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Abstract: Custom instruction generation is fast becoming popular as it 
provides an alternative means to realize application specific processors. In 
this paper, we propose an efficient methodology for rapid instruction set 
customization on RISPs (Reconfigurable Instruction Set Processors) using 
predefined sets of dataflow structures that are based on templates and reusable 
structures. A novel template selection strategy was employed to reduce the 
number of templates required for matching by up to 50%, while providing 
comparable performance with known approaches. It has been shown that 
custom instructions could be realized through instantiation of a reduced set of 
pre-designed reusable structures. Experimental results show that a small 
number of reusable structures can sufficiently cater to custom instruction 
generation to notably reduce the time required to realize them on configurable 
hardware. Moreover, based on our evaluations using MiBench benchmark 
suites, the reusable structures constitute to only 2% of all the custom 
instruction instances. The custom instructions generated with reusable 
structures were implemented in FPGA and it is evident that up to 14% area 
savings with comparable performance can be achieved when compared with 
conventional implementation approaches. 
  
Keywords: Instruction customization, methodology, reconfigurable 
processors, FPGA 
 
 

1. Introduction 
 
Future embedded SoC (System-on-a-Chip) solutions will require a higher degree of 

customization to manage the growing complexity of the applications. At the same 

time, they must continue to facilitate a high degree of programmability to meet the 

shrinking TTM (Time-To-Market) window. Lately, extensible processors [1][2] have 

emerged to provide a good tradeoff between efficiency and flexibility. Many 

commercial processors (e.g. Xtensa from Tensilica [3], ARCtangent from ARC [4], 

etc.) offer the possibility of extending their instruction set for a specific application by 

introducing custom functional units within the processor architecture. This 
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application-specific instruction set extension to the computational capabilities of a 

processor, provides an efficient mechanism to meet the growing performance and 

TTM demands. However, the NRE (Non-Recurring Engineering) costs of redesigning 

a new extensible processor can still be quite high. This is exacerbated as the cost, 

associated with design, verification, manufacture and test of deep sub-micron chips, 

continue to increase dramatically with the mask cost.  

 

A RISP (Reconfigurable Instruction Set Processor) [5] consists of a microprocessor 

core that has been extended with a reconfigurable fabric. Similar to extensible 

processors, the RISP facilitate critical parts of the application to be implemented 

using a specialized instruction set on reconfigurable functional units. The advantages 

of a RISP over the extensible processors stem from the reusability of its hardware 

resources in various applications without incurring high NRE costs. Due to this, RISP 

are more flexible than an extensible processor, which precludes post design 

flexibility. Although reconfigurability can also be harnessed to increase hardware 

reusability at run-time, the reconfiguration overhead can significantly hamper the 

RISP’s performance. Hence, commercial RISPs (e.g. Altera NIOS II [6], Xilinx 

MicroBlaze [7], and Stretch processors [8]) often offer large platforms with various 

choices of programmable resources. As with extensible processors, custom instruction 

selection and implementation for the RISP must be realized rapidly to meet the tight 

TTM requirements.  

In this paper, we introduce a methodology for instruction set customization on RISPs 

that relies on a set of predefined dataflow structures. The proposed methodology 

facilitates rapid instruction set customization by providing: 1) readily available 

templates for efficient template matching in the custom instruction generation stage; 

and 2) a set of pre-designed reusable structures that can be instantiated on demand in 

the implementation phase. Although not the focus of this paper, the methodology also 

dispenses the need for lengthy hardware synthesis during design exploration, as the 

reusable structures are pre-characterized to obtain accurate hardware estimation 

models. This significantly increases the efficiency of the custom instruction 

generation process. Apart from presenting practical solutions for rapid instruction set 

customization, this paper also offers an insight to reconfigurable area requirements 

and efficient resource utilization in commercial RISP platforms. 
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A one-time effort is required to identify the templates from a subset of enumerated 

custom instruction instances. The pattern enumeration method introduced in [9] is 

combined with graph isomorphism [10] to identify unique custom instruction 

instances from a set of embedded applications. The process of selecting a set of 

templates from the custom instruction instances is called template generation. We 

present a heuristic approach for selecting the templates from the enumerated patterns, 

and show that only a limited number of templates are required to achieve comparable 

results with known techniques. The architecture generation stage then constructs the 

reusable structures by using a sub-graph isomorphism method to combine the selected 

templates into a set of maximal unique structures. We show that the total number of 

reusable structures generated from eight applications in the MiBench embedded 

benchmark suite [11] is only 23. Moreover, a maximum of only 9 reusable structures 

are required for a particular application. When compared to conventional 

implementation practices, synthesis results on the FPGA (Field Programmable Gate 

Array) platform show that the reusable structures based implementation approach 

exhibit potential area savings, with less than 0.5ns of average critical path delay 

difference. 

 

In the following section, we discuss some previous work in the areas instruction set 

customization and RISP. In Section 3, we present our methodology for instruction set 

customization. Section 4 and 5 describes the template and architecture generation 

stages in the methodology. Section 6 presents the experimental results, and the paper 

concludes with some consideration on future directions. 
 
 
2. Background 
 
For a given application, a RISP configuration that outperforms the conventional 

processors must be determined rapidly without delaying the short TTM requirements 

for embedded systems. However, automatically determining the right set of extensible 

instructions for a given application and its constraints remains an open issue [2]. The 

problem of custom instruction identification can be loosely described as a process of 

detecting a cluster of operations or sub-graphs from the application DFG (Dataflow 

Graph) that is to be collapsed into a single custom instruction to maximize some 

metric (typically performance). Previous works in custom instruction identification 
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can be broadly classified into the following four categories: 1) pattern matching [14], 

2) cluster growing [15], 3) heuristic-based [16], and 4) pattern enumeration [9].  

 

In [14], an approach that combines template matching and generation have been 

proposed to identify clusters of operations based on recurring patterns. The clusters 

identified with this approach are typically small and may not lead to a notable gain 

when implemented as custom instructions. The method proposed in [15] attempts to 

grow a candidate sub-graph from a seed node. The direction of growth relies on a 

guide function that reflects the merit of each growth direction. In [16], a genetic 

algorithm was devised to exploit opportunities of introducing memory elements 

during custom instruction identification.  

 

The methods discussed above have demonstrated possible gains, but they can 

potentially miss out on identifying some good custom instruction candidates. The 

pattern enumeration method proposed in [9] employs a binary tree search approach to 

identify all possible custom instruction candidates in a DFG. In order to speed up the 

search process, unexplored sub-graphs are pruned from the search space if they 

violate a certain set of constraints (i.e. number of input-output ports, convexity, 

operation type, etc.). In [17], pattern enumeration is combined with pattern selection 

and mapping to identify the most profitable custom instructions in an application. 

Although these two approaches can lead to promising results, they can still become 

too time-consuming especially when dealing with large applications. 

 

An inherent problem in RISP arises from the reconfiguration overhead that is incurred 

while reusing the hardware resources for various functions. For example, the DISC 

(Dynamic Instruction Set Computer) processor proposed in [12] requires a 

reconfiguration time that is projected to contribute up to 16% of an application’s total 

execution time. In [13], a compiler tool chain was presented to encode multiple 

custom instructions in a single configuration to reduce the reconfiguration overhead 

and maximize the utilization of the resources. However, the compiler tool chain 

incorporates a hardware synthesis flow that hampers the efficiency of the design 

exploration process. In commercial RISPs, the run-time reconfiguration overhead is 

exacerbated by the fine-grained programmable structure. For example, the Stretch 

processor [8] requires 80µs to change an instruction on their proprietary 
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programmable logic. Hence, commercial RISPs [6][7] often offer large platforms with 

various choices of programmable resources to cater to the unforeseeable requirements 

of the applications. Inevitably, this leads to under-utilization of the reconfigurable 

area, which is not desirable for cost-effective solutions.  

 

The methodology proposed in this paper differs from previously reported work in 

several ways. Firstly, unlike the application centric methodologies presented in 

[9][13][14][16][17][18], the proposed method identifies a set of predefined dataflow 

structures that can generate custom instructions for numerous applications. Secondly, 

unlike existing methods (i.e. [9][17]), which employs a time-consuming pattern 

enumeration process for each application, the proposed technique performs this 

process only once on a standard set of applications. Thirdly, the enumerated patterns 

are used to generate a set of reusable structures, which are characterized to obtain 

their hardware properties. The pre-characterized structures lead to substantial 

reduction in the design time, as it does not necessitate a lengthy hardware synthesis 

process during application mapping such as that required in existing methods (i.e. [13] 

[18]). Our preliminary studies show that only a small number of reusable structures 

can sufficiently cater to twelve embedded applications, while providing comparable 

performance gain with existing techniques. Finally, the reusable structures are pre-

designed and instantiated when required by the application. To the best of our 

knowledge, our work is the first to present strategies to expedite implementation of 

custom hardware on the RISP.  
 
 
3. Proposed Methodology 
 
Figure 1 illustrates an overview of the proposed methodology for instruction set 

customization using predefined dataflow structures. The proposed methodology 

consists of three key stages, namely template generation, architecture generation, and 

custom instruction generation. It is noteworthy that the first two stages are a one-time 

process, whereas custom instruction generation performs template matching to select 

the custom instructions for each new application. In this paper, we limit the discussion 

to the template and architecture generation stages. 
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Figure 1: Overview of proposed methodology 
 
 
In the template generation stage, the templates are constructed from a set of custom 

instruction instances obtained by enumerating a number of embedded applications. 

Since the templates are derived from the custom instruction instances, they are likely 

to implement a large variation of custom instructions in embedded applications. This 

is a plausible assumption as it has been shown that domain-specific applications 

exhibit common dataflow sub-graph patterns [19], [20]. In the next section, we will 

describe an approach to construct the templates in a tractable manner. In the 

architecture generation stage, a small set of reusable structures are constructed from 

the templates. The reusable structures are then modeled using hardware description 
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languages and stored in a component library. In addition, they are also characterized 

to obtain their hardware estimation models. 

 

Finally in the custom instruction generation stage, template matching is employed to 

identify the custom instructions from a given application. The corresponding reusable 

structures of the selected custom instructions are instantiated and passed to the 

hardware implementation flow. The utilization of the predefined templates and 

reusable structures expedites the custom instruction generation stage. The application, 

which incorporates the custom instructions are also are passed to the compiler. The 

steps in this stage however are beyond the scope of this paper. 

 
 
4. Template Generation 
 
The main task of this stage is to perform template selection from a subset of custom 

instruction instances. The templates are used for two purposes. Firstly, the templates 

are used to select custom instruction candidates from a given application, and 

secondly the templates form the basic structures to construct the reusable structures. 

 

It is noteworthy that compared to [17], the template generation process in our 

methodology is performed only once from a set of embedded applications. Let’s 

denote this set of embedded applications as the standard application set. Hence, 

although this process can be time-consuming due to pattern enumeration of a large 

number of applications, it does not affect the custom instruction generation process.   

 

The proposed approach for template generation is divided into three steps: 1) Custom 

instruction identification and 2) Pattern grouping, and 3) Template selection. 
 
 
4.1. Custom Instruction Identification 
 
The objective of this step is to enumerate the custom instruction instances from an 

application’s DFG. We have modified the pattern enumeration algorithm in [9] to 

identify all the custom instruction instances from the standard application set. As 

mentioned earlier, the method in [9] employs a binary tree search approach that 
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prunes unexplored sub-graphs from the search space if they violate a certain set of 

constraints.  

 

We have used the Trimaran [21] IR (Intermediate Representation) for custom 

instruction identification. In order to avoid false dependencies within the DFG, the IR 

is generated prior to register allocation. For the purpose of this study, we have 

imposed the following constraints on the custom instructions to increase the 

efficiency of the identification process: 

1. Only integer operations are allowed in the custom instruction instance. 

2. Each custom instruction instance must be a connected sub-graph. 

3. Maximum number of input ports 5 and maximum number of output ports 

2. Previous work [22] has shown that input-output ports more than this 

range results in little performance gain. 

4. Only convex sub-graphs [9] are allowed in the custom instructions 

instance. 

5. The operation that feeds an input to the custom instruction instance must 

execute before the first operation in the custom instruction instance. 
 

 
4.2. Pattern Grouping 
 
The custom instruction instances are subjected to pattern grouping, whereby identical 

patterns that occur in different basic blocks and applications are grouped to create a 

unique set of custom instruction patterns. Patterns are considered identical if they 

have the same internal sub-graphs, without considering their input and output 

operands. The static occurrences of each unique pattern are also recorded. We have 

used the graph isomorphism method in the vflib graph-matching library [10] for the 

pattern grouping process. Due to the limited size of the constrained custom instruction 

instances, the pattern-grouping step can be accomplished rapidly.  

 

These unique custom instruction patterns are stored in the pattern library for the 

template selection process. Figure 2 presents the static occurrences and the 

corresponding pattern size of the unique patterns in the pattern library. The pattern 

size is calculated as the number of operations in the custom instruction. It can be 

observed that custom instructions with small pattern sizes occurs more frequently in 
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the set of embedded applications as compared to custom instructions with large 

pattern sizes. 
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Figure 2: Static occurrences and the pattern size of the unique patterns 
 
 
Table 1 shows the results obtained from the custom instruction identification process 

and pattern grouping using eight benchmarks from the MiBench embedded 

benchmark suite [11] as the standard application set. Although the pattern 

enumeration generates up to 1119 custom instruction instances, most of them can be 

grouped. After pattern grouping the number of unique patterns in the pattern library is 

reduced to 82 patterns. As can be observed from Table 1, a total of 82 templates can 

be used for custom instruction generation. Although it is desirable to limit the number 

of templates in order to increase the efficiency of template matching, we need to 

ensure that the resulting gain is not heavily compromised. 
 

Benchmarks Custom instruction 
instances  

adpcm dec 17 
adpcm enc 
blowfish 

22 
990 

crc32 10 
dijkstra 18 
FFT 6 
sha 34 
stringsearch 22 
  
Total 1119 
Number of patterns in the pattern library 82 

 
Table 1: Results obtained from custom instruction identification and pattern grouping 
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4.3. Template Selection 
 
In this step, a subset of templates is selected from the pattern library to reduce the 

complexity of the custom instruction generation stage. This is necessary as the 

number of templates influences the computational complexity of the template 

matching process.  

 

Although custom instructions with small pattern sizes are likely to appear frequently 

in the embedded applications (see Figure 2), templates with larger pattern sizes should 

also be selected as they can lead to significant speedup in certain applications. We 

employ a heuristic approach for template selection, which account for the 

performance gain and area utilization of the custom instruction in hardware. Each 

pattern p is assigned a gain as shown in (1), where the 

(performance gain of the standard application set) obtained by 

mapping p on hardware is calculated as shown in (2). T

sasGainePerformanc

SW denotes the number of clock 

cycles taken for the custom instruction to run on a processor, and we assume each 

operation takes 1 clock cycle. THW denotes the number of clock cycles taken for the 

custom instruction in hardware, and we estimate this by the length of the critical path 

in the custom instruction sub-graph. For example, THW = 5 for a custom instruction 

sub-graph if the number of operations in the critical path is five. A DFS (Depth First 

Search) algorithm is employed to compute the length of the critical paths of each 

custom instruction sub-graph.  

  

)(
)()(

psizePattern
pGainePerformancpGain sas=   (1)              

)(
)()(

pT
pTpGainePerformanc

HW

SW
sas =   (2) 

 

Patterns with higher gain values are selected as templates and stored in the template 

library. It is noteworthy that we do not consider the occurrences of the patterns in the 

selection decision as in [17]. This is because in our methodology, the templates are 

not used specifically for the standard application set. However, the preference for 

patterns with high occurrences is indirectly incorporated in the gain, as smaller 

patterns are likely to occur more frequently in embedded applications. 
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Figure 3 shows the percentage cycles saved that can be achieved with varying number 

of templates used for template matching. The baseline machine for the experiments is 

a four-wide VLIW (Very Long Instruction Word) architecture that can issue one 

integer, one floating-point, one memory, and one branch instruction each cycle. The 

simulation results are obtained through template generation and selection of each 

application independently. The percentage cycles saved for application A is computed 

as shown in (3), where pi for i = 1 to k, represent the k custom instructions selected for 

the application A, dynamic occurrences (pi) is the execution frequency of the custom 

instruction pi in application A, and SW Clock Cycles (A) denotes the number of clock 

cycles of the application A that is reported from Trimaran.  
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Figure 3: Percentage cycles saved with varying number of selected templates used 
 
 

It can be observed that increasing the number of templates for matching will not lead 

to any notable gain after a certain point for each application. Hence, it is possible to 

reduce the number of templates for matching in order to achieve more efficient 

custom instruction selection, without compromising on the performance gain. A total 

of 40 general templates with highest gain values have been selected based on the gain 

computed in (1) and stored in the template library. As will be shown later, the 
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reduction of the number of templates for matching can lead to rapid custom 

instruction generation, while providing comparable results with known approaches. 
 
 
5. Architecture Generation 
 
5.1. Implementing Custom Instructions Using Reusable Structures  

 
Figure 4 shows an example of a RISP, which is four-wide VLIW architecture that has 

been extended with a reconfigurable fabric for implementing custom instructions. The 

reusable structures (denoted as RS) implemented on the reconfigurable fabric obtain 

their input data from the integer unit’s register file, and outputs the results to an 

arbitrator. High-speed arbitrators such as that found in the Altera Nios platform [20] 

are commonly used to facilitate the sharing of register files or memory between the 

processor core and other peripherals. In the example shown, the arbitrator is used to 

share the integer unit’s register file between the ALU and custom logic. It is evident 

that the number and complexity of the reusable structures will affect the required area 

of the reconfigurable fabric.  
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Branch 
Unit

Data Cache

 
 

Figure 4: Implementing reusable structures on a RISP 
 

 
As shown in Figure 5 a), a group of operators form a reusable structure that is 

employed to implement custom instructions. These operators are derived from the set 

of primitive operations in the processor’s instruction set. Figure 5 b) describes how it 

can be used to implement three different custom instructions. Each of the custom 

instruction is sub-graph isomorphic to the structure. These custom instructions can be 

efficiently mapped onto a single reusable structure by taking advantage of the fact that 

most operations (i.e. ADD, SUB, AND as shown in the example) have an associated 

input that allows values to pass through the operators without changing. This is 
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achieved by setting one of the inputs to 0 or 1. For operators that do not possess this 

property (i.e. << in the example assuming the shifted value is a constant), a 

multiplexer is employed to allow the intermediate values to bypass the operator when 

the corresponding operation is not required.   
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Figure 5: Implementation of custom instructions on a reusable structure 
 
 

In our experiments, the reusable structures have been designed in VHDL (VHSIC 

Hardware Description Language) [23] and stored in a component library. When 

custom instructions have been selected from an application, the corresponding 

reusable structures are instantiated and their input and multiplexer select values are 

appropriately set in the main architecture. Since, all the reusable structures are pre-

designed, implementation of the custom instructions can been realized rapidly. The 

main architecture consisting of the instantiated reusable structures are then subjected 

to the FPGA synthesis and implementation flow. It is noteworthy that any unused 

logic in the reusable structures resulting from the input and multiplexer select settings 

will be removed during FPGA synthesis.  
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5.2. Generation of Reusable Structures 
 
The main task in the architecture generation stage is to identify a unique set of 

reusable structures from the template library. Specifically, we aim to find a maximal 

unique set of patterns that can cover all the templates.  This is achieved by combining 

the larger sub-graphs in the template library, with smaller sub-graphs that are 

subsumed by it. The combination of subsumed sub-graphs is based on maximal 

similarity, which is defined as the minimal difference in the operations nodes of the 

two sub-graphs. Each pattern in the resulting maximal unique set cannot be subsumed 

by any other patterns in the set.  
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Figure 6: Identifying a maximal unique set of patterns from the templates 
 

 
Figure 6 illustrates the process of identifying a maximal unique set of patterns from 

the templates. In can be observed that although Template 1 can be subsumed by 

Template 2 and 3, it exhibit maximal similarity with Template 2. Hence, Template 1 

is first combined with Template 2. Subsequently, Template 2 is combined with 

Template 3, and Template 5 is combined with Template 4. Finally, the remaining 

Templates 3 and 4 cannot be subsumed by each other and they formed the final set of 

maximal unique patterns. We can visually inspect that Templates 3 and 4 can cover 

Templates 1-5. 

 

Combination of the subsumed patterns is equivalent to the sub-graph isomorphism 

problem. It is evident that this task is time consuming given the NP-completeness of 

the problem and the growing complexity of DFGs in modern embedded application. 

We have relied on the vflib graph-matching library [10] to find a maximal unique 

pattern set from the selected templates.   
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The reusable structures are then designed and characterized to obtain their hardware 

performance and cost models to be used during custom instruction selection. Figure 7 

shows the 23 reusable structures that have been constructed from the standard 

application set and the corresponding applications that they cater to. It is noteworthy 

that the number of reusable structures is only 2% of the custom instruction instances.  
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Figure 7: The set reusable structures constructed through the proposed methodology 
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6. Experimental Results 
 
In this section, we present experimental results to evaluate the benefits of our 

proposed methodology. To illustrate the advantages of this approach, we chose a total 

of eight benchmarks from the MiBench embedded benchmark suite [11] as the 

standard application set (see Table 1). The baseline machine for the experiments is a 

four-wide VLIW architecture that can issue one integer, one floating-point, one 

memory, and one branch instruction each cycle. 

 

Figure 8 compares the performance obtained by the proposed technique with an 

approach based on application-centric template selection. We denote the latter as an 

application-centric approach. The application-centric approach performs pattern 

enumeration on each application individually to select templates using a gain that 

combines speedup and the pattern occurrences, which is similar to the approach 

presented in [17]. In the application-centric approach, template matching is performed 

on the application using all the templates in the order of descending gain values. 

When a pattern match occurs, a custom instruction has been identified and the 

corresponding pattern is removed from the application DFG. The template matching 

process is repeated until there is no more pattern matches.  
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Figure 8: Performance comparison of the proposed method with an application-centric approach 
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It can be observed from Figure 8 that the proposed method, which employs the same 

strategy for template matching (except that the gain in (1) is used and the number of 

templates are restricted to 40), provides comparable results with the application-

centric approach. It is noteworthy that comparable percentage cycle savings can still 

be obtained for applications (i.e. bitcount, patricia, rijndael dec, and rijndael enc from 

the MiBench embedded benchmark suite) that are not part of the standard application 

set. The average percentage cycle savings difference is only 0.7857%. Hence, it is 

demonstrated that rapid custom instruction selection can be achieved through 

significant reduction of the number of predefined templates (i.e. 50%) without 

compromising heavily on the performance gain. 

 

It can be observed from Figure 8 that the proposed method leads to higher percentage 

cycle savings than the application-centric approach for the sha application. This is due 

to the random choice of templates used for matching in the application-centric 

approach, which may obviate highly profitable pattern matches when previous 

matched patterns are removed from the application DFG. This is avoided in the 

proposed method, as templates are matched in the order of descending gain values and 

hence, profitable pattern matches are more likely to occur earlier in the matching 

process.  
 
 

Benchmarks Required number of 
reusable structures 

Sum of Pattern Sizes of 
the reusable structures 

adpcm dec 5 19 
adpcm enc 6 18 
bitcount 3 9 
blowfish 6 21 
crc32 2 8 
dijkstra 5 14 
FFT 6 15 
patricia 3 7 
rijndael dec 9 36 
rijndael enc 9 36 
sha 8 45 
stringsearch 3 10 
   
Average 5.42 19.83 

 
Table 2: The number of reusable structures and the total pattern sizes for each application 

 
 

Table 2 shows the number of reusable structures (as illustrated in Figure 7) required 

for each application and the total pattern sizes. As can be observed, the average 

number of reusable structures and the average number of operations for the twelve 

applications is only 5.42 and 19.83 respectively. The rijndael applications require the 
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most reusable structures (i.e. 9), and the sha application requires reusable structures 

with the largest number of operations (i.e. 45). These results imply that the 

reconfigurable area on the RISP can be predetermined to cater to efficient custom 

instruction implementations.  
 

 
Figure 9 and Figure 10 illustrates the area and latency comparisons of custom 

instruction implementations of the standard application set on the Xilinx Virtex 

xc2v40fg256-4 [7] FPGA device. The comparison is made between the conventional 

practice of implementing each of the selected custom instructions individually 

(denoted as Conv), and the implementation based on the reusable structures (denoted 

as RS). The results were obtained from Synplify Pro 7.5.1 [24], a state-of-the-art 

FPGA synthesis tool. 
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Figure 9: Area comparison of custom instructions implementation 

 
 
It can be observed from Figure 9 that in general, the area consumed by the two 

implementations differs only marginally. Hence, although the pre-designed reusable 

structures typically have a larger area than the optimal custom instruction 

implementation, due to the inclusion of logic to generalize the structures, the 

redundant logic of the reusable structures are removed in the synthesis process. This 

results only in a marginal area difference between both the implementations. In 

addition, area savings are evident in applications (i.e. up to 14% for the sha 
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application) in which the reusable structures are exploited for multiple custom 

instruction implementations. This is due to the fact that a single reusable structure can 

be implemented in place of two or more custom instructions as described in Section 

5.1.  
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Figure 10: Critical path delay comparison of custom instructions implementation 

 
 

Figure 10 compares the critical path delay of the two approaches on the Virtex device. 

It can be observed that the average delay difference of the two approaches is only 

0.483 ns. Hence, it is evident that the implementation based on the reusable structures 

approach leads to rapid custom instruction realizations with potential area savings and 

comparable latency with the conventional implementation approach. 
 
 
7. Conclusion 
 

A novel methodology for instruction set customization of RISPs (Reconfigurable 

Instruction Set Processors) is presented in this paper. Our investigations show that the 

proposed methodology is superior to existing techniques for realizing custom 

instructions on RISPs both in terms of area savings and generation time. Unlike other 

approaches, it has been demonstrated that custom instruction enumeration needs to be 

performed only once on a set of applications to derive a unique set of templates. The 
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number of templates used for template matching is up to 50% lower without any 

notable performance degradations. Our studies show that only 2% of the custom 

instruction instances are required for the benchmarks suites examined. Synthesis 

results on the FPGA platform show that the reusable structures based approach exhibit 

potential area savings of up to 14%, with less than 0.5ns of average critical path delay 

difference when compared to conventional implementation practices. It is noteworthy 

that the proposed approach allows for a small set of reusable structures to be pre-

designed and instantiated on the reconfigurable fabric to facilitate the rapid generation 

of custom instructions. This preliminary work has shown promising results to 

encourage further research in this area, which aims to promote on-line generation of 

custom instructions. Future work includes the identifying of a suitable standard 

application set to cater to a wider range of applications, devising more accurate 

models for the template gain values and incorporating efficient template selection 

schemes. 
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