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Abstract: Real-time image rotation is an essential operation in many application areas such as
image processing, computer graphics and pattern recognition. Existing architectures that rely on
CORDIC computations for trigonometric operations cause a severe bottleneck in high-throughput
applications, especially where high-resolution images are involved. A novel hierarchical method
that exploits the symmetrical characteristics of the image to accelerate the rotation of high-
resolution images is presented. Investigations based on a 512 � 512 image show that the proposed
method yields a speedup of �20� for a mere 3% increase in area cost when compared with exist-
ing techniques. Moreover, the effect of hierarchy on the computational efficiency has been evalu-
ated to provide for area–time flexibility. The proposed technique is highly scalable and significant
performance gains are evident for very high-resolution images.
1 Introduction

The emergence of time-critical applications for medical
image processing, computer vision and pattern recognition
has created the need for real-time image processing sol-
utions. Realisation of high-throughput image processing
solutions has been made feasible with the recent advance-
ments in high-speed camera systems [1, 2], and the advent
of state-of-the-art CAD tools that lead to rapid hardware
implementations. A fundamental problem that is commonly
found in these time-critical applications is rotation of
images, often of high resolution. Real-time rectification of
medical images during endoscopy [3] and registration
of astronomical images [4, 5] are typical examples of
applications that require high-throughput image rotation.

Conventional rotation of images involves performing
trigonometric computations on each image pixel.
Previously reported hardware implementations for image
rotation rely on a LUT (look-up table) or a CORDIC (coor-
dinate rotation digital computer)-based method to simplify
the complex trigonometric operations. CORDIC [6] is
capable of performing a series of micro-rotations on a
vector lying on the X–Y plane over a desired input angle
using simple add-shift operations. However, the iterative
nature of CORDIC can lead to performance degradation,
especially for images of high resolution. An alternative
technique to overcome the inefficiency of the trigonometric
computations is by employing an LUT to store all the poss-
ible sine and cosine values. However, as the size of the LUT
is governed by the resolution of angles that can be rotated,
the hardware cost incurred becomes undesirable for appli-
cations that require high rotation resolutions.

In this paper, we propose a novel hardware implemen-
tation for rotation of high-resolution images, which replaces
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the computer intensive CORDIC computations with simple
additions. The proposed method is based on three simple
techniques: (1) hierarchical strategies, (2) exploitation of
image symmetry and (3) exploitation of the pixel order. In
addition, we introduce a parameter called Hierarchy and
show how it affects the overall performance of the architec-
ture. It is demonstrated that an optimal choice of this
parameter can lead to very high-throughput computations.
It is also noteworthy that the proposed implementation
can be integrated with various pixel interpolation schemes
to map the rotated pixel positions onto the original pixel
positions. We will provide a discussion on the various
pixel interpolation schemes and the corresponding hardware
cost and accuracy implications on the proposed system.
Finally, we show that the proposed technique can achieve
significant speedup at a marginal increase in hardware
cost, while providing the same degree of accuracy with an
existing technique.

In the next section, we begin by describing the two exist-
ing hardware implementations for image rotation that
employ LUT and CORDIC-based methods, respectively.
The limitations of these methods for very high-throughput
and low-cost realisations will be highlighted. We then
describe the proposed strategies for area–time efficient
image rotation. This is followed by an accuracy analysis
of the proposed system and performance–area comparison
with an existing technique. Finally, we show the hardware
implications of the proposed technique for higher resolution
images.

2 Existing techniques

To date, there has been very limited reported work on hard-
ware implementations for image rotation. There are,
however, two notable contributions by Ghosh and
Majumdar [7] and Bhandarkar and Yu [8], which employ
CORDIC-based and LUT-based methods, respectively.

2.1 LUT-based implementation

Bhandarkar and Yu [8] proposed an image rotation engine
that is based on the mapping of pixels along a skew raster
scan line in the source image to a horizontal scan line in
the rotated image space. The skew lines are parallel to
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each other in the source image and inclined at an angle 2u
to the horizontal, where u is the specified rotation angle. The
design makes use of a LUT to store the sine and cosine
values that are required for computation of the initial
rotated position. Owing to the backward mapping of the
pixels onto the rotated image, the holes or measles that
are normally introduced in the rotated image have been
eliminated.

However, the throughput is still limited, as there is no
parallelism exploited in this architecture. Although this
technique has scope for parallelism, it would incur a
computational overhead and a significant increase in hard-
ware cost. It has been shown how the bulk of the operations
can be handled by just additions. However, it becomes
inevitable to perform at least one set of multiplication oper-
ations to obtain the address of the first pixel in the first scan
line. This is because only sine and cosine values are stored
and computations resembling (1) and (2) are mandatory to
obtain the starting address of the first skew line, before
generating the remaining addresses by simple additions.
This overhead becomes more prominent when the archi-
tecture is parallelised. Moreover, it does not scale well for
applications requiring high rotation resolutions. For
example, if the resolution of the rotation is made finer
(e.g. 0.18 instead of 18), the memory required to store the
sine/cosine values will increase by ten times.

2.2 CORDIC-based implementation

2.2.1 Pixel-by-pixel CORDIC-based rotation: The
CORDIC engine can be employed to improve the hardware
efficiency of image rotation systems that are based on com-
puting transformations on each image pixel [9]. Let (x0, y0)
be the coordinates of a pixel, which has been rotated by an
angle of f where (x0, y0) is the original position of the pixel.
Equations (1) and (2) show the relationship between (x0, y0)
and (x0, y0), where d ¼ þ1/21, when f is þve/2ve

x
0
¼ cosfðx0 � dy0 tanfÞ ð1Þ

y0 ¼ cosfð y0 þ dx0 tanfÞ ð2Þ

The CORDIC algorithm, which was developed by Volder
[6], can be used to reduce the complexity of the trigono-
metric computations in (1) and (2). The CORDIC compu-
tation performs a series of micro-rotations on a vector
lying on the X–Y plane over a desired input angle using
simple add-shift operations. The algorithm is based on the
principle that any angle can be approximated as a sum-
mation of n micro angles of the form arctan(22i) (i.e.
f ’

P
i21
n + arctan(22i)). The equations for the CORDIC

micro-rotations shown in (3) and (4) can be derived from
(1) and (2) by replacing the multiplication with simple
shift operations by i positions

xiþ1 ¼ kðxi � diyi2
�i
Þ ð3Þ

yiþ1 ¼ kð yi þ dixi2
�i
Þ ð4Þ

Image rotation architectures that rely on the pixel-by-pixel
transformations are intensive in CORDIC computations.
In the recent past, there have been many attempts to
improve the performance of the CORDIC engine, which
included the use of redundant number systems [10, 11]
and architectural improvements such as pipelining and par-
allelism [12]. Although these advancements have shown
tremendous improvement in the CORDIC algorithm, the
number of CORDIC operations will still remain as the
bottleneck that restricts the throughput of the architecture.
This is exacerbated in systems that process high-resolution
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images, as the number of CORDIC computations increases
proportionally with the number of image pixels.

2.2.2 Pipelined-parallel architecture: Ghosh and
Majumdar [7, 13] have proposed schemes to reduce the
number of CORDIC computations in an image rotation
system. A pipelined-parallel architecture for image rotation
using CORDIC was proposed where a 512 � 512 image is
first divided into an 8 � 8 window grid [7]. The rotated
positions of the centres of the 64 window grids are first
calculated using the CORDIC engine and stored in the
initialisation stage as shown in Fig. 1. In Pipeline Stage
A, the relative rotated offset of each pixel with respect to
its window centre is computed using the CORDIC engine.
Only the pixels of a single window are considered for the
offset computation, as the relative offsets of the correspond-
ing pixels in each window are the same. In Pipeline Stage B,
this offset is added in parallel to the 64 rotated window
centres using local adders to generate the rotated positions
of the 64 corresponding pixels simultaneously. The
CORDIC engine employed for a 512 � 512 image [7]
performs 12 CORDIC iterations with 20-bit data path
width.

The bottleneck of this approach arises from the iterative
CORDIC micro-rotations. First, the approach has high initi-
alisation latency, as 64 CORDIC computations are required
to obtain the rotated window centres. In addition, the
CORDIC computations are required in Pipeline Stage A
for each pixel in a single window. This incurs an additional
64 � 64 ¼ 4096 CORDIC calculations, which contributes
to high overall latency.

3 Proposed technique

The image rotation scheme proposed in this paper addresses
the computational bottleneck of the approach in Ghosh and
Majumdar [7], without the need for large LUT, which is a
potential problem in the work of Bhandarkar and Yu [8].
The following schemes have been proposed to increase
the throughput of the rotation process:

(i) Employing a hierarchical approach to generate the
rotated centres in order to significantly reduce the initialisa-
tion latency.
(ii) Exploiting the symmetrical characteristics of the image
coordinate system to further reduce the number of CORDIC
computations for calculating the rotated centres.
(iii) Replacing the CORDIC computations in the offset cal-
culation with additions by exploiting the order of the pixel
coordinates.

3.1 Hierarchical approach for generating
rotated centres

This method aims to reduce the number of CORDIC com-
putations in the initialisation stage by recursively partition-
ing the image into hierarchical quadrant layers. To explain
this method, we take the example of an 8 � 8-window grid
and its three hierarchical quadrant layers as shown in Fig. 2.
A window centre lies in a single quadrant in each of the
three quadrant layers. In the example shown, centre P has
fA, B, Cg as its set of identifying quadrants in layers 1, 2
and 3, respectively. The rotated position of any centre P
(with respect to the image centre) is equivalent to the sum
of the rotated positions of the centres of the identifying
quadrants with respect to the layer centres. Thus, the
number of CORDIC operations to obtain the 8 � 8
window centres can be reduced by computing only the



Fig. 1 Illustration of rotation method [7]
rotated positions of the four centres of each layer, and sub-
sequently generating the rotated positions of all the centres
through various addition combinations of the 12 centres.
This has effectively reduced the number of CORDIC com-
putations from 64 to 12.

As described [7], having a larger dimension of window
grid can lead to increased performance, as there will be a
lesser number of offset computations in Pipeline Stage A
(Fig. 1). This implies that the proposed method can
employ a larger number of hierarchical layers to improve
the performance. However, increasing the number of hier-
archical layers necessitates a larger number of additions to
obtain all the rotated window centres in the initialisation

Fig. 2 Hierarchical rotation of centres
stage. Hence, the choice of the number of hierarchical
layers affects the overall performance. This will be
discussed in more detail in Section 6.1.

3.2 Exploiting symmetrical characteristics to
reduce CORDIC computations

We can further reduce the number of CORDIC compu-
tations in the initialisation stage by exploiting the fact that
the coordinates of the window centres in the hierarchical
layers are symmetrical about the coordinate axes. Hence,
in hierarchical layers with the same number of horizontal
and vertical pixels, we only need to perform the CORDIC
computations on a single representative centre of the
layer. The remaining three image centres can be inferred
by exploiting the symmetrical characteristics of the coordi-
nate system. In the case of hierarchical layers with a differ-
ent number of horizontal and vertical pixels (rectangular
images), two CORDIC computations are required. It is note-
worthy that the inference of the remaining window centres
requires at most a simple negation. Fig. 3 illustrates this
notion of inferring the rotated window centres based on
the symmetrical characteristics of the image. For example,
by computing (x0, y0), the rotated position of (x, y), we
can easily infer the rotated positions of (x, 2y), (2x, 2y)
817



and (2x, y). This has led to a further reduction in the
number of CORDIC computations from 12 to 3.

3.3 Generation of the pixel offsets

In this section, we propose a hardware efficient technique to
reduce the computational complexity of Pipeline Stage A
(Fig. 1). The offsets of each pixel in the 64 � 64 window
are computed using the iterative CORDIC computations
[7]. However, if the pixel coordinates are provided in a con-
secutive order for the offset computations, it is sufficient to
calculate the offset of just one pixel, and increment the
result with a regular value (of sin f or cos f) to obtain
the offsets of the neighbouring pixels. The explanation to
this can be obtained by analysing (3) and (4) for input

Fig. 3 Inferring the rotated pixel values based on the image
symmetry
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values (x, y), (xþ 1, y) and (x, yþ 1), as neighbouring
pixels differ by exactly 1 unit. The flowchart shown in
Fig. 4 elucidates the process. This reduces the 642

CORDIC computations to mere additions.

4 System overview

The overall rotation process can be broadly divided into the
generation of rotated centres and generation of offsets,
running on similar lines [7]. For illustration purposes, we
fix the number of hierarchical layers to three, and we
assume that the hierarchical layers have an equal number
of horizontal and vertical pixels. Fig. 5 depicts the main
computations involved. The rotated position of a single
window centre from each hierarchical layer is first com-
puted using CORDIC. Subsequently, the rotated values of
the remaining window centres in the hierarchical layers
are inferred through the ‘Symmetry-based Inference Unit’.
As discussed earlier, this requires at most a simple negation
operation. The outputs of this unit are added in different
combinations to generate the 8 � 8 rotated-positions of
the window grid centres. These values are stored in the
memory to be used in the next stage.

To generate the pixel offsets, the sine and cosine value of
the angle are obtained using the CORDIC engine. Then,
rotation is performed on the first pixel of the window
using the CORDIC engine to generate X 0 and Y 0.
Subsequent offsets are obtained by incrementally adding
the sine and cosine values to the previously computed
X 0 and Y 0 as described in Fig. 4. As these offsets are
Fig. 4 Offset computation



Fig. 5 System overview of proposed image rotation engine
generated, they are simultaneously added to all centres using
the local adder array to obtain the final rotated pixel-
coordinates.

4.1 Accuracy analysis of the proposed system

The accuracy of the proposed image rotation system is gov-
erned by two factors: (i) the interpolation scheme employed
in the image rotation system and (ii) the error of the rotated
pixel position, which are elaborated upon in the sections to
follow. A certain degree of accuracy of the final rotated pos-
ition is often needed in order to choose certain interpolation
schemes. It is worth mentioning that the proposed system
can employ various interpolation schemes based on the
application’s requirement by utilising a CORDIC
implementation with sufficient accuracy.

4.1.1 Interpolation schemes: Conceptually, an image
rotation requires two steps: a coordinate system transform-
ation followed by pixel interpolation. Interpolation is
necessary when the transformed pixel positions do not
coincide with the original pixel positions. New pixel
values are obtained by interpolating the original pixels in
the neighbourhood of the transformed pixel position.
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There are many popular interpolation functions that include
nearest neighbour, bilinear, bicubic polynomial, cubic
spline and Gaussian [14]. The proposed system can easily
accommodate any of these interpolation schemes. The
choice of interpolation scheme involves three main con-
siderations: (i) computational cost, (ii) required quality
of the final image and (iii) accuracy of the rotated pixel
position, each of which is discussed in what follows.

There is a direct cost consideration when choosing among
these interpolation kernels. For example, the nearest neigh-
bour requires the least number of computations as no arith-
metic operations are needed. The interpolated output data
point is assigned the value of the nearest sample point
from the original data. As mentioned in the work of
Di Bella et al. [15], cubic interpolation requires 40%
fewer multiplies than bicubic interpolation.

The other consideration when choosing the interpolation
methods is the desired accuracy of the final image. Each
method has a capacity to reconstruct the sampled image
with a certain degree of exactness. It can be seen that of
all the interpolation methods considered, the nearest neigh-
bour introduces noticeable noise and jagged edges [15].

Another important issue that accompanies the choice of
the interpolation method is the accuracy of the rotated
pixel position, which has to match the size of the inter-
polation kernel. In other words, if the rotated coordinate is
of 1-pixel accuracy, then only the nearest neighbour
method would be feasible. The other two methods require
sub-pixel accuracies of the coordinate position. For
example [14], to implement the Gaussian interpolation,
each destination pixel is treated as an array of 65 � 65
subpixels.

4.1.2 Accuracy of rotated pixel position: In this
section, we describe the quantisation errors that affect the
accuracy of the final rotated coordinate position in our
system. As described [15], the CORDIC algorithm inher-
ently suffers from two types of quantisation errors, which
are due to:

(i) approximation of the angle arising from finite number of
micro-rotations;
(ii) usage of finite length registers in the CORDIC data
path.

The first type of error is inherent in the CORDIC algor-
ithm and is dependent on the number of iterations that
are chosen. However, the second type is purely a design
issue, as it is affected by the size of the finite-length reg-
isters. In the proposed approach, error would be introduced
because of the large number of additions during the offset
computations. The proposed technique provides the means
for design exploration on the basis of accuracy and area
trade-offs. Simulations for register lengths varying from
12 to 32 were performed for a 512 � 512 image. The
maximum error is defined as [max(errorx)þmax(errory)]/2
where errorx and errory are the maximum errors in the x
and y coordinates, respectively. For each data-path length,
this error is recorded for all angles, and the maximum of
these errors is plotted on a logarithmic scale as shown in
Fig. 6. It can be observed that the error decreases exponen-
tially with increasing operand length and becomes negli-
gible for very high operand lengths. As mentioned
earlier, the choice of interpolation method is application
specific and the rotation schemes proposed in this paper
are independent of it. The various interpolation schemes
can be adopted by altering the register length to provide
for sufficient accuracy. In the remaining sections, we
820
adopt the same interpolation scheme [7], which is the
nearest neighbour interpolation method, in order to
compare between the two systems.

5 Results and comparisons

5.1 Choice of data width

We show that any additional error that is induced due to
fixed register sizes can be offset completely by extending
the data width. To illustrate this, we choose the image
size as 512 � 512, the interpolation scheme as nearest
neighbour and to keep the error comparable with that in
Ghosh and Majumdar [7], we replaced the registers and
adders of length 20 [7] with those of length 25. As men-
tioned earlier, the number of hierarchical layers was
chosen to be three to keep the window sizes comparable.
Fig. 7 shows the plot of average error per pixel for the pro-
posed method with the register length of 20 and 25. The
error is obtained by comparing the results with the conven-
tional rotation method that performs the CORDIC oper-
ations on each pixel in the 512 � 512 image. The outputs
(rotated x and y coordinates) were compared with the
pixel-by-pixel rotation method for all angles from 08 to
458 with 18 resolution.

5.2 Comparative analysis

In this section, the proposed rotation engine is compared
with the design proposed by Ghosh and Majumdar [7] in
terms of design considerations, computational complexity,
latency and area of overall chip for a 512 � 512 image. A
12-iteration CORDIC engine is used. The data width of
the adders-registers used in the CORDIC engine for the
method proposed by Ghosh and Majumdar [7] and the pro-
posed method are 20 bit, and 25 bit, respectively. The
outputs of CORDIC in Pipeline Stage A (Fig. 1) are trun-
cated to 10 bits prior to the additions in Pipeline Stage
B. So, the data widths of the local-adders in both
methods are 10-bits wide. An 8 � 8 window grid is
employed, which gives rise to 64 window grid centres
and window size of 64 � 64. To obtain this configuration,
a hierarchy of three was chosen for the proposed method.
The latency estimates are obtained from the Passport 0.35
Micron standard-cell library [16].

5.2.1 Computational complexity: The entire rotation
process essentially comprises of additions and CORDIC
functions and these will be analysed separately for both
the methods (Figs. 1 and 5). In the work of Ghosh and
Majumdar [7], 64 centres are rotated during the initialisa-
tion phase and this accounts to 64 CORDIC operations. In
the proposed method, three centres are rotated and
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subsequently two additions are performed for every rotated
centre. Hence, a total of three CORDIC computations and
128 additions are performed in the initialisation stage. For
the generation of the offsets, the technique proposed by
Ghosh and Majumdar [7] performs a rotation for each of
the 64 � 64 pixels in the offset-window, accounting to
642 ¼ 4096 CORDIC operations. In our proposed
method, one CORDIC computation is performed to
rotate the first pixel of the offset-window and another
CORDIC computation to obtain the sine and cosine
values of the input angle. Subsequently, the remaining
4095 offsets are obtained through additions. Once the
offsets and the rotated centres are generated, the final
phase is similar for both methods, where each offset is
added to all the rotated centres using local-adders to
generate 64 rotated pixels simultaneously. The number
of different computations involved in each stage are sum-
marised in Table 1 and it can be seen that there are fewer
CORDIC operations in the proposed method.

5.2.2 Latency comparison: We begin by estimating the
latency of the CORDIC computations for the method of
Ghosh and Majumdar [7] and the proposed method. It is
assumed that all additions are implemented using carry
look ahead (CLA) adders and the latency estimates are in
terms of full adder latency (TFA). The estimated latency for
an n-bit CLA addition is (log2 n)TFA. Hence, a 10-bit
add-operation is estimated to take 3.32TFA, 20-bit add
about 4.32TFA and a 25-bit addition takes 4.64TFA. A
CORDIC engine comprises addition and shift operations.
Assuming that the shift operations are carried out through
MUX-based barrel shifters, a maximum shift of 12-positions
warrants four levels of MUX. So the latency attributed to the
shift operation is 4 � TMUX, where TMUX is the latency of a
2 2 1 multiplexer. A 12-iteration CORDIC operation
involves 12 additions and 12 shifts and delay due to use of
registers. We assume that TF – F is the latency of a register.
We can also assume that TF – F ’ TFA and TMUX ’ 0.65TFA

[17]. Based on these values, the CORDIC computational
latency for the method in Ghosh and Majumdar [7] is
96TFA(TCORDIC – [7] ¼ [12 � (4.32TFAþ TF –

Fþ 4 � TMUX)]) whereas that of the proposed method is
99TFA(TCORDIC – NEW ¼ [12 � (4.64TFAþ TF –

Fþ 4 � TMUX)]).
Hence, the initialisation latency for the method in

Ghosh and Majumdar [7] is I[7] ¼ 64 � 96 ¼ 6144TFA,
whereas that of the proposed method is Inew ¼
3 � 99þ (64 � 2 � 4.64) ¼ 891TFA. The initialisation
stage of the proposed method is about seven times faster
now, as the number of CORDIC operations is reduced.
Referring back to the pipeline shown in Fig. 1, the overall
latency [7] is I[7]þ (642 � TCORDIC – [7]) ¼ 399 360TFA.
For the proposed method, the overall latency is given by
Inewþ [(642 2 1) � 4.64]þ (2 � 99) ¼ 19 199TFA.

The latency estimates take into account the pipelined
processing of the two methods. For the method in Ghosh
and Majumdar [7], the CORDIC computations in
Pipeline Stage A are done in parallel with the additions
in Pipeline Stage B (Fig. 1). The latency of CORDIC in
Pipeline Stage A is more time-consuming than the latency
of the additions in Pipeline Stage B. Hence, the throughput
of the pipelined implementation in Ghosh and Majumdar [7]
is governed by the latency of CORDIC, and this is used for
the pipeline latency estimates. Similarly, for the proposed
method, the addition with 25-bit operands to generate
offsets is done in parallel with the addition of offsets and
rotated centres using 10-bit operands. The former latency
is therefore considered in the performance evaluations.
Table 1: Area, latency, computational complexity comparisons

Method in Ghosh and

Majumdar [7]

Proposed method

Computational latency (TFA) 399 360 19 199

Area (AFA) 3817 3951

Computational complexity CORDIC Addition CORDIC Addition

Initialisation 64 — 3 64 � 2

Pipeline A 642 — 2 642 2 1

Pipeline B — 643 — 643
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Table 1 summarises the performance findings and
it is evident that an overall speedup of �20� is possible
over the technique proposed by Ghosh and Majumdar [7].

5.2.3 Area comparison: The area of the CORDIC
engine used in Ghosh and Majumdar [7], which has three
20-bit adders and 20-bit registers (for each X, Y and Z data-
path), a pair of 20-bit wide barrel shifters and a memory
table, is estimated to be (20 � 3 � (2AFAþ AF –

F))þ (20 � 2 �
4 � AMUX) þ (20 � 12AF – F), where AFA, AF – F and AMUX

correspond to the area of a 1-bit full adder, flip-flop and
2 2 1 MUX, respectively. A 1-bit CLA is estimated to
occupy twice the area of a 1-bit serial adder. The memory
is assumed to be implemented as flip-flops and for a 12
iteration CORDIC, 12 arctan values are stored. This
requires an area of 12 � 20AF – F. It can also be inferred
that AF – F ’ 1.13AFA and AMUX ’ 0.47AFA [16]. Hence,
the CORDIC engine in Ghosh and Majumdar [7] is esti-
mated to occupy about 534AFA. Similarly, the area of the
CORDIC engine used in the proposed method is about
668AFA.

The architecture in Ghosh and Majumdar [7] primarily
comprises a CORDIC engine and 642 pairs of local-adders.
In the proposed method, there is a CORDIC engine, a pair of
adder-units to generate the rotated centres and the offsets
and the 642 sets of local-adders. The memory requirement
to store the rotated centres is estimated to be about
64 � 10 � AFF ¼ 723AFA. All the local-adders in both
methods are implemented as 10-bit CLAs. Assuming there
are 64 pairs of them (one for each centre’s x and y coordi-
nates), the area is estimated to be 64 � 10 � 2 � 2AFA.
The adder-unit for generating the offsets in the proposed
technique comprises 25-bit CLAs (area ¼ 100AFA).

The area estimates are also summarised in Table 1. It can
be seen that the areas of the two architectures are compar-
able with the proposed method showing a marginal increase
of about 3%.

6 Extending to higher-resolution images

In this section, we introduce a new parameter called
Hierarchy (or h) that enables us to study the proposed
method across a wide range of area–time measures. A
very high-level analysis is done to derive expressions
for latency and area of the rotation engines in terms of h
that would help in making an informed choice of the
hierarchy. This is followed by a comparative study with
the reference model, keeping the focus on high-resolution
images.

6.1 Choice of hierarchy

The parameter h refers to the number of layers that the
image is broken into before the proposed techniques are
822
applied. The extreme cases are h ¼ 0 and h ¼ log2 m
where m refers to the length of the square image.

(i) h ¼ 0: With no hierarchy, the initialisation phase is
eliminated, as the image centre is the only centre to be
rotated (with respect to itself and hence redundant) and
the entire image becomes the window for offset generation.
Using the proposed engine, the computations involved
would be only additions with 2 CORDIC operations. One
of the main limitations of this set-up is that it cannot be par-
allelised, because pixels need to be fed in successive order
(Fig. 4). In addition, larger window sizes will lead to higher
quantisation error.
(ii) Maximum possible h: With the maximum hierarchy of
log2 m, each pixel becomes a centre and this implies the
entire computation is done in the initialisation phase.
Pipeline Stages A and B now become redundant.

The choice of this parameter exerts a push–pull effect on
the initialisation latency and the offset generation. For
example, lower levels of hierarchy will lead to larger
window sizes, and this increases the latency of the offset
computation. Alternatively, higher levels of hierarchy lead
to more additions of the layer centres to obtain the rotated
positions of the centres in the initialisation phase. It is
evident that the optimal hierarchy lies somewhere in
between these two extremes.

In order to obtain the optimal choice of hierarchy given
an image of size m � m, we first represent the overall
rotation latency estimate in terms of number of additions
for various hierarchies. In order to derive these figures,
first, the number of CORDIC and addition computations
contributing to the latency of the engine are listed. Then,
the latency of the CORDIC is estimated to be k times that
of an add operation.

Derivation of k: To derive k, we assume the requirement
of 1-pixel accuracy of the rotated position after truncation,
as mapping is done onto a single pixel and no interpolation
is performed. For this, log2 m iterations would suffice within
a CORDIC operation, each of which mainly comprise one
add one shift operation, apart from the register delays.
Assuming that barrel shifters are used for shifting,
implemented as a tree of multiplexers and by obtaining
the relative delay of a 2 2 1 MUX with respect to a 1-bit
full adder, we can estimate the latency of the CORDIC
engine to be 1.6 log2 m times that of an add operation. To
obtain this value, we also assume that the size of registers
used for addition is nþ log2 n, where n is the number of
iterations.

Table 2 shows the expression for latency of rotation (in
number of adds) for the proposed method in terms of
hierarchy h and image size m � m. It also shows the
latency for the method in Ghosh and Majumdar [7] with
fixed window size a � a.
Table 2: Latency expression as function of hierarchy

Method in Ghosh and Majumdar [7] Proposed method

CORDIC Addition CORDIC Addition

Initialisation (m/a)2 — hþ 2 4h(h 2 1)

max (Pipeline Stage A, Pipeline

Stage B)

a2 — — (m/2h)2

Total latency (number of adds) [(m/a)2þ a2]k (hþ 2)kþ 4h(h 2 1)þ (m/2h)2

m �m: image size; k: 1.6 log2 m; a � a: window size; h: hierarchy



Fig. 8 shows a plot of the latency (in number of adds) in
logarithmic scale plotted against varying hierarchies. It
illustrates that extreme hierarchies do not lead to the most
time-efficient implementation. Table 3 shows the optimal
hierarchy for images of varying image resolution. This
corresponds to the hierarchy with the minimum latency
for various resolutions in Fig. 8.
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Table 3: Optimal hierarchy for rotation of an m 3 m
image

Image resolution, m Optimal hierarchy

128 3

256 4

512 4

1024 4

2048 5

4096 5

8192 6
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6.2 Latency estimate comparison

‘Gain’ is defined as, the ratio of the latency of the method
in Ghosh and Majumdar [7] to the optimal latency of the
proposed method. The latency measures are obtained by
referring to Table 3. Fig. 9 shows a graph of gain
plotted against varying image resolutions. It can be
observed that there is a definite gain for all resolutions.
The gain becomes more pronounced for images of
higher resolutions as it increases in an exponential
fashion. It is worth noting that in the initialisation
phase, the additions for obtaining the rotated centres are
assumed to be sequential. In order to further increase
the gain, the local adders can be employed in the initiali-
sation stage to perform the additions for obtaining the
rotated centres in parallel. Also, the proposed system
can employ improved CORDIC implementations to
further increase the performance gain. However, as the
majority of the operations in the proposed system
consist of additions, the improvements in CORDIC will
not lead to a notable performance gain.

6.3 Effect of changing hierarchy on area

The memory area to store the centres in the initialisation
stage increases with the number of hierarchies.
Furthermore, as the proposed architecture requires every
centre to have a local adder for addition of the offset in
Pipeline Stage B (Fig. 1), the adder area also grows propor-
tionally. The number of such adders is (m/a)2 and (m/2h)2

for the method in Ghosh and Majumdar [7] and the
proposed method, respectively, which is the same as the
number of memory elements to store the centres. Treating
the area of one memory element with its local adder
together as a unit a, we plot the area in a for both
methods in Fig. 10. For the proposed method, the area cor-
responding to the configuration giving optimal performance
is considered. Both methods use one CORDIC engine each
and this area is negligible compared with the overall area
consumed by the memory and the local adders.

As can be observed in Fig. 10, the proposed engine is
more favourable in terms of area and latency for high
image resolutions. It is noteworthy that this graph takes
into account the optimal hierarchy and hence the areas
look unattractive for lower resolutions. For cost sensitive
solutions, a different hierarchy that leads to a lesser
optimal solution can be chosen to satisfy the area constraint
and at the same time sustain a considerable gain in
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performance. For example, the rotation engine described in
Section 5 is 20� faster with almost no increase in area.
Further reduction of the area can be achieved by reusing a
smaller set of adders for the computations.

7 Conclusion

We have proposed novel schemes to notably minimise the
number of CORDIC operations to accelerate the process
of image rotation. We have employed hierarchical tech-
niques to better manage the required number of additions
and CORDIC operations, thereby providing for area–time
flexibility in the hardware realisation. It has been demon-
strated that this approach provides for substantial speedup
with an acceptable increase in area cost when compared
with existing techniques. We have also analysed the effect
of hierarchy on the computational efficiency so as to ident-
ify the optimal hierarchy for a given image resolution. In the
case of the 512 � 512 image, the hierarchy of four was
shown to be optimal although the maximum possible hierar-
chy is nine. We have shown that the increase in the data
width to accommodate the total number of additions
incurs a marginal increase in the overall hardware cost.
The proposed technique is highly scalable and lends well
for high-speed rotation of high-resolution images.
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