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Abstract. This paper presents a novel methodology for instruction set customization of RISPs 
(Reconfigurable Instruction Set Processors) using morphable structures. A morphable structure 
consists of a group of hardware operators chained together to implement a restricted set of custom 
instructions. These structures are implemented on the reconfigurable fabric, and the operators are 
enabled/disabled on demand. The utilization of a predefined set of morphable structures for 
instruction set customization dispenses the need for hardware synthesis in design exploration, and 
avoids run-time reconfiguration while minimizing the reconfigurable area. We will describe the 
two stages of the methodology for constructing the morphable structures, namely template 
generation and identification of a maximal unique pattern set from the templates. Our preliminary 
studies show that 23 predefined morphable structures can sufficiently cater to any application in a 
set of eight MiBench benchmark applications. In addition, to achieve near-optimal performance, 
the maximum required number of morphable structures for an application is only 8.  

1 Introduction 

Future embedded systems will require a higher degree of customization to manage the growing 
complexity of the applications. At the same time, they must continue to facilitate a high degree of 
programmability to meet the shrinking TTM (Time To Market) window. Lately, extensible processors 
[1], [2] have emerged to provide a good tradeoff between efficiency and flexibility. Many commercial 
processors (e.g. Xtensa from Tensilica [3], ARCtangent from ARC [4], etc.) offer the possibility of 
extending their instruction set for a specific application by introducing custom functional units within 
the processor architecture. This application-specific instruction set extension to the computational 
capabilities of a processor, provides an efficient mechanism to meet the growing performance and 
TTM demands of embedded systems. However, the NRE (Non-Recurring Engineering) costs of 
redesigning a new extensible processor can still be quite high. This is exacerbated as the cost, 
associated with design, verification, manufacture and test of deep sub-micron chips, continue to 
increase dramatically with the mask cost.  
 
A RISP (Reconfigurable Instruction Set Processor) [5] consists of a microprocessor core that has been 
extended with a reconfigurable fabric. Similar to extensible processors, the RISP facilitate critical parts 
of the application to be implemented using a specialized instruction set on reconfigurable functional 
units. The advantages of a RISP over the extensible processors stem from the reusability of its 
hardware resources in various applications without incurring high NRE costs. Due to this, RISP are 
more flexible than an extensible processor, which precludes post design flexibility. However, 
reconfigurability of the RISP incurs an overhead that can hamper its ability to outperform conventional 
instruction set processors.  
 
In this paper, we introduce a methodology for instruction set customization on RISPs that relies on a 
set of morphable structures to implement the custom instructions. A one-time effort is required to 
identify a unique set of morphable structures from a subset of enumerated custom instruction instances. 
The pattern enumeration method introduced in [6] is combined with graph isomorphism [7] to identify 
unique custom instruction instances from a set of embedded applications. The process of selecting a 
subset of custom instruction instances or templates is called template generation. We present a heuristic 
approach for selecting the templates from the enumerated patterns, and show that only a limited 
number of templates are required to achieve comparable results with known techniques.  



The morphable structures are then constructed by using a subgraph isomorphism method to combine 
the selected templates into a set of maximal unique structures. These morphable structures are then 
characterized to obtain their hardware performance and cost models to be used for future design 
exploration. We show that the total number of unique morphable structures generated from eight 
applications in the MiBench embedded benchmark suite [8], is only 23. Moreover, a maximum of only 
8 morphable structures are required for a particular application. This restricted set of morphable 
structures is sufficient to achieve high performance gain, while keeping the reconfigurable logic area 
low. 
 
The availability of a predefine set of morphable structures dispenses the need for hardware 
implementations during design exploration. This can significantly increase the efficiency of the custom 
instruction selection process. The main goal of custom instruction selection is to determine viable 
custom instruction candidates from the application DFG (Data Flow Graph) to be implemented on a 
morphable structure. The custom instruction selection process in the methodology employs template 
matching that utilizes the restricted set of templates for improved efficiency. In this paper, we will not 
discuss the custom instruction selection process and limit the scope to the construction of morphable 
structures.  
 
In the following section, we discuss some previous work in the areas of RISP and instruction set 
customization. In Section 3, we describe the notion of morphable structures on RISP and in Section 4, 
present our methodology for instruction set customization using these structures. Section 5 presents the 
experimental results, and the paper concludes with some consideration on future directions. 

2 Background 

An inherent problem in RISP arises from the reconfiguration overhead that is incurred while reusing 
the hardware resources for various functions. For example, the DISC (Dynamic Instruction Set 
Computer) processor proposed in [9] requires a reconfiguration time that is projected to contribute up 
to 16% of an application’s total execution time. In [10], a compiler tool chain was presented to encode 
multiple custom instructions in a single configuration to reduce the reconfiguration overhead and 
maximize the utilization of the resources. However, the compiler tool chain incorporates a hardware 
synthesis flow that hampers the efficiency of the design exploration process.  
 
In commercial RISPs, the run-time reconfiguration overhead is exacerbated by the fine-grained 
programmable structure. For example, the Stretch processor [11] requires 80µs to change an instruction 
on their proprietary programmable logic. In order to maximize the efficiency of hardware execution, 
commercial RISPs [12], [13] often provide a large reconfigurable area to accommodate all the custom 
instructions of an application. These custom instructions are implemented on the reconfigurable fabric 
prior to execution to avoid run-time reconfiguration. However, these processors are likely to violate the 
tight area constraints imposed by most embedded systems. 
 
For a given application, a RISP configuration that outperforms the conventional processors must be 
determined rapidly without delaying the short TTM requirements for embedded systems. However, 
automatically determining the right set of extensible instructions for a given application and its 
constraints remains an open issue [2]. The problem of custom instruction identification can be loosely 
described as a process of detecting a cluster of operations or sub-graphs from the application DFG to be 
collapsed into a single custom instruction to maximize some metric (typically performance). Previous 
works in custom instruction identification can be broadly classified into the following four categories: 
1) pattern matching [14], 2) cluster growing [15], 3) heuristic-based [16], and 4) pattern enumeration 
[6].  
 
In [14], an approach that combines template matching and generation have been proposed to identify 
clusters of operations based on recurring patterns. The clusters identified with this approach are 
typically small and may not lead to a notable gain when implemented as custom instructions. The 
method proposed in [15] attempts to grow a candidate sub-graph from a seed node. The direction of 
growth relies on a guide function that reflects the merit of each growth direction. In [16], a genetic 
algorithm was devised to exploit opportunities of introducing memory elements during custom 
instruction identification.  



The methods discussed above have demonstrated possible gains, but they can potentially miss out on 
identifying some good custom instruction candidates. The pattern enumeration method proposed in [6] 
employs a binary tree search approach to identify all possible custom instruction candidates in a DFG. 
In order to speed up the search process, unexplored sub-graphs are pruned from the search space if they 
violate a certain set of constraints (i.e. number of input-output ports, convexity, operation type, etc.). In 
[17], pattern enumeration is combined with pattern generation and matching to identify the most 
profitable custom instructions in an application. Although these two approaches can lead to promising 
results, they can still become too time-consuming especially when dealing with large applications. 
 
The methodology proposed in this paper differs from previously reported work as it aims to identify a 
predefine set of morphable structures that can implement custom instructions of numerous applications. 
Unlike existing methods (i.e. [6], [17]), which employs a time-consuming pattern enumeration process 
for each application, the proposed technique performs this process only once on a standard set of 
applications. The enumerated patterns are used to generate a set of morphable structures, which are 
then characterized to obtain their hardware properties. The pre-characterized structures lead to 
substantial reduction in the design time, as it does not necessitate a lengthy hardware synthesis process 
during application mapping such as that required in existing methods (i.e. [10]). Our preliminary 
studies show that only a small number of morphable structures can sufficiently cater to eight embedded 
applications, while providing comparable performance gain with existing techniques. In addition, this 
study opens up new possibilities for area-efficient designs of commercial RISPs [12], [13], as the 
proposed methodology provides an insight to the reconfigurable area needed for efficient custom 
instruction implementations.  

3 Instruction Set Customization Using Morphable Structures 

A morphable structure consists of a group of operators that are chained together to implement a 
restricted set of custom instructions. These operators are derived from the set of primitive operations in 
the processor’s instruction set. Fig. 1a) illustrates an example of a morphable structure and Fig. 1b) 
describes how it can be used to implement three different custom instructions. Each of the custom 
instruction is sub-graph isomorphic to the structure. These custom instructions can be efficiently 
mapped onto the morphable structure by enabling and disabling the necessary operators. Operators that 
are disabled allow the input operand to bypass the primitive operation, and directly routed to the output 
port. 
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Fig. 1. Implementation of custom instructions on a morphable structure 

 



Fig. 2 shows an example of a RISP, which is four-wide VLIW (Very Long Instruction Word) 
architecture that has been extended with a reconfigurable fabric for implementing custom instructions. 
The morphable structures (denoted as MS) implemented on the reconfigurable fabric obtain their input 
data from the integer unit’s register file, and outputs the results to an arbitrator. High-speed arbitrators 
such as that found in the Altera Nios configurable platform [13] are commonly used to facilitate the 
sharing of register files or memory between the processor core and other peripherals. In the example 
RISP, the arbitrator is used to share the integer unit’s register file between the ALU and custom logic. 
It is evident that the number and complexity of the morphable structures will affect the required area of 
the reconfigurable fabric. In addition, since the complexity of the arbitrator logic is dependent on the 
number of connections to the morphable structures, it is imperative to keep the number of morphable 
structures tractable. 
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Fig. 2. Implementing morphable structures in a RISP 

The morphable structures are pre-defined from a set of custom instruction instances obtained by 
enumerating a number of embedded applications. Since the morphable structures are derived from the 
custom instruction instances, they are likely to implement a large variation of custom instructions in 
embedded applications. This is a plausible assumption as it has been shown that domain-specific 
applications exhibit common dataflow sub-graph patterns [18], [19]. It is noteworthy that although a 
substantial amount of effort is required to obtain the morphable structures, this process is performed 
only once. In a later section, we will describe an approach to obtain the maximal unique set of 
morphable structures in a tractable manner. 
 
The advantage of using morphable structures stems from the availability of a predefine set of 
morphable structures that can lead to rapid design exploration without a time-consuming hardware 
synthesis flow to evaluate the feasibility of the custom instruction candidates. This is possible as the 
morphable structures can be pre-characterized to facilitate area-time estimations of the custom 
instructions on hardware. In addition, a minimal set of morphable structures can be mapped onto the 
reconfigurable logic prior to the application execution to avoid run time reconfiguration. The 
reconfigurable logic space to accommodate the morphable structures is also minimized, as the number 
of morphable structures that are specific to a particular application is reasonably small.  

4. Proposed Methodology 

Fig. 3 illustrates an overview of the proposed methodology for instruction set customization using 
morphable structures. 
 
The proposed methodology consists of several key stages, but in this paper, we limit the discussion to 
the construction of morphable structures. This comprises of two stages: template generation and 
identification of morphable structures.  It is noteworthy that these two stages along with the hardware 
characterization of morphable structures is a one-time process, whereas custom instruction selection 
performs template matching to select the custom instructions for each new application. The selected 
custom instructions, and the corresponding morphable structures are passed to the compiler and 
hardware synthesis flow, which are beyond the scope of this paper. In the following sub-sections, we 
will provide more detailed descriptions of the two stages to construct morphable structures. 
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Fig. 3. Overview of proposed methodology 

4.1. Template Generation 
 
The main task of this stage is to perform template selection from a subset of custom instruction 
instances. The templates are used for two purposes. Firstly, the templates form the basic structures to 
construct the morphable structures, and secondly the templates are used to select custom instruction 
candidates from a given application. 
 
It is noteworthy that compared to [17], the template generation process in our methodology is 
performed only once from a set of embedded applications. Let’s denote this set of embedded 
applications as the standard application set. Hence, although this process can be time-consuming due to 
pattern enumeration of large applications, it does not affect the custom instruction selection process.   
 
The proposed approach is divided into three steps: 1) Custom instruction identification and 2) Pattern 
grouping, and 3) Template selection.  
 
4.1.1 Custom Instruction Identification 
 
The objective of this step is to enumerate the custom instruction instances from an application’s DFG. 
We have modified the pattern enumeration algorithm in [6] to identify all the custom instruction 



instances from the standard application set. As mentioned earlier, the method in [6] employs a binary 
tree search approach that prunes unexplored sub-graphs from the search space if they violate a certain 
set of constraints.  
 
We have used the Trimaran [20] IR (Intermediate Representation) for custom instruction identification. 
In order to avoid false dependencies within the DFG, the IR is generated prior to register allocation. 
For the purpose of this study, we have imposed the following constraints on the custom instructions to 
increase the efficiency of the identification process: 

1. Only integer operations are allowed in the custom instruction instance. 
2. Each custom instruction instance must be a connected sub-graph. 
3. Maximum number of input ports ≤ 5 and maximum number of output ports ≤ 2. Previous 

work [21] has shown that input-output ports more than this range results in little performance 
gain when no memory and branch operations are allowed in the custom instructions. 

4. Only convex sub-graphs [6] are allowed in the custom instructions instance. 
5. The operation that feeds an input to the custom instruction instance must execute before the 

first operation in the custom instruction instance. 
 
4.1.2 Pattern Grouping 
 
The custom instruction instances are subjected to pattern grouping, whereby identical patterns that 
occur in different basic blocks and applications are grouped to create a unique set of custom instruction 
patterns. Patterns are considered identical if they have the same internal sub-graphs, without 
considering their input and output operands. The static occurrences of each unique pattern are also 
recorded. We have used the graph isomorphism method in the vflib graph-matching library [22] for the 
pattern grouping process. Due to the limited size of the constrained custom instruction instances, the 
pattern-grouping step can be accomplished rapidly.  
 
These unique custom instruction patterns are stored in the pattern library for the template selection 
process. Fig. 4 presents the static occurrences and the corresponding pattern size of the unique patterns 
in the pattern library. The pattern size is calculated as the number of operations in the custom 
instruction. It can be observed that custom instructions with small pattern sizes occurs more frequently 
in the set of embedded applications as compared to custom instructions with large pattern sizes. 
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Fig. 4. Static occurrences and the pattern size of the unique patterns 
 
 
4.1.3 Template Selection 
 
In this step, a subset of templates is selected from the pattern library to reduce the complexity of the 
custom instruction selection process. This is necessary as the number of templates influences the 
computational complexity of the template matching process in custom instruction selection. In 



addition, restricting the number of templates can also lead to more efficient construction of morphable 
structures.  
 
Although, custom instructions with small pattern sizes are likely to appear frequently in the embedded 
applications (see Fig. 4), templates with larger pattern sizes should also be selected as they can lead to 
significant speedup in certain applications. We employ a heuristic approach for template selection, 
which account for the performance gain and area utilization of the custom instruction in hardware. 
Each pattern p is assigned a gain as shown in (1), where the performance gain obtained by mapping p 
on hardware is calculated as shown in (2). TSW denotes the number of clock cycles taken for the custom 
instruction to run on a processor, and we assume each operation takes 1 clock cycle. THW denotes the 
number of clock cycles taken for the custom instruction in hardware, and we estimate this by the length 
of the critical path in the custom instruction sub-graph. 
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Patterns with higher gain values are selected as templates and stored in the template library. It is 
noteworthy that we do not consider the occurrences of the patterns in the selection decision as in [17]. 
This is because in our methodology, the templates are not used specifically for the standard application 
set. However, the pattern size of the custom instructions implicitly associate the occurrences of patterns 
in the gain as smaller patterns are likely to occur more frequently in embedded applications.  
 
4.2 Identification and Characterization of Morphable Structures 
 
The main task in this stage is to identify a unique set of morphable structures from the template library. 
Specifically, we aim to find a maximal unique set of patterns that can cover all the templates.  This is 
achieved by combining the larger sub-graphs in the template library, with smaller sub-graphs that are 
subsumed by it. The combination of subsumed sub-graphs is based on maximal similarity, which is 
defined as the minimal difference in the operations nodes of the two sub-graphs. Each pattern in the 
resulting maximal unique set cannot be subsumed by any other patterns in the set.  
 
Fig. 5 illustrates the process of identifying a maximal unique set of patterns from the templates. In can 
be observed that although Template 1 can be subsumed by Template 2 and 3, it exhibit maximal 
similarity with Template 2. Hence, Template 1 is first combined with Template 2. Subsequently, 
Template 2 is combined with Template 3, and Template 5 is combined with Template 4. Finally, the 
remaining Templates 3 and 4 cannot be subsumed by each other and they formed the final set of 
maximal unique patterns. We can visually inspect that Templates 3 and 4 can cover Templates 1-5. 
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Fig. 5. Identifying a maximal unique set of patterns from the templates 

 



Combination of the subsumed patterns is equivalent to the sub-graph isomorphism problem. It is 
evident that this task is time consuming given the NP-completeness of the problem and the growing 
complexity of DFGs in modern embedded application. We have relied on the vflib graph-matching 
library [22] to find a maximal unique pattern set from the selected templates.   
 
The morphable structures are then characterized to obtain their hardware performance and cost models 
to be used during custom instruction selection. 

5 Experimental Results 

In this section, we present experimental results to evaluate the benefits of our proposed methodology. 
We have selected a total of eight benchmarks from the MiBench embedded benchmark suite [8] as the 
standard application set. The baseline machine for the experiments is a four-wide VLIW architecture 
that can issue one integer, one floating-point, one memory, and one branch instruction each cycle. 

 
Table 1 shows the results obtained from the custom instruction identification process and pattern 
grouping. Although the pattern enumeration generates up to 1119 custom instruction instances, most of 
them can be grouped. After pattern grouping the number of unique patterns in the pattern library is 
reduced to 82 patterns. 

Table 1. Results obtained from custom instruction identification and pattern grouping. 

Benchmarks Custom instruction 
instances  

Number of patterns 
in the pattern library 

adpcm dec 17 
adpcm enc 
blowfish 

22 
990 

crc32 10 
dijkstra 18 
FFT 6 
sha 34 
stringsearch 22 
Total 1119 

 
 
 

82 

 
 
As can be observed from Table 1, a total of 82 templates can be used for custom instruction selection. 
Although it is desirable to limit the number of templates in order to increase the efficiency of template 
matching, we need to ensure that the resulting gain is not heavily compromised.  
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Fig. 6. Percentage cycles saved with varying number of selected templates used for template matching 

 



Fig. 6 shows the percentage cycles saved that can be achieved with varying number of templates used 
for template matching. The percentage cycles saved for application A is computed as shown in (3), 
where pi for i = 1 to k, represent the k custom instructions selected for the application A, dynamic 
occurrences(pi) is the execution frequency of the custom instruction pi in application A, and SW Clock 
Cycles(A) denotes the number of clock cycles of the application A that is reported from Trimaran.  
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It can be observed that increasing the number of templates for matching will not lead to any notable 
gain after a certain point for each application. Hence, it is possible to reduce the number of templates 
for matching in order to achieve more efficient custom instruction selection, without compromising on 
the performance gain.  

 
A total of 60 templates with highest gain values have been selected based on the approach described in 
Section 4.1.3. These templates consist of various pattern sizes (i.e. 2, 3, 4, 5, 6), which is necessary to 
accommodate to the different embedded applications. For example in Fig. 7, although the performance 
gain in most benchmark applications is contributed by small custom instructions (i.e. 2), larger custom 
instructions form a significant portion of the performance gain in certain benchmarks (i.e. sha). 
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Fig. 7. Percentage cycles saved contributed by varying pattern sizes of the templates  

 
Fig. 8 compares the performance obtained by the proposed technique with an approach based on 
application-centric template selection. We denote the latter as an application-centric approach. The 
application-centric approach performs pattern enumeration on each application individually to select 
templates using a gain that combines speedup and the pattern occurrences, which is similar to the 
approach presented in [17]. In the application-centric approach, template matching is performed on the 
application using all the templates in the order of descending gain values. When a pattern match occurs, 
a custom instruction has been identified and the corresponding pattern is removed from the application 
DFG. The template matching process is repeated until there is no more pattern matches. It can be 
observed from Fig. 8 that the proposed method, which employs the same strategy for template 
matching (except that the gain in (1) is used and the number of templates are restricted to 60), provides 
comparable results with the application-centric approach. It is noteworthy that the proposed 
methodology executes much faster as it only performs the pattern enumeration process once. Moreover, 
as mentioned earlier, the employment of morphable structures dispenses the need for hardware 
syntheses flow in design exploration, and can give rise to area efficient implementations.  
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Fig. 8. Performance comparison of the proposed method with an application-centric approach  

 
Table 2 shows the number of morphable structures required for each application and the total pattern 
sizes. As can be observed, the average number of morphable structures and the average number of 
operations for the eight applications is only 5.125 and 18.75 respectively. The maximum number of 
morphable structures is 8 with 45 operations, which is required by the sha application. These results 
imply that the reconfigurable area on the RISP can be kept small to cater to efficient custom instruction 
implementations.  

Table 2. The number of morphable structures and the total pattern sizes for each application 

 
Benchmarks Required number of 

morphable structures 
Sum of Pattern Sizes of 

the morphable structures 
adpcm dec 5 19 
adpcm enc 6 18 
blowfish 6 21 
crc32 2 8 
dijkstra 5 14 
FFT 6 15 
sha 8 45 
stringsearch 3 10 
Average 5.125 18.75 

 
 
Fig. 8 shows the 23 morphable structures that have been constructed and the corresponding 
applications that they cater to. 
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Fig. 9. The set morphable structures constructed through the proposed methodology 

6 Conclusion 

We have proposed a methodology for instruction set customization on RISPs that uses morphable 
structures. The advantage of using morphable structures stems from the availability of a predefine set 
of morphable structures that can lead to rapid design exploration without a time-consuming hardware 
synthesis flow to evaluate the feasibility of the custom instruction candidates. In addition, the 
reconfigurable logic space to accommodate the morphable structures can also be minimized, as the 
number of morphable structures that are specific to a particular application is very small. The 
experimental results show that 23 predefined morphable structures can sufficiently cater to any 
application in a set of eight MiBench benchmarks, and the average number of morphable structures per 
application is only 5.125 in order to achieve high performance gain. Future work includes validation of 
the methodology on a larger standard application set, and defining more effective criteria for the 
construction of morphable structures.  
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