
RAPID AREA-TIME ESTIMATION TECHNIQUE FOR PORTING

C-BASED APPLICATIONS ONTO FPGA PLATFORMS

MY CHUONG LIEU, SIEW KEI LAM, THAMBIPILLAI SRIKANTHAN
CENTER FOR HIGH PERFORMANCE EMBEDDED SYSTEM

NAYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE

{LIEU0003, ASSKLAM, ASTSRIKAN@NTU.EDU.SG}∗

Abstract. High-level area-time estimation is an essential step to facilitate rapid design explo-
ration for FPGA implementations. Existing works in high-level area-time estimation usually ignore
the physical effects of the design after place and route, which have a notable impact on the maxi-
mum achievable speed of the design. In this paper, we propose a framework to rapidly estimate the
area-time measures of mapping C-applications onto FPGA. The framework relies on the Trimaran
compiler to generate an optimized high-level IR (Intermediate Representation) of the C-applications.
Area-time estimation of the IR is then performed using a proposed estimation model that is based
on an architecture template with application-specific heterogeneous functional units. In order to
accurately predict the delay of the design after place and route, we introduce a new metric for the
estimation that models the criticality of the design’s interconnectivity. Experimental results based
on a set of embedded functions show that the proposed area estimation can achieve comparable
results with the synthesis results of a commercial FPGA tool in the order of milliseconds. For the C
functions used in our experiments, the proposed delay estimation leads to an average error of about
3% when compared to the post place and route results. In addition, we demonstrate the robust-
ness of the proposed framework which provides consistent results for different FPGA families. The
contribution of this paper is a scalable methodology for rapid estimation of cost-benefit metrics of
C-based algorithms to be accelerated on FPGA-based high-performance computing platform.

Key words. FPGA, C-based Application, Area Time Estimation, Hardware Accelerator

1. Introduction. FPGAs (Field-Programmable Gate Arrays) have become an
attractive solution to meet the technological and market challenges in embedded pro-
cessing. Traditional hybrid platforms that incorporate ASIC and microprocessors are
migrating towards FPGA platforms (e.g. Xilinx Virtex-II Pro [1] and Altera Stratix
[2]) to take advantage of the reconfigurable benefits of FPGA. This trend is supported
by the availability of efficient EDA (Electronic Design Automation) tools and the in-
creasingly stringent TTM (Time-To-market) requirements. In order to exploit the
strengths in both the microprocessor and FPGA, efficient hardware-software parti-
tioning strategies must be incorporated in the emerging design flows. However, com-
mercially available design flows do not enable designers to make design explorations
for effective hardware-software partitioning. This is chiefly due to a lack of an essen-
tial step that can estimate the performance-cost for mapping a software component
to hardware early in the design cycle.

In this paper, we propose a framework that can rapidly and accurately estimate
the hardware area-time measures for implementing C-applications onto the FPGA.
We have chosen C as the input to our framework as it is widely used for embedded
processing. The front-end of the framework relies on the high-level optimization and
scheduling capabilities of the Trimaran compiler infrastructure [3]. In order to facil-
itate effective area-time estimations, we have adopted an architecture template for
implementing the applications, which is similar to the one proposed in [4]. The archi-
tecture template resembles a VLIW-like architecture that incorporates application-
specific heterogeneous functional units and register-files, with dedicated interconnec-
tion buses.

∗This research is supported by Infineon Collaboration Fund

1



High-level estimation is performed using an area-time estimation model, which
relies on a set of pre-characterized parameters of the components in the architecture
template. Previously reported works in high-level area-time estimation often do not
consider the interconnect delay of the design after place and route. We will demon-
strate that this oversight will lead to high uncertainties in the estimation results.
Our proposed approach overcomes this limitation by incorporating a new metric that
models the placement complexity of the design’s interconnectivity.

The paper is organized as follows. In the following section, we describe related
works in the area of high-level estimation for FPGA implementation. This is fol-
lowed by an overview of the proposed framework. Section 4 describes the parametric
characterization of the architecture template components, and the proposed area-time
estimation models. Next, results analysis is provided to demonstrate the benefits of
our framework, and we conclude in Section 6.

2. Related Works. Due to the need to expedite the development of complex
applications in hardware, a number of commercial tools that synthesizes high-level
languages to FPGA have emerged in recent years. These tools differ in several aspects
such as high-level language support, high-level optimization features and the target
system. For example, Mitrion-C from Mitronics [5] and RCToolbox from DSPLogic
[7] supports the Mitrion-C and Matlab programming language respectively, while
HandleC from Celoxica [6] and Impulse-C from Impulse Accelerated Technologies
[8] support a subset of the ANSI-C language that is extended with constructs for
specifying the hardware definitions. These tools cannot be directly employed for
most embedded applications that are programmed using ANSI-C. Although the C2H
tool from Altera [9] supports ANSI-C applications, the hardware representations that
are generated are specific to the Altera FPGA devices only. This limits the generality
of the tool across different platforms. Other tools such as Catapult from Mentor
Graphics [11] and Trident [10] support ANSI applications and are not device specific.
However to the best of our knowledge, all the tools discussed above do not focus
on providing accurate high-level estimations to facilitate rapid design exploration for
hardware-software partitioning.

The problem of high-level area-time estimation for hardware implementations has
received considerable interest in the research community for nearly 20 years. Research
efforts in this area are motivated by the need to evaluate the hardware performance-
cost indices of various design options early in the design phase, in order to reduce
the time-consuming implementation cycles. Figure 1 highlights the major steps in a
typical high-level estimation flow, which are 1) Transformation of application written
in high-level language to IR; 2) Architecture independent estimation; 3) Architec-
ture independent synthesis; 4) Architecture dependent estimation. It is worth noting
that previously reported works typically do not address all these steps in their area-
time estimation approach. The first step in the estimation flow typically involves the
transformation of a high-level representation of an application (e.g. C, System-C,
Matlab, behavioral HDL or JAVA specifications) to an IR (Intermediate Represen-
tation). This transformation includes high-level compiler optimizations such as loop
transformations to extract the hidden parallelism in the sequential C statements.
For example, the SUIF [12] compilers have been widely used to transform C-based
application into CFGs (Control Flow Graphs) and DFGs (Data Flow Graphs).

Architecture independent estimation attempts to calculate the hardware resources
and latency in terms of clock cycles without performing scheduling. These approaches
commonly rely on probabilities or integer linear programming models based on the

2



Fig. 2.1. High-Level Estimation FLow

high-level application characteristics in order to predict the number of functional-units
or minimum clock cycles. The work presented in [13] performs architecture indepen-
dent estimation to obtain a lower-bound execution time of a DFG in the presence of
hardware constraints to facilitate efficient design space exploration. Similarly, [14] es-
timates the minimum number of resources that are required to execute a DFG within
a control step constraint. Others [15] employ Matlab codes as inputs to estimate
the hardware resources by summing the area of the required operators based on the
execution probabilities in the application.

Architecture independent synthesis typically performs scheduling of the IR and
resource binding to obtain accurate high-level metrics, which include the number of
clock cycles and hardware resources. The hardware area-time of the application is
then calculated or estimated from these metrics. The architecture independent syn-
thesis approach in [16] considers the effects of various loop transformation techniques.
Bilavarn et al [17] presented a method that employs architecture independent synthe-
sis for design exploration. However, maximum clock frequency estimation was based
solely on the longest latency of the execution unit and ignores post place and route
physical effects. Cardoso proposed a methodology for estimating FPGA implemen-
tations of Java byte-codes in [18]. He highlighted the limitations of high-level delay
estimation due to the lack of circuit details.

Architecture dependent estimation techniques commonly employ simple hardware
models to speed-up the estimation process. The hardware cost is estimated in terms
of LUTs (Look-Up Tables), while the performance is often estimated in terms of
clock latencies. The technique presented in [19] adopts an analytical approach to

3



estimate the FPGA area for implementing the DFG. The estimation is based on a
set of formulas that models the components and corresponding hardware area of the
DFG operations. Their approach reported credible results with a maximum error
of 10% and the estimation can be achieved in the order of milliseconds. However,
they have not considered delay estimation. In [15] , the number of required flip-flops
is estimated by calculating the maximum number of required registers. The Rent
Rule and Feuer’s formula have been employed to estimate the post place and route
interconnect delay. This approach leads to large uncertainty of up to 9 ns. This
high uncertainty can become unacceptable for designs that need to be clocked at high
frequency (e.g. 100 MHz). It is noteworthy that our proposed area-time estimation
accounts for the physical implementation characteristics and is not susceptible to the
speed of the design.

3. Overview of Framework. Figure 2 describes an overview of the proposed
framework for high-level area-time estimation. The open-source Trimaran compiler
infrastructure, which supports state of the art compiler research in ILP (Instruction
Level Parallelism) based architectures, is relied upon to expose the hidden parallelism
in the sequential C statements, and to perform high-level optimizations and scheduling
[3]. This front-end process takes several seconds (typically less than 10s for 1 single C-
function compilation) depending on applications and functions sizes. We have adopted
the application-specific architecture template that is similar to the one proposed in
[4] as shown in Figure 3.2. It is worth mentioning that this architecture template can
be adapted for pipelined and non-pipelined data-paths by configuring the application-
specific interconnection. The Trimaran machine description is augmented with the
heterogeneous functional units in the architecture template. These functional units
include a combination of two or more basic operators (e.g. adder, shifter, multiplier,
logic operator, comparator and memory-access unit). Only the functional units that
are required for a particular application will be incorporated into the architecture.

Fig. 3.1. Propose High-level Estimation Framework

4



The output of the Trimaran is an ILP schedule of the application (e.g. the type
of functional units that will be executed in each clock cycle and the data-dependency
between these functional units). Based on this schedule information, we perform a
simple hardware binding process that attempts to bind operations with the most com-
mon input-outputs to the same functional units. This aims to reduce the complexity
of the interconnectivity between registers and functional units. In order to perform
area-time estimation, information pertaining to the control-path and data-path are
segregated from the ILP schedule after hardware binding. In this paper, we focus on
area-time estimation for the data-path only.

Fig. 3.2. VLIW-like architechture Template

A one-time area-time characterization of the components in the architecture tem-
plate is required to facilitate area-time estimation of the data-path. An estimation
model is then employed along with this information to estimate the performance-cost
measures of the application by taking into account the physical implementation ef-
fects. In order to evaluate the accuracy of our estimation approach, a process to
auto-generate the RTL (Register Transfer Level) codes from the control-data path
information has been incorporated in the framework. The RTL code can then be sub-
jected to the FPGA implementation tool (i.e. Xilinx ISE) to obtain the actual post
place and route report for results comparison with the proposed estimation approach.

4. Area-Time Estimation. In this section, we will provide detailed description
of the process to characterize the components and the proposed area-time estimation
model.

4.1. Hardware Characterization of Architecture Template’s Compo-

nents. We have used the Xilinx ISE synthesis engine to characterize the hardware
components in the architecture template and other relevant information. Table 1
illustrates the hardware components (and other relevant information) and the cor-
responding area-time measures for the Virtex-II Pro device (xc2vp70-6ff1704). The
data-paths are assumed to be 16-bit or 32-bit, as the hardware implementation serves
to accelerate the base ISA (Instruction Set Architecture) operations of the micropro-
cessor.

In order to perform interconnect characterization, we have implemented a number
of circuits to obtain the average post place and route interconnect delay. The circuits
are constructed based on the data-path that is shown in Figure 4, which resembles
the architecture template consisting of a single functional unit. A range of designs,
each consisting of up to 8 duplicate circuits similar to the one in Figure 4, is subjected
to physical implementation using the Xilinx ISE tool. We utilized the Xplore Script
provided by Xilinx [20] that iteratively executes the place-and-route process to achieve
the maximum clock speed. Figure 5 shows the maximum delay for the range of

5



Table 4.1

Characterized Components for Xilinx FPGA Virtex2p-6

Components Area(LUT) Delay (ns)
16bit-Addsub 16 2.139
16-bit multiplier by LUT 121 8.165
16-bit left/right/signed-unsigned shifter 76 2.376
16-bit Logic Operator (4 operations) 16 0.313
16-bit Multiplexer 2 to 1 16 0.313
16-bit Multiplexer 4 to 1 32 0.653
16-bit Multiplexer 8 to 1 64 0.972
16-bit Multiplexer 16 to 1 128 1.291
FFCLK2Q (Clock to output delay of FF) 0.234
FFSetup (Setup time of FF) 0.243

designs from which we calculated the average delay after place and route. The average
interconnect delay is then computed using Equation 4.1, where Logic Delay is the sum
of Clk2q, Mux4to1, functional unit delay, and FF-Set-up time that are listed in Table
1. The average interconnect-delay for the target device is found to be 0.42 ns, and
this value will be used by the proposed method for delay estimation.

InterconnectDelay = (Avg(MaxDelay) − LogicDelay)/3(4.1)

Fig. 4.1. Sample Circuit for Characterizing Average Interconnect Delay

Fig. 4.2. Maximum post place and route delays for eight designs comprising of multiple of
sample circuits (see Figure 4.1)

It is noteworthy that the proposed high-level estimation approach can also be
adopted for different target FPGA families by performing a one-time hardware char-
acterization for the particular device.

6



4.2. Area Estimation. In order to perform area estimation, we obtained the
number of functional units and the number of registers (flip-flops) from the ILP sched-
ule after hardware binding. The estimated number of LUTs is computed by summing
up the number of LUTs for the functional units based on the pre-characterized infor-
mation. As each slice of Xilinx Virtex2 pro contains 2 Look-up tables (LUT) and 2
flip-flops, we estimate the total slices as in 4.2:

Estimated number of slices = (#LUT + #FF )/2(4.2)

The estimation for the number of slices assumes that each slice is fully utilized
to implement the functional units and registers. Experimental results reveal that the
proposed estimation method is very accurate for LUT and Flip-Flop estimation. In
addition, the estimation of the slices is comparable with ISE logic synthesis results
and results reported in previous works [15].

4.3. Delay Estimation. The difficulty in delay estimation lies in the prediction
of the interconnect delay before the physical design steps (i.e. placement and routing).
There have been several reported works in the area of interconnect delay estimation
such as [21] [22] and we will briefly discuss them before describing the proposed
delay estimation approach. It is worth mentioning that these previous works are not
integrated as part of a high-level estimation framework, but are used mainly to aid
optimization decisions in the CAD flow. The work presented in [21] can achieve very
accurate estimations of the interconnect delay by analyzing the physical characteristics
of the designs. However, due to the complexity of the approach, the estimation results
are achieved in the order of seconds and minutes. Karnik and Kang [23] presented an
empirical routing delay model for estimating interconnection delays in FPGA. These
methods require low-level metrics of circuit such as net fan-out and routing congestion
which is not desirable for efficient high-level estimation [18]. Their method resulted
in an estimated delay with 20% errors. Hutton highlighted that that delay estimation
based on theoretical models, generally produces inferior results when compared to
those computed based on empirical data [24]. Manohararaja et. al. reported an
interesting finding that the predictability of FPGA implementation is mainly governed
by the placement rather than routing process [25].

The physical characteristics that has been commonly used for post place and
route delay estimation includes: 1) Design size [23] [15], 2) Circuit shape [26], and
3) Fan-in/out [23]. The placement and routing effort is mainly influenced by the in-
terconnectivity in the designs rather than the size or shape of the design due to the
fine-grained architecture of FPGA. Hence the first two characteristics is not a reliable
indicator on the complexity of the place and route process. We have carried out ex-
periments to show that these characteristics do not lead to reliable predictability of
the post place and route delay. The fan-in/out of a register is defined as the number
of input/output connections of that register. Compared to the first two character-
istics, the fan-in/out provides a better indication on the interconnect complexity of
the design. However, during place and route, the CAD tools often perform register
duplication to mitigate the fan in/out effect. Our experiments show that although
register-duplication can lead to improved timing in some cases, it could also increase
the routing congestion of the circuit. This was inferred in our experiments for some
designs, whereby the final delay after register duplication is higher than the delay
obtained from implementations that obviates register duplication. Due to this un-
certainty, we have assumed that the applications employed in our experiments have

7



moderate register reusability and hence, we do not incorporate the fan-in/out char-
acteristic in our delay estimation model.

In this section, we introduce a delay estimation model that takes into account
the post place and route characteristics of the design. Our proposed delay estimation
model incorporates a new metric that is based on the relative path delays of the
design. In contrast to the method in [21], our proposed method can estimate at
a higher abstraction level and achieve reasonable results in less than a second. In
addition, we will demonstrate that the maximum estimation error of the proposed
model is less than 8% for the experiments considered.

4.3.1. Proposed Approach. A path is a connection of a sequence of logic units
that begins and ends at a register, as shown in 4.3. Let’s define Dpath(i) as the delay
of a path i in a RTL design, Dmax as the critical path of that design, and Dmean as
the mean delay of the paths in the design. Calculations for Dpath Dmax, and Dmean
are defined below, which constitutes to a simple delay estimation model. If place and
route effects are ignored, the minimum clock period is approximate as Dmax. We
compared the estimated delay of 45 random algorithms using the simple delay model
with actual results after place and route for the Xilinx Spartan and Virtex-II Pro
device. The estimation error shown in Figure 7 exhibits a consistent error pattern for
the two devices. This serves as the motivation for us to use the simple delay model
as a basis for post place and route estimation as it can be employed across different
devices. The consistency of the delay predictability on the two different devices implies
that the inherent characteristics of the design can be used for estimation. The delay
of path i (Dpath(i)) for all the paths in the circuit is computed as follows:

Fig. 4.3. A typical delay path from register to register

Dpath(i)= FFClk2q + Dint + Dcomp+ FFsetup
Dmax = Max of all Dpath
Dmean = Mean of all Dpath
Dcomp is the characterized delay of the component in Table 4.1 (Usually: mux,
Functional Unit, mux)
Dint is the characterized interconnect delay between the components.

As mentioned earlier, our proposed delay estimation model incorporates a new
metric that is based on the relative path delays of the design. It has been previously
reported that the placement process plays a more important role on the predictability
of the final delay (assuming that there is no constraints on the number of FPGA
routing resources)[25]. In addition, timing-driven placement relies on the criticality of
the nets, and hence the effect of the nets criticality can lead to reliable predictability of
the interconnection delay. Based on this, we introduce the lambda metric to compute
the relative lengths of nets which capture the complexity of the placement effort for
a particular design:

8



Fig. 4.4. Estimation error of critical paths for 2 FPGA families

λ =
Dmean

Dmax

(4.3)

λ captures the slack distribution of the nets in the designs. If a circuit has one net
that is much longer than the rest (i.e. low-λ), the CAD tool will require lesser effort
to place the shorter paths such that they do not exceed the delay of the longest path.
On the other hand for a circuit with high-λ, the CAD tool will have less freedom to
move the paths around without violating the delay of the longest path. Hence, we
expect designs with low-λ design to be more predictable than designs with high-λ.
Our strategy is to identify through empirical means, the threshold value that will
categorize a design as low-λ or high-λ designs. Let’s define this threshold value as Λ.
The estimated delay of a design with low-λ is computed as the maximum path length,
while a design with high-λ is computed by multiplying the mean path length with a
constant factor. The constant factor was empirically found to be close to 1/Λ. The
following describes our proposed delay estimation model, where Dest is the estimated
delay.

Dest =

{

Dmax if λ ≤ Λ
Dmean ×

1

Λ
otherwise

(4.4)

Fig. 4.5. Estimation Error (Predictability) versus λ

4.3.2. Determining Value of Λ. We compared the estimated delay using the
simple delay model with the actual place and route results for 45 random algorithms.

9



Table 5.1

Connectivity Characteristics of Sample Circuits

Funtions DMean λ Max Avg Max Ave
(ns) Fanout Fanout Fanin Fanin

Random Algorithm1 8.66 0.76 6 1.66 2 0.89
Matrix multiplier2 4.25 0.44 2 1.06 1 0.59
mpeg2- bdist1 motion 4.82 0.46 13 2.13 4 1.22
mpeg2- bdist2 motion 4.84 0.47 13 2.07 4 1.20
mpeg2- dct type estimation 4.87 0.51 5 1.43 2 0.81
mpeg2- dist1 motion 5.73 0.88 11 2.43 5 1.08
mpeg2- dist2 motion 5.38 0.50 19 3.25 9 1.92
mpeg2- idctcol 5.63 0.53 15 1.70 2 0.91
mpeg2- idctrow 5.88 0.55 15 1.70 2 0.86
sha transform 4.94 0.84 14 2.60 7 1.65
adpcm coder 4.84 0.73 10 2.54 8 1.35
adpcm decoder 4.64 0.67 9 2.16 9 1.22

4.5 shows the estimation error and the corresponding λ of the designs. It can be
observed that there exist a high-correlation between the predictability and λ. In
particular, it is shown that for low λ , the simple delay model can be applied with
about 90% confidence. Large errors or low predictability are found in region where λ
is high. We empirically define Λ to be 0.78 from the dataset.

5. Result Analysis. Table 5.1 describes the properties of the C functions that
have been used to evaluate the proposed framework for high level area-time estima-
tion. These applications (apart from the random algorithm) are commonly used in
embedded applications.

5.1. Area Estimation. Table 5.2 compares the proposed area estimation (Pro)
with results obtained from the Xilinx ISE tool after synthesis (Syn) and after place
and route (PAR). The last four columns show the estimation errors of our method
and that of logic synthesis, when compared with the post place and route values. It is
evident that the proposed area estimation achieves up to an average of 98% accuracy,
with a worst case error of 8% in terms of LUT comparison. For the estimation of
slices, the average error of the proposed method is 12%. It is noteworthy that area
estimation in terms of FPGA slices is a difficult task and the majority of the previous
works reported their estimation results in terms of LUTs and flip-flops [27] [18] [19].
In general, our proposed area estimation for both LUTs and slices is comparable
to the results of the logic synthesis tool. In addition, the proposed estimation can
be completed in order of milliseconds, while the compilation time of the commercial
synthesis tool takes several minutes (because of the level of abstraction).

5.2. Delay Estimation. The maximum delay of the above mentioned C-functions
were estimated using the simple delay model (Sim) and the proposed model (Pro),
and compared with actual post place and route values. In addition, we have used
the ISE Xilinx tool to synthesize and implement the generated RTL codes in order
to obtain the estimated delay after synthesis (Syn) and the actual delay after place
and route (PAR). The results show that the proposed approach (Pro) outperforms
the simple delay model and the synthesis tool for estimating the post place and route

1A dummy algorithm which has high parallelism. It computes 1 output from 4 inputs through
several operations

2Only inner-most loop is considered

10



Table 5.2

Area Estimation Result

LUT Estimation Slices Estimation LUT Error Slice Error
Pro Syn PAR Pro Syn PAR Pro Syn Pro Syn

(LUTs) (LUTs) (LUTs) (Slices) (Slices) (Slices) % % % %
Random Algorithm 1636 1586 1,574 1170 1268 1014 3.94 0.76 15.44 25.06
Matrix multiplier 285 284 278 270 312 264 2.52 2.16 2.47 18.22
mpeg2- bdist1 motion 1898 1959 1,939 1421 1632 1523 -2.11 1.03 6.67 7.16
mpeg2- bdist2 motion 1971 1962 1,923 1465 1638 1843 2.50 2.03 20.49 11.13
mpeg2- dct type estimation 623 624 616 471 542 482 1.14 1.30 2.28 12.45
mpeg2- dist1 motion 2200 2183 2,165 1580 1705 1627 1.62 0.83 2.89 4.79
mpeg2- dist2 motion 2625 2627 2,586 1688 1872 2022 1.51 1.59 16.50 7.42
mpeg2- idctcol 4646 4531 4,501 3451 3851 3590 3.22 0.67 3.86 7.27
mpeg2- idctrow 2942 2929 2,899 2271 2530 2229 1.48 1.03 1.91 13.51
sha transform 2548 2691 2,670 1770 1993 2208 -4.57 0.79 19.82 9.74
adpcm coder 1380 1399 1,367 978 1093 1308 0.95 2.34 25.20 16.44
adpcm decoder 1496 1409 1,391 998 1118 1406 7.55 1.29 28.99 20.49
Average Error 1.64 1.32 12.21 12.81

1
1



Table 5.3

Delay Estimation Result

Absolute Values Error Compared to PAR
Sim Syn Pro. PAR Sim Syn Pro
(ns) (ns) (ns) (ns) % % %

Random Algorithm 11.47 11.22 11.47 11.13 3.07 0.75 3.07
Matrix multiplier 9.61 9.62 9.61 9.46 1.56 1.65 1.56
mpeg2- bdist1 motion 10.37 10.41 10.37 9.95 4.21 4.61 4.21
mpeg2- bdist2 motion 10.37 11.54 10.37 10.61 2.27 8.77 2.27
mpeg2- dct type estimation 9.61 9.74 9.61 9.91 3.00 1.65 3.00
mpeg2- dist1 motion 6.55 6.65 7.35 7.70 15.00 13.69 4.55
mpeg2- dist2 motion 10.71 10.97 10.71 10.42 2.75 5.20 2.75
mpeg2- idctcol 10.71 11.22 10.71 10.94 2.13 2.49 2.13
mpeg2- idctrow 10.71 11.22 10.71 11.10 3.49 1.06 3.49
sha transform 5.83 5.98 6.33 6.22 6.26 3.88 1.86
adpcm coder 6.62 6.45 6.62 6.37 3.86 1.32 3.86
adpcm decoder 6.93 6.81 6.93 6.91 0.39 1.42 0.39
Average Error 4.00 3.87 2.76

delay. In particular, the proposed delay estimation achieves better results in terms of
both maximum and average accuracy. The maximum and average estimation error
of the proposed approach is only 4.6% and 2.8% respectively. It can be observed
from Figure 9 that the simple delay model can provide accurate estimation results for
designs with low λ cases. However, in designs with high-λ (i.e. 6 and 10), the simple
delay model and the synthesis tool (Syn) incurs very high estimation error (i.e. up
to 14%). In these cases, the proposed estimation approach is capable of providing
significantly better accuracy due to the inclusion of the new metric λ that can be
easily obtained for high-level estimation.

Fig. 5.1. Estimation error with designs arranged in increasing of λ

5.3. Estimation Runtime. The experiments were carried out on the Pentium
4 3GHz workstation, and the Xilinx ISE 8.1 tool was used to obtain the synthesis
and post-place-and-route results. Table 5.4 compares the estimation time with the
execution time of the Xilinx tool for synthesis and PAR. On an average, the proposed
estimation process completes in the order of milliseconds except in cases 3, 4, 6, 7.
In these cases, parsing of the Trimaran’s textual output takes up to 2 seconds to
complete, while the actual hardware binding and estimation process is performed in
milliseconds. Overall, our technique achieves the estimation results about 350 times
faster than the synthesis process, and 3000 times faster than the PAR process.

12



Table 5.4

Estimation Runtime Compared to Synthesis And Actual PAR time

Functions Estimation ISE Syn PAR
Time (s) Time (s) Time (s)

1 Random Algorier 0.08 31 285
3 mpeg2- bdist1 motion 2.54 255 676
4 mpeg2- bdist2 motion 2.59 110 814
5 mpeg2- dct type estimation 0.2 35 613
6 mpeg2- dist1 motion 2.89 82 3612
7 mpeg2- dist2 motion 2.71 112 687
8 mpeg2- idctcol 0.23 141 2620
9 mpeg2- idctrow 0.17 107 690
10 sha transform 0.25 152 3600
11 adpcm coder 0.2 81 780
12 adpcm decoder 0.15 61 2700

5.4. Evaluation of the Framework for different FPGA Family. In order
to evaluate the robustness of the proposed framework, we carried out experiments
with the Spartan-3 FPGA. The following processes are repeated with the new target
FPGA device: 1) characterization of components and interconnect, 2) identification
of the value of λ and 3) area-time estimation. Due to the less sophisticated FPGA
routing fabric in Spartan-3, we have obtained λ = 0.72. Table 5.5 and 5.6 show the
quality of estimation compared to actual place and route values. The average errors
of delay were found to be 3.4% while synthesis tool’s estimation error is 8.5%. The
results of the proposed area estimation are reasonably good compared to the results
obtain from the synthesis tool. In Figure 5.2, the designs are rearranged in increasing
order of . It can be observed that there is a large estimation error obtained using
the simple model and ISE synthesis tool for designs with high value of . In contrast,
the estimation error incurred with the proposed technique is consistent across the
different functions. This implies that the proposed estimation technique leads to a
higher degree of predictability when compared to the simple model and synthesis tool.

Fig. 5.2. Estimation error with designs arranged in increasing of λ

6. Conclusions. FPGA-based high-level area-time estimation that ignores the
physical design effects after place and route may lead to very high inaccuracies. In this
paper, we have presented a high-level estimation framework that can predict the area-
time measures of C-based applications with post place and route effects taken into
account. It is worth mentioning that the original C applications can be directly used
in the proposed framework without any further modifications. Our area estimation

13



Table 5.5

Area Estimation for Spartan Family

Pro Syn PAR Pro Syn PAR Pro Syn Pro Syn
LUT LUT LUT SLICE SLICE SLICE LUT LUT SLICE SLICE

(%) (%) (%) (%)
Random Algorithm 1636 1580 1,568 1122 1170 1093 4.34 0.77 2.65 7.04
Matrix multiplier 285 284 278 239 270 222 2.52 2.16 7.67 21.67
mpeg2- bdist1 motion 1978 1903 1,854 1349 1384 1564 6.69 2.64 13.72 11.51
mpeg2- bdist2 motion 1962 1959 1,918 1349 1435 1649 2.29 2.14 18.19 12.98
mpeg2- dct type estimation 623 624 616 440 508 792 1.14 1.30 44.51 35.86
mpeg2- dist1 motion 2200 2168 2,153 1364 1392 1839 2.18 0.70 25.83 24.31
mpeg2- dist2 motion 2625 2618 2,576 1585 1669 1567 1.90 1.63 1.15 6.51
mpeg2- idctcol 4646 4511 4,481 3227 3519 3256 3.68 0.67 0.89 8.08
mpeg2- idctrow 2942 2925 2,895 2095 2317 2140 1.62 1.04 2.10 8.27
sha transform 2548 2545 2,530 1578 1693 2267 0.71 0.59 30.38 25.33
adpcm coder 1688 1498 1,470 988 893 846 14.83 1.90 16.85 5.56
adpcm decoder 1244 1165 1,148 878 859 807 8.36 1.48 8.80 6.44
Average Error 4.19 1.42 14.39 14.86

1
4



Table 5.6

Delay estimation for Spartan3-4 Family

Sim Syn Pro. PAR Sim Syn Pro
(ns) (ns) (ns) (ns) (%) (%) (%)

Random Algorithm 16.26 17.17 17.02 16.51 1.51 4.02 3.10
Matrix multiplier 13.54 14.14 13.54 13.28 1.97 6.53 1.97
mpeg2- bdist1 motion 14.72 15.85 14.72 14.36 2.49 10.33 2.49
mpeg2- bdist2 motion 15.90 17.42 15.90 15.49 2.62 12.45 2.62
mpeg2- dct type estimation 13.54 14.71 13.54 14.41 6.06 2.04 6.06
mpeg2- dist1 motion 9.16 10.62 10.94 12.06 24.08 12.00 9.33
mpeg2- dist2 motion 15.08 16.62 15.08 14.98 0.65 10.93 0.65
mpeg2- idctcol 15.08 17.17 15.08 15.94 5.37 7.78 5.37
mpeg2- idctrow 15.08 17.17 15.08 15.45 2.38 11.18 2.38
sha transform 8.13 9.45 9.21 9.04 9.98 4.55 1.89
adpcm coder 8.76 10.08 9.45 9.29 5.65 8.57 1.74
adpcm decoder 8.13 9.73 8.45 8.727 6.81 11.52 3.19
Average Error 5.80 8.49 3.40

has been shown to achieve comparable results with that obtained from a commercial
synthesis tool. We have proposed a new metric for our delay estimation model that
captures the placement complexity of the circuit. For the experiments considered,
when compared to post place and route results obtained from a commercial tool,
our proposed delay estimation achieves an average accuracy of 97% with a worst case
error of only 4.5%. This result is significantly better than previously reported works in
high-level delay estimation and the estimation process can be completed in the order
of milliseconds. In addition, we have shown that the proposed framework provide
consistent results for devices from the Xilinx Virtex and Spartan families.

REFERENCES

[1] Xilinx Corporation.VirtexII Pro Capabilities. Available
at http://www.xilinx.com/products/silicon solutions/ fp-
gas/virtex/virtex ii pro fpgas/capabilities/index.htm

[2] Altera Corporation. Stratix II FPGA . Available at
http://www.altera.com/products/devices/stratix2/st2-index.jsp.

[3] L. N. Chakrapani, J. Gyllenhaal, W. meiW. Hwu, S. A.Mahlke, K. V. Palem, and

R.M. Rabbah. Trimaran: An infrastructure for research in instruction-level parallelism.
In Lecture Notes in Computer Science (Langurages and Compilers for High Performance
Computing), 2004, pp. 32-41.

[4] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cronquist, and M.

Sivaraman. PICO-NPA: High-level synthesis of nonprogrammable hardware accelerators.
Journal of VLSI Signal Processing, 31(2002), pp. 127-142.

[5] Mitrionics Corporation. Mitron-C. Available at http://www.mitrionics.com/
[6] Celoxica Corporation. Handel-C. Available at http://www.celoxica.com/
[7] DSPLogic Corporation. DSPLogic ToolBox. Available at http://www.dsplogic.com/home/
[8] ImpulseC Corporation. Impulse C language. Available at http://www.impulsec.com/
[9] Altera Corporation. C to Hardware Technology. Available at

http://www.altera.com/products/ip/processors/nios2/tools/c2h/ni2-c2h.html.
[10] Justin L. Tripp, Maya B. Gokhale, Kristopher D. Peterson. Trident: From High-Level

Language to Hardware Circuitry. Computer, 40(2007), pp. 28-37.
[11] Shawn McCloud. Catapult C Synthesis-based Design Flow: Speeding Implementa-

tion and increasing Flexibility. Mentor Graphic White Paper 2003. Available at
http://www.mentor.com

[12] Byongro So et al. Using Estimates from Behavioral Synthesis Tools in Compiler Directed
Design Space Exploration. Proceedings of Design Automation Conference 2003, 2(2003),
pp. 514-519.

15



[13] Min Joong Rim, Rajiv Jain. Lower-bound performance estimation for high-level synthesis
scheduling problem. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13(4-1994), pp. 451 - 458.

[14] Chauduri S and Walker. Computing the lower bound of functional unit before scheduling.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol 4 Issue 2(1996),
pp. 273-279.

[15] A. Nayak, M.Haldar, A.Choudhary, and P.Banerjee. Accurate Area and Delay Estimators
for FPGA. Proceedings of International Conference DATE, 2002, pp. 862-869.

[16] Minjoong Rim and Rajiv Jain. Estimating performance characteristic of Loop transforma-
tion. IEEE International Symposium on Circuits and Systems, 1(1994), pp. 249-252.

[17] Sebastien Bilavarn et at. Design Space Pruning through estimations of Area/Delay Trade-
off for FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(2006), pp.1950-1968

[18] Joo M. P. Cardoso. On Estimations for Compilation of Software for FPGA. Proceedings
of the16th International Conference on Application-Specific Systems, Architecture and
Processors (ASAP’05), 2005, pp. 225-230.

[19] Dhananjay Kulkarni et al. Compile Time Area estimation for LUT-based FPGAs. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 11(2006), pp. 104-
122.

[20] Xilinx Corporation. Xplorer Technology. Available at
http://www.xilinx.com/products/design tools/logic design/implementation/xplorer.htm.

[21] Min Xu. Fadi J. Kurdahi. Area and timing estimation for lookup table based FPGA. Proceed-
ings of the 1996 European conference on Design and Test, 1996, pp. 151.

[22] Shankar Balachandran. A-priori wirelength and interconnect estimation based on circuit
characteristics. Proceedings of the 2003 international workshop on System-level intercon-
nect prediction SLIP, 2003, pp. 77-84.

[23] Tanay Karnik and Sung-Mo Kang. An Empirical Model For Accurate Estimation of Rout-
ing Delay in FPGAs. Proceedings of the 1995 IEEE/ACM international conference on
Computer-aided design, 1995, pp. 328-331.

[24] Micheal Hutton. Interconnect Prediction for Programmable Logic Devices. Proceedings of
the 2003 international workshop on System-level interconnect prediction, 2003, pp.31-38.

[25] Valavan Manohararajah et al. Difficulty of Predicting Interconnect Delay in a timing driven
FPGA CAD Flow. In Proceedings of International Proceedings on SLIP, 2006, pp. 3-8.

[26] Seong Y. Ohm et al. A comprehensive estimation technique for High-level Synthesis. Pro-
ceedings of the 8th international symposium on System synthesis, 1995, pp. 122-127.

[27] Carlo Brandolese et al. An area estimation methodology for FPGA based Designs at system
C- level. Proceedings of the 41st annual conference on Design automation, 2004, pp. 129-
132.

16


