
Rapid Generation of Custom Instructions
Using Predefined Dataflow Structures

*Siew-Kei Lam, +Thambipillai Srikanthan and ΨChristopher T. Clarke

*, + Centre for High Performance Embedded Systems

Nanyang Technological University
50 Nanyang Drive, Research TechnoPlaza,
3rd Storey, BorderX Block, SINGAPORE

*Email: assklam@ntu.edu.sg
*Tel: +65 6790 6643
*Fax: +65 6792 0774

ΨDepartment of Electronic and Electrical Engineering,

The University of Bath, Bath BA2 7AY,
UNITED KINGDOM

Abstract: Custom instruction generation is fast becoming popular as it
provides an alternative means to realize application specific processors. In
this paper, we propose an efficient methodology for rapid instruction set
customization on RISPs (Reconfigurable Instruction Set Processors) using
predefined sets of dataflow structures that are based on templates and reusable
structures. A novel template selection strategy was employed to reduce the
number of templates required for matching by up to 50%, while providing
comparable performance with known approaches. It has been shown that
custom instructions could be realized through instantiation of a reduced set of
pre-designed reusable structures. Experimental results show that a small
number of reusable structures can sufficiently cater to custom instruction
generation to notably reduce the time required to realize them on configurable
hardware. Moreover, based on our evaluations using MiBench benchmark
suites, the reusable structures constitute to only 2% of all the custom
instruction instances. The custom instructions generated with reusable
structures were implemented in FPGA and it is evident that up to 14% area
savings with comparable performance can be achieved when compared with
conventional implementation approaches.

Keywords: Instruction customization, methodology, reconfigurable
processors, FPGA

1. Introduction

Future embedded SoC (System-on-a-Chip) solutions will require a higher degree of

customization to manage the growing complexity of the applications. At the same

time, they must continue to facilitate a high degree of programmability to meet the

shrinking TTM (Time-To-Market) window. Lately, extensible processors [1][2] have

emerged to provide a good tradeoff between efficiency and flexibility. Many

commercial processors (e.g. Xtensa from Tensilica [3], ARCtangent from ARC [4],

etc.) offer the possibility of extending their instruction set for a specific application by

introducing custom functional units within the processor architecture. This

 1

application-specific instruction set extension to the computational capabilities of a

processor, provides an efficient mechanism to meet the growing performance and

TTM demands. However, the NRE (Non-Recurring Engineering) costs of redesigning

a new extensible processor can still be quite high. This is exacerbated as the cost,

associated with design, verification, manufacture and test of deep sub-micron chips,

continue to increase dramatically with the mask cost.

A RISP (Reconfigurable Instruction Set Processor) [5] consists of a microprocessor

core that has been extended with a reconfigurable fabric. Similar to extensible

processors, the RISP facilitate critical parts of the application to be implemented

using a specialized instruction set on reconfigurable functional units. The advantages

of a RISP over the extensible processors stem from the reusability of its hardware

resources in various applications without incurring high NRE costs. Due to this, RISP

are more flexible than an extensible processor, which precludes post design

flexibility. Although reconfigurability can also be harnessed to increase hardware

reusability at run-time, the reconfiguration overhead can significantly hamper the

RISP’s performance. Hence, commercial RISPs (e.g. Altera NIOS II [6], Xilinx

MicroBlaze [7], and Stretch processors [8]) often offer large platforms with various

choices of programmable resources. As with extensible processors, custom instruction

selection and implementation for the RISP must be realized rapidly to meet the tight

TTM requirements.

In this paper, we introduce a methodology for instruction set customization on RISPs

that relies on a set of predefined dataflow structures. The proposed methodology

facilitates rapid instruction set customization by providing: 1) readily available

templates for efficient template matching in the custom instruction generation stage;

and 2) a set of pre-designed reusable structures that can be instantiated on demand in

the implementation phase. Although not the focus of this paper, the methodology also

dispenses the need for lengthy hardware synthesis during design exploration, as the

reusable structures are pre-characterized to obtain accurate hardware estimation

models. This significantly increases the efficiency of the custom instruction

generation process. Apart from presenting practical solutions for rapid instruction set

customization, this paper also offers an insight to reconfigurable area requirements

and efficient resource utilization in commercial RISP platforms.

 2

A one-time effort is required to identify the templates from a subset of enumerated

custom instruction instances. The pattern enumeration method introduced in [9] is

combined with graph isomorphism [10] to identify unique custom instruction

instances from a set of embedded applications. The process of selecting a set of

templates from the custom instruction instances is called template generation. We

present a heuristic approach for selecting the templates from the enumerated patterns,

and show that only a limited number of templates are required to achieve comparable

results with known techniques. The architecture generation stage then constructs the

reusable structures by using a sub-graph isomorphism method to combine the selected

templates into a set of maximal unique structures. We show that the total number of

reusable structures generated from eight applications in the MiBench embedded

benchmark suite [11] is only 23. Moreover, a maximum of only 9 reusable structures

are required for a particular application. When compared to conventional

implementation practices, synthesis results on the FPGA (Field Programmable Gate

Array) platform show that the reusable structures based implementation approach

exhibit potential area savings, with less than 0.5ns of average critical path delay

difference.

In the following section, we discuss some previous work in the areas instruction set

customization and RISP. In Section 3, we present our methodology for instruction set

customization. Section 4 and 5 describes the template and architecture generation

stages in the methodology. Section 6 presents the experimental results, and the paper

concludes with some consideration on future directions.

2. Background

For a given application, a RISP configuration that outperforms the conventional

processors must be determined rapidly without delaying the short TTM requirements

for embedded systems. However, automatically determining the right set of extensible

instructions for a given application and its constraints remains an open issue [2]. The

problem of custom instruction identification can be loosely described as a process of

detecting a cluster of operations or sub-graphs from the application DFG (Dataflow

Graph) that is to be collapsed into a single custom instruction to maximize some

metric (typically performance). Previous works in custom instruction identification

 3

can be broadly classified into the following four categories: 1) pattern matching [14],

2) cluster growing [15], 3) heuristic-based [16], and 4) pattern enumeration [9].

In [14], an approach that combines template matching and generation have been

proposed to identify clusters of operations based on recurring patterns. The clusters

identified with this approach are typically small and may not lead to a notable gain

when implemented as custom instructions. The method proposed in [15] attempts to

grow a candidate sub-graph from a seed node. The direction of growth relies on a

guide function that reflects the merit of each growth direction. In [16], a genetic

algorithm was devised to exploit opportunities of introducing memory elements

during custom instruction identification.

The methods discussed above have demonstrated possible gains, but they can

potentially miss out on identifying some good custom instruction candidates. The

pattern enumeration method proposed in [9] employs a binary tree search approach to

identify all possible custom instruction candidates in a DFG. In order to speed up the

search process, unexplored sub-graphs are pruned from the search space if they

violate a certain set of constraints (i.e. number of input-output ports, convexity,

operation type, etc.). In [17], pattern enumeration is combined with pattern selection

and mapping to identify the most profitable custom instructions in an application.

Although these two approaches can lead to promising results, they can still become

too time-consuming especially when dealing with large applications.

An inherent problem in RISP arises from the reconfiguration overhead that is incurred

while reusing the hardware resources for various functions. For example, the DISC

(Dynamic Instruction Set Computer) processor proposed in [12] requires a

reconfiguration time that is projected to contribute up to 16% of an application’s total

execution time. In [13], a compiler tool chain was presented to encode multiple

custom instructions in a single configuration to reduce the reconfiguration overhead

and maximize the utilization of the resources. However, the compiler tool chain

incorporates a hardware synthesis flow that hampers the efficiency of the design

exploration process. In commercial RISPs, the run-time reconfiguration overhead is

exacerbated by the fine-grained programmable structure. For example, the Stretch

processor [8] requires 80µs to change an instruction on their proprietary

 4

programmable logic. Hence, commercial RISPs [6][7] often offer large platforms with

various choices of programmable resources to cater to the unforeseeable requirements

of the applications. Inevitably, this leads to under-utilization of the reconfigurable

area, which is not desirable for cost-effective solutions.

The methodology proposed in this paper differs from previously reported work in

several ways. Firstly, unlike the application centric methodologies presented in

[9][13][14][16][17][18], the proposed method identifies a set of predefined dataflow

structures that can generate custom instructions for numerous applications. Secondly,

unlike existing methods (i.e. [9][17]), which employs a time-consuming pattern

enumeration process for each application, the proposed technique performs this

process only once on a standard set of applications. Thirdly, the enumerated patterns

are used to generate a set of reusable structures, which are characterized to obtain

their hardware properties. The pre-characterized structures lead to substantial

reduction in the design time, as it does not necessitate a lengthy hardware synthesis

process during application mapping such as that required in existing methods (i.e. [13]

[18]). Our preliminary studies show that only a small number of reusable structures

can sufficiently cater to twelve embedded applications, while providing comparable

performance gain with existing techniques. Finally, the reusable structures are pre-

designed and instantiated when required by the application. To the best of our

knowledge, our work is the first to present strategies to expedite implementation of

custom hardware on the RISP.

3. Proposed Methodology

Figure 1 illustrates an overview of the proposed methodology for instruction set

customization using predefined dataflow structures. The proposed methodology

consists of three key stages, namely template generation, architecture generation, and

custom instruction generation. It is noteworthy that the first two stages are a one-time

process, whereas custom instruction generation performs template matching to select

the custom instructions for each new application. In this paper, we limit the discussion

to the template and architecture generation stages.

 5

C application

Trimaran
Compiler

DFG of a set of applications

Custom Instruction
Identification

Pattern
Grouping

Custom
instructions
instances

Pattern
Library

Identify Maximal
Unique Pattern Set

Template
Selection

Template
Library

Template Matching
for Custom

Instruction Selection

Hardware Design and
Characterization of

Reusable Structures

Compiler
Support for

Instruction Set
Customization

Selected custom
instructions

Architecture GenerationTemplate Generation

Constraints

DFG of an application

Reusable
Structures and
their Hardware
Characteristics

Selected
templates

Instantiate
Reusable

Structures

FPGA Synthesis
and

Implementation

Custom Instruction Generation

Reusable
Structures

Figure 1: Overview of proposed methodology

In the template generation stage, the templates are constructed from a set of custom

instruction instances obtained by enumerating a number of embedded applications.

Since the templates are derived from the custom instruction instances, they are likely

to implement a large variation of custom instructions in embedded applications. This

is a plausible assumption as it has been shown that domain-specific applications

exhibit common dataflow sub-graph patterns [19], [20]. In the next section, we will

describe an approach to construct the templates in a tractable manner. In the

architecture generation stage, a small set of reusable structures are constructed from

the templates. The reusable structures are then modeled using hardware description

 6

languages and stored in a component library. In addition, they are also characterized

to obtain their hardware estimation models.

Finally in the custom instruction generation stage, template matching is employed to

identify the custom instructions from a given application. The corresponding reusable

structures of the selected custom instructions are instantiated and passed to the

hardware implementation flow. The utilization of the predefined templates and

reusable structures expedites the custom instruction generation stage. The application,

which incorporates the custom instructions are also are passed to the compiler. The

steps in this stage however are beyond the scope of this paper.

4. Template Generation

The main task of this stage is to perform template selection from a subset of custom

instruction instances. The templates are used for two purposes. Firstly, the templates

are used to select custom instruction candidates from a given application, and

secondly the templates form the basic structures to construct the reusable structures.

It is noteworthy that compared to [17], the template generation process in our

methodology is performed only once from a set of embedded applications. Let’s

denote this set of embedded applications as the standard application set. Hence,

although this process can be time-consuming due to pattern enumeration of a large

number of applications, it does not affect the custom instruction generation process.

The proposed approach for template generation is divided into three steps: 1) Custom

instruction identification and 2) Pattern grouping, and 3) Template selection.

4.1. Custom Instruction Identification

The objective of this step is to enumerate the custom instruction instances from an

application’s DFG. We have modified the pattern enumeration algorithm in [9] to

identify all the custom instruction instances from the standard application set. As

mentioned earlier, the method in [9] employs a binary tree search approach that

 7

prunes unexplored sub-graphs from the search space if they violate a certain set of

constraints.

We have used the Trimaran [21] IR (Intermediate Representation) for custom

instruction identification. In order to avoid false dependencies within the DFG, the IR

is generated prior to register allocation. For the purpose of this study, we have

imposed the following constraints on the custom instructions to increase the

efficiency of the identification process:

1. Only integer operations are allowed in the custom instruction instance.

2. Each custom instruction instance must be a connected sub-graph.

3. Maximum number of input ports 5 and maximum number of output ports

2. Previous work [22] has shown that input-output ports more than this

range results in little performance gain.

4. Only convex sub-graphs [9] are allowed in the custom instructions

instance.

5. The operation that feeds an input to the custom instruction instance must

execute before the first operation in the custom instruction instance.

4.2. Pattern Grouping

The custom instruction instances are subjected to pattern grouping, whereby identical

patterns that occur in different basic blocks and applications are grouped to create a

unique set of custom instruction patterns. Patterns are considered identical if they

have the same internal sub-graphs, without considering their input and output

operands. The static occurrences of each unique pattern are also recorded. We have

used the graph isomorphism method in the vflib graph-matching library [10] for the

pattern grouping process. Due to the limited size of the constrained custom instruction

instances, the pattern-grouping step can be accomplished rapidly.

These unique custom instruction patterns are stored in the pattern library for the

template selection process. Figure 2 presents the static occurrences and the

corresponding pattern size of the unique patterns in the pattern library. The pattern

size is calculated as the number of operations in the custom instruction. It can be

observed that custom instructions with small pattern sizes occurs more frequently in

 8

the set of embedded applications as compared to custom instructions with large

pattern sizes.

0

100

200

300

400

500

600

700

2 3 4 5 6 7 8 9 10

Pattern Size

O
cc

ur
en

ce
s

Figure 2: Static occurrences and the pattern size of the unique patterns

Table 1 shows the results obtained from the custom instruction identification process

and pattern grouping using eight benchmarks from the MiBench embedded

benchmark suite [11] as the standard application set. Although the pattern

enumeration generates up to 1119 custom instruction instances, most of them can be

grouped. After pattern grouping the number of unique patterns in the pattern library is

reduced to 82 patterns. As can be observed from Table 1, a total of 82 templates can

be used for custom instruction generation. Although it is desirable to limit the number

of templates in order to increase the efficiency of template matching, we need to

ensure that the resulting gain is not heavily compromised.

Benchmarks Custom instruction
instances

adpcm dec 17
adpcm enc
blowfish

22
990

crc32 10
dijkstra 18
FFT 6
sha 34
stringsearch 22

Total 1119
Number of patterns in the pattern library 82

Table 1: Results obtained from custom instruction identification and pattern grouping

 9

4.3. Template Selection

In this step, a subset of templates is selected from the pattern library to reduce the

complexity of the custom instruction generation stage. This is necessary as the

number of templates influences the computational complexity of the template

matching process.

Although custom instructions with small pattern sizes are likely to appear frequently

in the embedded applications (see Figure 2), templates with larger pattern sizes should

also be selected as they can lead to significant speedup in certain applications. We

employ a heuristic approach for template selection, which account for the

performance gain and area utilization of the custom instruction in hardware. Each

pattern p is assigned a gain as shown in (1), where the

(performance gain of the standard application set) obtained by

mapping p on hardware is calculated as shown in (2). T

sasGainePerformanc

SW denotes the number of clock

cycles taken for the custom instruction to run on a processor, and we assume each

operation takes 1 clock cycle. THW denotes the number of clock cycles taken for the

custom instruction in hardware, and we estimate this by the length of the critical path

in the custom instruction sub-graph. For example, THW = 5 for a custom instruction

sub-graph if the number of operations in the critical path is five. A DFS (Depth First

Search) algorithm is employed to compute the length of the critical paths of each

custom instruction sub-graph.

)(
)()(

psizePattern
pGainePerformancpGain sas= (1)

)(
)()(

pT
pTpGainePerformanc

HW

SW
sas = (2)

Patterns with higher gain values are selected as templates and stored in the template

library. It is noteworthy that we do not consider the occurrences of the patterns in the

selection decision as in [17]. This is because in our methodology, the templates are

not used specifically for the standard application set. However, the preference for

patterns with high occurrences is indirectly incorporated in the gain, as smaller

patterns are likely to occur more frequently in embedded applications.

 10

Figure 3 shows the percentage cycles saved that can be achieved with varying number

of templates used for template matching. The baseline machine for the experiments is

a four-wide VLIW (Very Long Instruction Word) architecture that can issue one

integer, one floating-point, one memory, and one branch instruction each cycle. The

simulation results are obtained through template generation and selection of each

application independently. The percentage cycles saved for application A is computed

as shown in (3), where pi for i = 1 to k, represent the k custom instructions selected for

the application A, dynamic occurrences (pi) is the execution frequency of the custom

instruction pi in application A, and SW Clock Cycles (A) denotes the number of clock

cycles of the application A that is reported from Trimaran.

 100
)(

)()(
)(1 ×

×

=
∑
=

ACyclesClockSW

poccurencesdynamicpsavedcyclesClock
AsavedcyclesPercentage

k

i
ii

 (3)

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of templates

Pe
rc

en
ta

ge
 c

yc
le

s
sa

ve
d

(%
)

adpcm dec
adpcm enc
blowfish
crc32
dijkstra
FFT
sha
stringsearch

Figure 3: Percentage cycles saved with varying number of selected templates used

It can be observed that increasing the number of templates for matching will not lead

to any notable gain after a certain point for each application. Hence, it is possible to

reduce the number of templates for matching in order to achieve more efficient

custom instruction selection, without compromising on the performance gain. A total

of 40 general templates with highest gain values have been selected based on the gain

computed in (1) and stored in the template library. As will be shown later, the

 11

reduction of the number of templates for matching can lead to rapid custom

instruction generation, while providing comparable results with known approaches.

5. Architecture Generation

5.1. Implementing Custom Instructions Using Reusable Structures

Figure 4 shows an example of a RISP, which is four-wide VLIW architecture that has

been extended with a reconfigurable fabric for implementing custom instructions. The

reusable structures (denoted as RS) implemented on the reconfigurable fabric obtain

their input data from the integer unit’s register file, and outputs the results to an

arbitrator. High-speed arbitrators such as that found in the Altera Nios platform [20]

are commonly used to facilitate the sharing of register files or memory between the

processor core and other peripherals. In the example shown, the arbitrator is used to

share the integer unit’s register file between the ALU and custom logic. It is evident

that the number and complexity of the reusable structures will affect the required area

of the reconfigurable fabric.

Instruction Cache

Memory
Unit

Floating -
Point Unit Register File

ALU

Arbitrator

Integer Unit Reconfigurable Fabric

RS ...RS RS

RISP

Branch
Unit

Data Cache

Figure 4: Implementing reusable structures on a RISP

As shown in Figure 5 a), a group of operators form a reusable structure that is

employed to implement custom instructions. These operators are derived from the set

of primitive operations in the processor’s instruction set. Figure 5 b) describes how it

can be used to implement three different custom instructions. Each of the custom

instruction is sub-graph isomorphic to the structure. These custom instructions can be

efficiently mapped onto a single reusable structure by taking advantage of the fact that

most operations (i.e. ADD, SUB, AND as shown in the example) have an associated

input that allows values to pass through the operators without changing. This is

 12

achieved by setting one of the inputs to 0 or 1. For operators that do not possess this

property (i.e. << in the example assuming the shifted value is a constant), a

multiplexer is employed to allow the intermediate values to bypass the operator when

the corresponding operation is not required.

AND

+ -

<<

In1 In2 In3

AND

+

In1 In2 In3

AND

<<

In1 In2

+ -

AND

<<

Reusable Structure

+ -

AND

<<

+ -

AND

<<

+ -

AND

<<

(a) (b)

Custom Instruction 1 Custom Instruction 2 Custom Instruction 3

0 1 0 1 0 1 0 1

In1 In2 In3 0‘0’ ‘1’ In1 In20 0 ‘1’ In1 In2 In3In2

Figure 5: Implementation of custom instructions on a reusable structure

In our experiments, the reusable structures have been designed in VHDL (VHSIC

Hardware Description Language) [23] and stored in a component library. When

custom instructions have been selected from an application, the corresponding

reusable structures are instantiated and their input and multiplexer select values are

appropriately set in the main architecture. Since, all the reusable structures are pre-

designed, implementation of the custom instructions can been realized rapidly. The

main architecture consisting of the instantiated reusable structures are then subjected

to the FPGA synthesis and implementation flow. It is noteworthy that any unused

logic in the reusable structures resulting from the input and multiplexer select settings

will be removed during FPGA synthesis.

 13

5.2. Generation of Reusable Structures

The main task in the architecture generation stage is to identify a unique set of

reusable structures from the template library. Specifically, we aim to find a maximal

unique set of patterns that can cover all the templates. This is achieved by combining

the larger sub-graphs in the template library, with smaller sub-graphs that are

subsumed by it. The combination of subsumed sub-graphs is based on maximal

similarity, which is defined as the minimal difference in the operations nodes of the

two sub-graphs. Each pattern in the resulting maximal unique set cannot be subsumed

by any other patterns in the set.

+

OR

<< +

OR

<< +

OR

OR
<< x

+

<<

+

Template 1 Template 2 Template 3

Template 4 Template 5

Template Template with
Maximal Similarity

1

2

3

4

5

2

3

4

None

None

Figure 6: Identifying a maximal unique set of patterns from the templates

Figure 6 illustrates the process of identifying a maximal unique set of patterns from

the templates. In can be observed that although Template 1 can be subsumed by

Template 2 and 3, it exhibit maximal similarity with Template 2. Hence, Template 1

is first combined with Template 2. Subsequently, Template 2 is combined with

Template 3, and Template 5 is combined with Template 4. Finally, the remaining

Templates 3 and 4 cannot be subsumed by each other and they formed the final set of

maximal unique patterns. We can visually inspect that Templates 3 and 4 can cover

Templates 1-5.

Combination of the subsumed patterns is equivalent to the sub-graph isomorphism

problem. It is evident that this task is time consuming given the NP-completeness of

the problem and the growing complexity of DFGs in modern embedded application.

We have relied on the vflib graph-matching library [10] to find a maximal unique

pattern set from the selected templates.

 14

The reusable structures are then designed and characterized to obtain their hardware

performance and cost models to be used during custom instruction selection. Figure 7

shows the 23 reusable structures that have been constructed from the standard

application set and the corresponding applications that they cater to. It is noteworthy

that the number of reusable structures is only 2% of the custom instruction instances.

ADDL

AND

blowfish

ADD

AND

blowfish
FFT

MUL

ADDL

dijkstra

ADD

MOVE

dijkstra

REM

MOVE ADD

dijkstra

SUBL

AND

FFT

ADDL SUB

ADD
sha

SHL

ADDL ADD

ADD
dijkstra

ADDL

ADDL

MOVE

sha
stringsearch

SHL SHR

OR XOR

XOR

ADDL

ADDL

sha

EXTS

AND

SHL

stringsearch

ADD

SHR

AND

ADDL

SHL

ADD

blowfish
sha

AND

XOR

AND

SHL

ADD

crc32

AND AND AND SHL SHR

OROR

OR

ADDL

ADDL

sha

XOR AND_W SHL SHR

ORAND

OR

ADDL

ADDL

sha

SHL AND

OR

adpcm enc
FFT

SHL

AND

adpcm enc
FFT

SHRA

AND

ADD

adpcm dec
adpcm enc

sha

SHRA SHRA EXTS

SHRA

AND

adpcm dec
adpcm enc

blowfish
FFT
sha

AND

AND

adpcm dec

EXTS

SUB

adpcm enc

SHL ADD

ADD

adpcm dec
adpcm enc

blowfish
crc32

dijkstra
FFT

stringsearch

SHRA

AND

ADD

SHRA

ADD

ADD

adpcm dec
blowfish

Figure 7: The set reusable structures constructed through the proposed methodology

 15

6. Experimental Results

In this section, we present experimental results to evaluate the benefits of our

proposed methodology. To illustrate the advantages of this approach, we chose a total

of eight benchmarks from the MiBench embedded benchmark suite [11] as the

standard application set (see Table 1). The baseline machine for the experiments is a

four-wide VLIW architecture that can issue one integer, one floating-point, one

memory, and one branch instruction each cycle.

Figure 8 compares the performance obtained by the proposed technique with an

approach based on application-centric template selection. We denote the latter as an

application-centric approach. The application-centric approach performs pattern

enumeration on each application individually to select templates using a gain that

combines speedup and the pattern occurrences, which is similar to the approach

presented in [17]. In the application-centric approach, template matching is performed

on the application using all the templates in the order of descending gain values.

When a pattern match occurs, a custom instruction has been identified and the

corresponding pattern is removed from the application DFG. The template matching

process is repeated until there is no more pattern matches.

0

2

4

6

8

10

12

14

16

18

20

adpcm dec adpcm enc bitcount blowfish crc32 dijkstra FFT patricia rijndael dec rijndael enc sha stringsearch

Benchmarks

Pe
rc

en
ta

ge
 c

yc
le

s
sa

ve
 (%

)

Application-centric Proposed

Figure 8: Performance comparison of the proposed method with an application-centric approach

 16

It can be observed from Figure 8 that the proposed method, which employs the same

strategy for template matching (except that the gain in (1) is used and the number of

templates are restricted to 40), provides comparable results with the application-

centric approach. It is noteworthy that comparable percentage cycle savings can still

be obtained for applications (i.e. bitcount, patricia, rijndael dec, and rijndael enc from

the MiBench embedded benchmark suite) that are not part of the standard application

set. The average percentage cycle savings difference is only 0.7857%. Hence, it is

demonstrated that rapid custom instruction selection can be achieved through

significant reduction of the number of predefined templates (i.e. 50%) without

compromising heavily on the performance gain.

It can be observed from Figure 8 that the proposed method leads to higher percentage

cycle savings than the application-centric approach for the sha application. This is due

to the random choice of templates used for matching in the application-centric

approach, which may obviate highly profitable pattern matches when previous

matched patterns are removed from the application DFG. This is avoided in the

proposed method, as templates are matched in the order of descending gain values and

hence, profitable pattern matches are more likely to occur earlier in the matching

process.

Benchmarks Required number of
reusable structures

Sum of Pattern Sizes of
the reusable structures

adpcm dec 5 19
adpcm enc 6 18
bitcount 3 9
blowfish 6 21
crc32 2 8
dijkstra 5 14
FFT 6 15
patricia 3 7
rijndael dec 9 36
rijndael enc 9 36
sha 8 45
stringsearch 3 10

Average 5.42 19.83

Table 2: The number of reusable structures and the total pattern sizes for each application

Table 2 shows the number of reusable structures (as illustrated in Figure 7) required

for each application and the total pattern sizes. As can be observed, the average

number of reusable structures and the average number of operations for the twelve

applications is only 5.42 and 19.83 respectively. The rijndael applications require the

 17

most reusable structures (i.e. 9), and the sha application requires reusable structures

with the largest number of operations (i.e. 45). These results imply that the

reconfigurable area on the RISP can be predetermined to cater to efficient custom

instruction implementations.

Figure 9 and Figure 10 illustrates the area and latency comparisons of custom

instruction implementations of the standard application set on the Xilinx Virtex

xc2v40fg256-4 [7] FPGA device. The comparison is made between the conventional

practice of implementing each of the selected custom instructions individually

(denoted as Conv), and the implementation based on the reusable structures (denoted

as RS). The results were obtained from Synplify Pro 7.5.1 [24], a state-of-the-art

FPGA synthesis tool.

0

50

100

150

200

250

300

adpcm dec adpcm enc blowfish crc32 dijkstra FFT sha stringsearch

Benchmarks

N
um

be
r o

f L
U

Ts

Conv RS

Figure 9: Area comparison of custom instructions implementation

It can be observed from Figure 9 that in general, the area consumed by the two

implementations differs only marginally. Hence, although the pre-designed reusable

structures typically have a larger area than the optimal custom instruction

implementation, due to the inclusion of logic to generalize the structures, the

redundant logic of the reusable structures are removed in the synthesis process. This

results only in a marginal area difference between both the implementations. In

addition, area savings are evident in applications (i.e. up to 14% for the sha

 18

application) in which the reusable structures are exploited for multiple custom

instruction implementations. This is due to the fact that a single reusable structure can

be implemented in place of two or more custom instructions as described in Section

5.1.

0

1

2

3

4

5

6

7

8

9

10

adpcm dec adpcm enc blowfish crc32 dijkstra FFT sha stringsearch

Benchmarks

C
rit

ic
al

 p
at

h
de

la
y

(n
s)

Conv RS

Figure 10: Critical path delay comparison of custom instructions implementation

Figure 10 compares the critical path delay of the two approaches on the Virtex device.

It can be observed that the average delay difference of the two approaches is only

0.483 ns. Hence, it is evident that the implementation based on the reusable structures

approach leads to rapid custom instruction realizations with potential area savings and

comparable latency with the conventional implementation approach.

7. Conclusion

A novel methodology for instruction set customization of RISPs (Reconfigurable

Instruction Set Processors) is presented in this paper. Our investigations show that the

proposed methodology is superior to existing techniques for realizing custom

instructions on RISPs both in terms of area savings and generation time. Unlike other

approaches, it has been demonstrated that custom instruction enumeration needs to be

performed only once on a set of applications to derive a unique set of templates. The

 19

number of templates used for template matching is up to 50% lower without any

notable performance degradations. Our studies show that only 2% of the custom

instruction instances are required for the benchmarks suites examined. Synthesis

results on the FPGA platform show that the reusable structures based approach exhibit

potential area savings of up to 14%, with less than 0.5ns of average critical path delay

difference when compared to conventional implementation practices. It is noteworthy

that the proposed approach allows for a small set of reusable structures to be pre-

designed and instantiated on the reconfigurable fabric to facilitate the rapid generation

of custom instructions. This preliminary work has shown promising results to

encourage further research in this area, which aims to promote on-line generation of

custom instructions. Future work includes the identifying of a suitable standard

application set to cater to a wider range of applications, devising more accurate

models for the template gain values and incorporating efficient template selection

schemes.

8. References

1. Dutt, N., Choi, K.: Configurable Processors for Embedded Computing, Computer,

Vol. 36, No. 1, 2003, pp. 120-123
2. Henkel, J.: Closing the SoC Design Gap, IEEE Computer, Vol. 36, No. 9, 2003,

pp. 119-121.
3. Xtensa Microprocessor: http://www.tensilica.com
4. ARCtangent Processor: http://www.arc.com
5. Barat, F., Lauwereins, R., Deconinck, G.: Reconfigurable Instruction Set

Processors from a Hardware/Software Perspective, IEEE Transactions on
Software Engineering, Vol. 28, No. 9, 2002, pp. 847-862

6. Altera Nios Soft Core Embedded Processor: http://www.altera.com
7. Xilinx Platform FPGAs: http://www.xilinx.com
8. Flaherty, N.: On the Chip or On the Fly, IEE Review, Vol. 50, No. 9, pp. 2004,

48-51
9. Atasu, K., Pozzi, L., Ienne, P.: Automatic Application-Specific Instruction-Set

Extensions Under Microarchitectural Constraints, Proceedings of the 40th
IEEE/ACM Design Automation Conference, 2003, pp. 256-261

10. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance Evaluation of the
VF Graph Matching Algorithm, International Conference on Image Analysis and
Processing, 1999, pp. 1172-1177

11. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: A Free, Commercially Representative Embedded Benchmark
Suite, IEEE International Workshop on Workload Characterization, 2001, pp. 3-
14

12. Wirthlin, M.J., Hutchings, B.L.: A Dynamic Instruction Set Computer,
Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, 1995, pp. 99-107

 20

13. Kastrup, B., Bink, A., Hoogerbrugge, J.: ConCISe: A Compiler-Driven CPLD-
based Instruction Set Accelerator, Proceedings of the 7th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 1999, pp. 92-
101

14. Kastner, R., Kaplan, A., Memik, S.O., Bozorgzadeh, E.: Instruction Generation
for Hybrid Reconfigurable Systems, ACM Transactions on Design Automation of
Embedded Systems, Vol. 7, No. 4, 2002, pp. 605-627

15. Clark, N., Zhong, H., Mahlke, S.: Processor Acceleration Through Automated
Instruction Set Customization, Proceedings of the 36th IEEE/ACM International
Symposium on Microarchitecture, 2003

16. Biswas, P., Choudhary, V., Atasu, K., Pozzi, L., Ienne, P., Dutt, N.: Introduction
of Local Memory Elements in Instruction Set Extensions, Proceedings of the 41st
Annual IEEE/ACM Design Automation Conference, 2004, pp. 729-734

17. Cong, J., Fan, Y., Han, G., Zhang, Z.: Application-Specific Instruction Generation
for Configurable Processor Architectures, Proceedings of the 12th International
Symposium on Field Programmable Gate Arrays, 2004, pp. 183-189

18. Sun, F., Ravi, S., Raghunathan, A., Jha, N.K., “Custom-Instruction Synthesis for
Extensible-Processor Platforms”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 23, No. 2, February 2004, pp. 216-228.

19. Sassone, P.G., Wills, D.S.: On the Extraction and Analysis of Prevalent Dataflow
Patterns, Proceedings of the Workshop on Workload Characterization, 2004

20. Spadini, F., Fertig, M., Patel, S.: Characterization of Repeating Dynamic Code
Fragments, Technical Report CRHC-02-09, University of Illinois, Urbana-
Champaign, 2002

21. Trimaran: An Infrastructure for Research in Instruction-Level Parallelism:
http://www.trimaran.org

22. Yu, P., Mitra, T.: Characterizing Embedded Applications for Instruction-Set
Extensible Processors, Proceedings of the 41st IEEE/ACM on Design Automation
Conference, 2004, pp. 723-728

23. Roth, C.H.: Digital Systems Design Using VHDL, PWS Publishing Company,
1998

24. Synplicity: http://www.synplicity.com/

 21

	Total
	Number of patterns in the pattern library
	Average

