern Library 

Generation, 2) Template Library Generation, and 3) Hardware Generation.  

 

In the Pattern Library Generation stage, a pattern enumeration method is combined 

with graph isomorphism to identify unique custom instruction instances from a set of 

embedded applications. Application profiling is also performed to compute the 

frequency of occurrences of the custom instruction instances bases on an input data-

set. This is a one-time effort that is required for the second stage of the framework to 

select a set of templates from the custom instruction instances based on some user-

specified criteria. These templates form a set of potential custom instruction 

candidates to be mapped on the RFU. In the Template Library Generation stage, the 

effects of the number of templates used on the potential performance gain are rapidly 

explored. This performance estimation is made possible through a pattern matching 

and selection process to identify a set of custom instructions (from the selected 

templates) based on the runtime application characteristics obtained from application 

profiling. 
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Figure 2: Overview of framework 

 

In the Hardware Generation Stage, a cluster enumeration process for a given K value 

is performed to identify all the cluster instances from the selected custom instructions. 

Each cluster comprises of a custom instruction data-path that can be mapped onto a 

group of 32 LUTs or a CGAU. A heuristic based approach is then employed to select 

a set of clusters that aim to minimize the reconfigurable resources. An area estimation 

model is used to evaluate the hardware requirements of the selected clusters when 

they are realized on the RFU. If the selected clusters do not meet the constraints of the 

system, a new set of templates is then obtained and the design exploration repeats 

until the constraints are met. It is noteworthy that the design exploration process is 

performed without actual hardware synthesis. Finally, the hardware configurations are 

generated using FPGA synthesis tools. 

 

In the following sections, we will describe the steps in the framework based on the 

example in Figure 3. 
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Figure 3: Example of instruction set customization with the proposed framework 
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3.1. Pattern Library Generation 

In the first stage of the framework, a one-time effort is required to construct a pattern 

library that consists of a set of unique custom instruction patterns. Pattern Library 

Generation is divided into two steps: 1) Pattern enumeration, and 2) Pattern grouping. 

 

3.1.1. Pattern Enumeration 

The objective of this step is to enumerate the custom instruction pattern instances 

from the application’s DFG. For example Figure 3(a) shows a DFG and the 

corresponding custom instruction pattern instances (P1, P2, …, P6). Each of the 

pattern instances is a sub-graph of the DFG that satisfies a set of constraints that have 

been imposed in the pattern enumeration algorithm. Note that for simplicity, we have 

only shown six enumerated pattern instances in this example. The pattern instances 

are stored in the pattern library (Figure 3(b)) and their frequency of occurrences based 

on an input data-set is obtained from application profiling.  

 

We have adopted the pattern enumeration algorithm in [21] to identify all the custom 

instruction pattern instances from the given application set. As mentioned earlier, the 

method in [21] employs a binary tree search approach that prunes unexplored sub-

graphs from the search space if they violate a certain set of constraints. We have used 

the Trimaran [43] IR (Intermediate Representation) for the enumeration process. In 

order to avoid false dependencies within the DFG, the IR is generated prior to register 

allocation. For the purpose of this study, we have imposed the following constraints 

on the custom instructions to increase the efficiency of the identification process: 

1. Only integer operations are allowed in the custom instruction instance. Including 

memory accesses in custom instructions can lead to non-deterministic latencies 

and increased complexity in the RFU [44]. In addition, custom instructions with 

floating-point operations often do not lead to notable speedup [25]. 

2. Each custom instruction instance must be a connected sub-graph as we assume the 

parallelism in custom instructions associated with disconnected sub-graphs are not 

exploited in the target architecture. 

3. Maximum number of input ports is 5 and maximum number of output ports is 2. 

Previous work [25] has shown that input-output ports more than this range results 

in little performance gain. It is noteworthy that even if the actual number of input-

output ports of the RFU is lesser than the imposed constraints, existing techniques 
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that exploits pipelining and multi-cycle register file access can be employed to 

efficiently map the custom instructions on the RFU [45]. For simplicity, we 

assume that pipelining and multi-cycle register file accesses are not supported in 

the target architecture. 

4. Only convex sub-graphs are allowed in the custom instructions instance to ensure 

a feasible schedule exists when the sub-graph is collapsed into a custom 

instruction [21]. 

5. An operation that feeds an input to the custom instruction instance must execute 

before the first operation in that instance, to avoid dependency violation when the 

instance is realized as a custom instruction. 

 

In the subsequent sections, we will describe efficient techniques for selecting custom 

instructions from the set of enumerated custom instruction instances. It is worth 

mentioning that more recent methods for pattern enumeration (e.g. [24]) can be 

readily incorporated into the proposed framework in order to accelerate the custom 

instruction identification process. 

 

3.1.2. Pattern Grouping 

The custom instruction pattern instances are subjected to pattern grouping, whereby 

identical patterns that occur in different basic blocks and applications are grouped to 

create a unique set of custom instruction patterns. Patterns are considered identical if 

they have the same internal sub-graphs, without considering their input and output 

operands. We have used the graph isomorphism method in the vflib graph-matching 

library [46] for the pattern grouping process. Graph isomorphism is performed for 

each pattern instance in the pattern library with the rest of the pattern instances. For 

example, in Figure 3(b), pattern instances P5 and P6 are isomorphic, and hence they 

are grouped. The unique custom instruction patterns are stored in the pattern library to 

be used for subsequent stages of the framework. 

 

The pattern enumeration, pattern grouping and application profiling process in our 

framework needs to be performed only once on a set of applications.  
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3.2. Template Library Generation 

The contents of the pattern library form an initial set of templates, where a template 

refers to an instance of a computational pattern with repeated occurrence [18]. This 

initial set of templates is first stored in the template library. Design exploration is then 

performed to identify a reduced set of templates, which will be evaluated in the 

custom instruction selection process. Although it is desirable to limit the number of 

templates to reduce the hardware costs, we need to ensure that the resulting 

performance gain is not heavily compromised. As such, we employ a pattern 

matching and selection approach to estimate the performance gain when varying 

number of templates is used. The main tasks of the Template Library Generation stage 

is 1) Template selection, 2) Pattern matching and selection, and 3) Performance 

estimation. 

 

3.2.1. Template Selection 

We employ a heuristic approach for template selection, which accounts for the 

performance gain and area utilization of the custom instruction in hardware. Each 

pattern p in the pattern library is assigned a gain as shown in (1), where the speedup 

obtained by mapping p on hardware is calculated as shown in (2). TSW(p) denotes the 

number of clock cycles taken for the custom instruction p to run on a processor. 

THW(p) denotes the number of clock cycles taken for the custom instruction p in 

hardware, and we estimate this by the length of the critical path in the custom 

instruction sub-graph. For example, THW(p) = 5 for custom instruction sub-graph p if 

the number of operations in the critical path is five. A DFS (Depth First Search) 

algorithm is employed to compute the length of the critical paths of each custom 

instruction sub-graph. Pattern size(p) denotes the size of the custom instruction p and 

is estimated by the number of primitive operations of p. If we assume that each 

operation for the custom instruction p takes 1 software clock cycle, then TSW(p) = 

Pattern size(p), and hence Gain(p) = 1/THW(p).  

  

)(
)()(
psizePattern

pSpeeduppGain =   (1) 

)(
)()(

pT
pTpSpeedup

HW

SW=  (2) 
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The templates in the template library are then sorted in decreasing gain and varying 

range of templates (each range includes the templates with highest gain) is iteratively 

selected for performance evaluation. In the iteration example in Figure 3(c), five 

templates (T1, T2, …, T5) that correspond to patterns (P1, P2, …, P6) are selected for 

evaluation. Based on the performance estimation results, a range of templates that 

lead to insignificant performance degradation (compared to the case when all the 

templates are used for performance evaluation) will be selected and stored in the 

template library. The performance estimation is facilitated by pattern matching and 

selection. 

 

3.2.2. Pattern Matching 

The problem of pattern matching can be described as follows: Given an application 

DFG that is represented as a directed labeled graph ),( EVGd  and a set of templates in 

the template library, where each template is a directed graph ),( EVTi , find every sub-

graph of Gd that is isomorphic to Ti. This problem is essentially equivalent to the sub-

graph isomorphism problem, which is simplified due to the directed edges. We have 

used the vflib graph-matching library [46] to identify all the pattern matches in the 

application DFG. 

 

3.2.3. Pattern Selection 

We have adopted the technique presented in [47] for pattern selection, which is based 

on the conflict graph approach. A conflict graph is an undirected graph ),( EVGu = , 

where each vertex Vv∈ is a match that is a member of the template set associated 

with Ti for ti ≤≤1  and t is the number of templates in the template library with the 

highest gain as described in (1). We denote the template set associated with Ti as Si. 

An edge Ee∈  between two matches vx and vy signify that the matches have one or 

more nodes in common. The number of nodes in a match vx is denoted as size(vx).  

 

The algorithm first constructs a conflict graph from the template matches, and then 

iteratively computes the MIS (Maximum Independent Set) of each template set to 

select the custom instructions. The MIS of template set Si, denoted as MISi is defined 

as the largest subset of vertices in Si that are mutually non-adjacent. The adjacent 

matches of the MIS within each template set are temporarily removed.   
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In order to facilitate custom instruction selection, an objective function w(MISi) is 

computed in each iteration. We used the objective function in (3), where ix Sv ∈ , to 

give preference to the selection of larger matches. The algorithm proceeds to select 

MISi with the largest objective function and the matches corresponding to the selected 

MIS are chosen as custom instructions. These matches and their adjacent neighbors 

are then permanently removed from the conflict graph. The rest of the matches are 

restored and the algorithm repeats until the conflict graph is empty. 

 

)()( xi vsizeMSIw =   (3) 

 

Figure 3(d) shows an example of a conflict graph and the patterns P4 and P6 are 

selected as custom instructions. It is worth mentioning that the conflict graph needs 

only to be built once using the full range of templates in the template library. In the 

subsequent iterations, where a reduced set of templates are used for pattern matching 

and selection, the conflict graph can be easily modified by temporarily removing the 

irrelevant nodes/edges.  

 

3.2.4. Performance Evaluation 

The estimated performance based on the selected custom instructions is calculated for 

varying number of templates used in pattern matching and selection. The performance 

estimation is reported in terms of percentage of SCS (Software Cycle Savings) for 

application A, which is computed as shown in (4), where pi for i = 1 to n, represent the 

n custom instructions selected for the application A, F(pi) is the execution frequency 

of the custom instruction pi in application A, and TSW(A) denotes the number of clock 

cycles of application A. The values of F(pi) and TSW(A) are obtained from application 

profiling. 
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4. Hardware Generation 
This stage incorporates a method to estimate the area costs and critical path delays of 

the selected custom instructions in the template library when they are realized on the 

FPGA-based RFU.  

 

The hardware estimation process consists of the following steps 1) Cluster 

enumeration, 2) Cluster selection, and 3) Area Estimation. Steps 1) and 2) are 

illustrated in Figure 3, where Figure 3(e) shows an example custom instruction data-

path. The cluster enumeration process decomposes the data-path into a list of clusters 

instances, where each instance represents a connected sub-graph that can be realized 

with a single K-LUT based logic element or a CGAU. Since the data width of the 

custom instruction data-path is 32-bits, each cluster can be essentially mapped to a set 

of 32 logic elements with the same configuration. As shown in Figure 3(f), there are 

32 enumerated cluster instances for K = 4. A set of clusters is then selected to 

effectively cover the original data-path in order to meet a certain criteria. For example 

in Figure 3(g), clusters 1 and 20 are selected from the enumerated set such that the 

number of clusters required to cover the data-path is minimized. In this example, two 

4-input LUTs will be required to realize the data-path in Figure 3(e). An area 

estimation model is then used to evaluate the hardware requirements for 

implementing the selected clusters on the RFU. 

 

The steps discussed above facilitate rapid design exploration to identify a suitable 

RFU or to select a new set of templates with different selection criteria. The hardware 

estimation process does not require actual hardware synthesis as it directly maps the 

high-level operations of the custom instruction data-paths onto the FPGA. The high-

level mapping is based on certain rule-sets that take into account the size of the LUT 

for mapping logical and relational operations, and the carry-logic architecture for 

mapping addition/subtraction operations. The validity of the proposed rules for the 

correct mapping of each cluster to a single logic element has been verified by 

implementing the clusters in VHDL and synthesizing them Xilinx ISE Foundation 

Version 6.1.03i [42].  
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It is worth mentioning that the proposed approaches in this paper are targeted towards 

FPGAs that consist of logic elements with LUT of any arbitrary input K and a carry-

logic as shown in Figure 1(c).  Hence, although the experiments in this paper is based 

on FPGA devices which consist of logic elements with 4-input LUT (similar to Xilinx 

Virtex-2 and Virtex-4 devices), the proposed approaches can be easily extended for 

newer and future FPGA architectures. For example, the recent Virtex-5 devices 

incorporates 6-input LUTs with similar carry-chain primitives that can be used to 

implement any 6-input function or two dual-output 5-input functions [48]. The 

proposed method can be used to estimate the hardware area-time of these devices by 

specifying the appropriate value of K (e.g. K = 5 or 6). Further optimization 

techniques can be incorporated to enable the mapping of two 5-input functions onto a 

single logic element in the Virtex-5 devices. It has also been predicted that future 

FPGAs are likely to incorporate similar programmable logic elements that incorporate 

K-LUTs and carry-logic [15].  

 

4.1. Cluster Enumeration 

The primitive operations of the Trimaran IR [43] can be categorized into 1) logical 

operations (e.g. and, or, xor), 2) shift operations (e.g. shl, shr) that shift the data to the 

left/right by a constant, and 3) arithmetic operations (e.g. add, sub, mult, div). We 

have adopted the pattern enumeration algorithm in [21] to identify all the cluster 

instances from the selected templates. The method employs a binary tree search 

approach that prunes unexplored sub-graphs from the search space if they violate a 

certain set of rules. Valid cluster instances, comprising of connected sub-graphs 

where each node is a primitive operation, must comply with a set of rules that enable 

them to be mapped onto the logic elements or CGAUs. We will describe these rules 

with the help of the example data-path in Figure 4(a), and Figure 4(b) that shows the 

implementation of an add operation using a programmable logic element similar to 

those found in the 4-input LUT based Xilinx Virtex device [40].  
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Figure 4: (a) Custom instruction with 3 clusters, and (b) implementing an add 

operation in a logic element 

 

Two sets of rules are used to determine a valid cluster. The first set of rules is used to 

evaluate whether an operation can be included in the cluster during enumeration 

process. An operation can be included in a cluster if: 

1. It is a logical or shift operation and the cluster does not consist of any arithmetic 

operations (e.g. Cluster 1 in Figure 4(a)). The programmable K-LUTs (K-input 

LUTs) can implement non-arithmetic functions of up to K inputs. 

2. It is a logical operation that is executed before a single add/sub operation in the 

cluster (e.g. Cluster 2 in Figure 4(a)). The add/sub operation can be mapped onto 

the LUT-based logic elements to exploit the fast carry chains as shown in Figure 

4(b) [49]. Since the output of the LUT is the partial sum ( BA⊕ ), all logical 

operations must be executed first to generate the required operands (i.e. A and B) 

for the add operation. 

3. It is a shift operation and the cluster contains a single add/sub operation (e.g. 

Cluster 3 in Figure 4(a)). The shifted value of an addition/subtraction result by a 

constant can be realized by configuring the routing architecture to feed the 

suitable data range as inputs to another logic element. 

4. It is an add/sub operation and the cluster does not contain any other arithmetic 

operations. A LUT-based logic element can only implement a single add/sub 

operation effectively by exploiting the fast carry chain. Other arithmetic 

operations (e.g. multiplication, division, etc.) are mapped to the CGAUs. 
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The second set of rules is used to evaluate the permissible inputs/outputs of the 

cluster: 

1. The total number of cluster inputs is at most K with only one output. The 

maximum number of input ports and output ports for a LUT is K and 1 

respectively. 

2. One of the inputs to the add/sub operation must be directly connected to an 

external input of the cluster (e.g. Cluster 2 in Figure 4(a)). As shown in Figure 

4(b), the carry-out (i.e. Cout) is selected from either the carry-in (i.e. Cin or an 

input operand (i.e. A) that is also fed directly to the input pin of the LUT. 

 

If the cluster contains only logical and add/sub operations, the number of inputs can 

be easily derived by evaluating the external inputs to the cluster. For example in 

Figure 4(a), Cluster 2 and Cluster 3 consist of 4 inputs and 2 inputs respectively. 

However, clusters with shift operations must be evaluated differently. For example 

the hardware synthesis tool will not be able to map the two physical inputs (i.e. In1 

and In2) of Cluster 1 in Figure 4(a) to only two LUT pins. The shl and shr operations 

will result in In1 and In2 being routed to four input pins in order to realize the 

required operands for node 6. To illustrate this, Figure 4(a) shows an equivalent 

representation of the and-shl-shr operations of the original data-path. It can be 

observed that node 0 can be duplicated in order to produce a pair of operands for node 

6. The inputs to the duplicated and operations comprises of the shifted values of In1 

and In2. It is evident from this representation that Cluster 1 requires 4 inputs (i.e. 

In1shl, In2shl, In1shr, In2shr) instead of 2. 

 

Given a cluster in the form of a directed graph ),( EVCi , the pseudo code in Figure 5 

computes the number of inputs of the cluster and returns the result as input_count. 

The function identifies sub-trees in the cluster that are rooted at a shift operation or 

the output node. For example in Figure 4(a), the root nodes of Cluster 1 are nodes 3, 

4, and 6. The function first identifies all the root nodes in the cluster Ci (line 1 in 

Figure 5) before finding the sub-tree members of the corresponding root nodes using 

the reverse depth-first-search algorithm (line 4). A sub-tree can only have one shift 

operation that must be a root node. Hence in Cluster 1, there are three sub-trees with 
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the following node members: {3, 0}, {4, 0}, and {6}. Each of these sub-trees is 

evaluated independently and the variable input_count is incremented whenever a new 

operand is detected in one of the node members (lines 5-6 of Figure 5). In the 

example, two new operands will be detected for each of the sub-tree {3, 0} and {4, 

0}. It is noteworthy that the approach discussed in this section can be easily adapted 

for different values of K. 

 

 

Figure 5: Pseudo code to compute number of inputs in a cluster 

 

4.2. Cluster Selection 

We have adopted the conflict graph approach described earlier to select a set of 

clusters to cover the selected custom instructions. The objective function in (3) is used 

to heuristically select clusters with large number of primitive operations, as we aim to 

minimize the required number of clusters of the RFU, which will indirectly maximize 

the hardware utilization. 

 

4.3. Area Estimation 

An area estimation model is used to rapidly evaluate the hardware area requirements 

of the selected clusters. We have employed the area model that is presented in [50] for 

a generic island-style FPGA architecture. The area of a RFU with K-input LUTs is 

shown in (5), where K
LA  and K

RA  corresponds to the area incurred by the logic 

elements and routing resources respectively.   

 
K
R

K
L

K
RFU AAA +=  (5) 

 

The area of the logic elements consisting of K-input LUTs is shown in (6), where nc 

corresponds to the number of clusters that are computed in the Cluster Selection step. 
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Ab represents the area to store 1 bit in the LUT and the term K
bA 2⋅  corresponds to the 

area required by the LUT as a K-LUT can store up to 2K bits of information. Af 

represents the remaining area of the logic and routing resources within a logic 

element.  

 

( )f
K

bc
K
L AAnA +⋅⋅⋅= 232   (6) 

 

The area model of the routing architecture is shown in (7). The area of each routing 

track must be considered in order to model the routing architecture area. Since, each 

routing track requires at least one bit of information to control the opening and closing 

of the programmable switch, the pitch of a routing track is approximated as the square 

root of the area required by a single bit (i.e. bA ) [50]. The routing channel width is 

denoted as WK. 

( )2232 KbKb
K
Lc

K
R WAWAAnA ⋅+⋅⋅⋅⋅⋅=   (7) 

 

5. Experimental Results 
We have evaluated the benefits of the proposed framework using sixteen benchmarks 

from the MiBench embedded benchmark [51] and MediaBench benchmark [52] suite. 

In this section, we provide experimental results for the three stages of the proposed 

framework: 1) Pattern Library Generation, 2) Template Library Generation, and 3) 

Hardware Generation. We will also report on the efficiency (performance/area) gain 

of the proposed approach. 

 

5.1. Pattern Library Generation 

Table 1 shows the results obtained from the Pattern Library Generation stage. The 

first two columns signify the corresponding domain and application names of the 

sixteen applications. The remaining columns report the number of custom instruction 

instances (derived from the pattern enumeration) and the number of unique patterns in 

the pattern library (after pattern grouping) for different application sets. The results in 

the third and forth columns are obtained using five domain-specific application sets 

(i.e. automotive-industrial, image, network, security and telecommunications). In the 

last two columns, results are obtained by using all sixteen applications as the 
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application set. We denote this application set as the generic application set. 

 
 

Domain-Specific Generic 
Domain Application CI 

Inst. 
Unique 

Pat. 
CI 

Inst. 
Unique 

Pat. 
Basicmath 
Bitcount Automotive/ 

Industrial 
Qsort 

121 51 

Cjpeg 

Epic Image 

Mpeg2 

446 133 

Crc32 

Dijkstra Network 

Patricia 

36 26 

BlowfishDec 

Pegwit 

RijndaelDec 
Security 

Sha 

2156 102 

AdpcmDec 

AdpcmEnc Telecomm 

FFT 

51 24 

2810 280 

Table 1: Results of pattern library generation 

 

It can be observed from Table 1 that most of the enumerated pattern instances are 

duplicates and can be grouped. For example, only about 10% and 5% of the custom 

instruction instances are unique in the generic and security application set 

respectively. The significant reduction in the custom instruction patterns after pattern 

grouping implies that custom instructions across various applications share common 

patterns. While it has been previously shown that domain-specific applications exhibit 

common dataflow sub-graph patterns [53], it is interesting to note that this property 

exists across custom instructions found in generic applications as well. The unique 

custom instruction patterns obtained from the pattern-grouping step are stored in the 

pattern library. 

 

5.2. Template Library Generation 

Figure 6 shows the performance estimation results for domain-specific and generic 

application sets.  
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Figure 6: Performance estimation with varying number of templates 

 

It is evident that increasing the number of templates for custom instruction selection 

will not lead to any notable gain after a certain point for each of the application sets. 

For example in the generic application set, selecting 60% of the original set of 

templates (168 templates) leads to negligible degradation in the average percentage 

software cycle savings for all sixteen applications. Similarly, selecting 30% (15 

templates), 60% (80 templates), 70% (18 templates), 40% (41 templates) and 60% (14 

templates) of the original set of templates in the automotive/industrial, image, 

network, security, and telecommunications application sets respectively, do not lead 

to significant degradation in the average percentage software cycle savings. 

Specifically, when compared to the case where the full set of templates are used for 

custom instruction selection, the average percentage software cycle savings difference 

for the automotive/industrial, image, network, security, telecommunications, and 
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generic application sets are only 0.88%, 0.28%, 7.33%, 5.15%, 5.53%, and 2.92% 

respectively. These observations imply that it is possible to reduce the number of 

custom instructions for mapping onto the RFU without compromising heavily on the 

performance gain. 
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Figure 7: Number of selected custom instructions with varying number of templates 

 

Figure 7 shows how the number of selected custom instruction varies with the number 

of templates used in the custom instruction selection process. It can be observed that 

the gradient of the plots are steeper for smaller number of templates and gradually 

flattens when higher number of templates is used for custom instruction selection. 

This implies that employing a reduced set of templates for custom instruction 

selection can lead to reduction in the area utilization of the FPGA-based RFU without 

compromising heavily on the performance gain. 

 

5.3. Hardware Generation 

Table 2 compares the hardware estimation with the synthesis results of equivalent 

hand-crafted designs for 20 custom instructions from the benchmark applications. The 

hand-crafted designs are realized using VHDL and synthesized with Xilinx ISE 

Foundation Version 6.1.03i [42] that is targeted for area optimization. The target 

FPGA device is the Xilinx Virtex-II 1000-bg575-4, which incorporates 4-input LUTs 

in the logic elements. Information pertaining to the custom instructions being 

evaluated (e.g. application source and size) are shown in columns 1 to 2. 
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For each custom instruction, we compare the number of logic elements obtained from 

the Cluster Generation stage (column 5) with the number of 4-input LUTs reported in 

the synthesis results (column 3). It can be observed that the automatic hardware 

generation results have an average of only 7.88% more hardware resources than the 

equivalent hand-crafted synthesized designs. These results are very encouraging as 

the number of logic elements is directly estimated from the high-level primitive 

operations and their dependences, without time-consuming hardware synthesis. It is 

noteworthy that in this paper, the hardware estimation process assumes that each 

cluster group requires 32 logic elements. In order to approximate the number of logic 

elements in each cluster group, the hardware estimation process can take into account 

the logic shift offsets and the effect of commonly used technology mapping 

techniques. 

 
  Synthesized Estimated 

Application Nodes 4-input LUT Time
 (s) 

Logic 
Elements 

Time 
 (ms) 

Basicmath 4 31 3 32 0.07 
Bitcount 3 31 3 32 0.56 
Bitcount 20 289 4 320 0.56 
CRC32 5 30 3 32 0.19 

Blowfish Dec 6 92 4 96 0.12 
Blowfish Dec 6 96 4 96 0.12 

Pegwit 5 125 3 128 2.76 
Pegwit 18 152 6 160 2.76 
Pegwit 3 60 3 64 2.76 
Pegwit 9 161 4 160 2.76 
Pegwit 5 90 4 96 2.76 
Pegwit 6 48 3 96 2.76 
Pegwit 7 97 3 96 2.76 

Sha 3 96 4 96 0.15 
Sha 8 96 5 96 0.15 
Sha 4 32 3 32 0.15 
Sha 10 64 4 64 0.15 
Sha 9 96 4 96 0.15 

Adpcm Enc 4 30 3 32 0.09 
Adpcm Enc 3 32 3 32 0.09 

Table 2: Comparing the hardware estimation results with synthesis results 

 

The time taken for the hardware synthesis engine (column 4) and the average time to 

estimate each custom instruction (column 6) is also shown. The time taken for the 

estimation process is calculated as the average time to perform cluster enumeration 

and selection for each custom instruction data-path in a particular application. The 

synthesis and estimation process are both executed on a HP Workstation with two 
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2.66GHz processors and 2GB RAM. It is evident that the estimation process can be 

achieved significantly faster than the time taken to synthesize the custom instructions, 

hence facilitating rapid design exploration. It is noteworthy that the time required for 

designing and compiling the custom instructions using the commercial design flow 

have not been taken into account in column 4 of Table 2. 

 

Based on (5), the estimated area of the RFU (in terms of µm2) that is incurred due to 

the reduced set of templates that are chosen for custom instruction selection is shown 

in Figure 8. We have used the values for the constants Ab and Af, and the average 

values for WK that is provided in [54], where K = 4. The area of the RFU 

corresponding to the selected templates (‘Reduced Templates’) in Figure 6 is 

compared to the case when the full set of templates (‘Full Templates’) are used for 

custom instruction selection.  
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Figure 8: Estimated area when reduced set and full set of templates are used for 

template selection 

 

It is evident that selecting a smaller set of templates can significantly reduce the 

number of required clusters to be implemented on the RFU. For example, compared 

to the case when the full set of templates are employed for custom instruction 

selection, the percentage reduction in the area when a reduced set of templates are 

selected are 30%, 12.4%, 20%, 46.3%, 40.9%, and 16.5% for the 

automotive/industrial, image, network, security, telecommunications, and generic 
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application sets respectively. In particular, employing a reduced set of templates for 

template selection leads to an average area reduction of over 27%. 

 

Finally, Table 3 reports on the efficiency that is obtained when the reduced set of 

templates and the full set of templates are used for template selection. The efficiency 

is calculated as shown in (8), where ESCS is the Effective Software Cycle Savings 

which accounts for the hardware execution delay of the custom instructions pi 

(TC(pi)), where i = 1, … , n, and is calculated as shown in (9). TC(pi) is obtained by 

calculating the number of clusters in the critical path of the custom instructions. For 

example, TC of the custom instruction in Figure 4(a) is 2. Note that we have assumed 

that the delay of each cluster is equivalent to two software clock cycle executions. 

This is a reasonable assumption as the FPGA logic can generally execute at a 

significantly higher clock frequency than a commercially available soft processor core 

which is implemented on the same fabric [55]. 

 

K
RFUA

ESCSEfficiency =  (8) 

∑
=

⋅−×=
n

i
iCiSWi pTpTpFESCS

1
))(2)(()(  (9)  

 
Reduced Templates Full Templates Domain ESCS Area Efficiency ESCS Area Efficiency 

Automotive-
Industrial 

14664576 45182539.6 0.325 14814576 64546485.15 0.230 

Image 1538018 364687641.1 0.004 1559449 416324829.2 0.004 

Network 102859967 64546485.15 1.594 129603704 80683106.43 1.606 

Security 19207719 142002267.3 0.135 22467162 264640589.1 0.085 

Telecomm 5823638 41955215.34 0.139 6873517 71001133.66 0.097 

Generic 146359636 635782878.68 0.230 176180091 761648524.7 0.231 

Table 3: Comparing the efficiency when reduced set and full set of templates are used 

for template selection 

 

It can be observed in Table 3 that the efficiency of the proposed method is higher than 

the case when the full set of templates is used in a number of application domains 

(with comparable results in the remaining domains). In particular, the average 

efficiency gain when a reduced set of templates is used is over 25%. 
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6. Conclusion 

A design exploration framework for RISPs has been presented for the rapid selection 

of a minimal set of profitable custom instruction candidates. Simulations reveal that 

domain-specific applications share common custom instruction patterns, and hence 

domain-specific instruction set customization can lead to area efficient solutions. 

Experimental results for the generic, automotive/industrial, image, network, security 

and telecommunications application sets, show that the number of candidates for 

custom instruction selection can be significantly reduced by 30% to 70% with 

marginal degradation in the resulting performance gain. A novel clustering strategy 

for mapping the operations on the LUT based RFU is also proposed to estimate the 

reconfigurable resources for realizing the selected custom instructions. It has been 

shown that the runtime of the proposed estimation process is negligible when 

compared to the time taken for hardware synthesis. Experiments reveal that the 

estimated area costs are within 8% of those obtained using hardware synthesis. 

Finally, investigations based on domain-specific application sets from the MiBench 

and MediaBench benchmark suites show that the design exploration framework can 

lead to an average area reduction of 27%, and an average efficiency gain of over 25%. 
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