
Morphable Structures for Reconfigurable Instruction
Set Processors

Lam Siew-Kei, Deng Yun, and Thambipillai Srikanthan

Centre for High Performance Embedded Systems

Nanyang Technological University
Nanyang Drive, SINGAPORE

{assklam, pg10831880, astsrikan}@ntu.edu.sg

Abstract. This paper presents a novel methodology for instruction set customization of RISPs
(Reconfigurable Instruction Set Processors) using morphable structures. A morphable structure
consists of a group of hardware operators chained together to implement a restricted set of custom
instructions. These structures are implemented on the reconfigurable fabric, and the operators are
enabled/disabled on demand. The utilization of a predefined set of morphable structures for
instruction set customization dispenses the need for hardware synthesis in design exploration, and
avoids run-time reconfiguration while minimizing the reconfigurable area. We will describe the
two stages of the methodology for constructing the morphable structures, namely template
generation and identification of a maximal unique pattern set from the templates. Our preliminary
studies show that 23 predefined morphable structures can sufficiently cater to any application in a
set of eight MiBench benchmark applications. In addition, to achieve near-optimal performance,
the maximum required number of morphable structures for an application is only 8.

1 Introduction

Future embedded systems will require a higher degree of customization to manage the growing
complexity of the applications. At the same time, they must continue to facilitate a high degree of
programmability to meet the shrinking TTM (Time To Market) window. Lately, extensible processors
[1], [2] have emerged to provide a good tradeoff between efficiency and flexibility. Many commercial
processors (e.g. Xtensa from Tensilica [3], ARCtangent from ARC [4], etc.) offer the possibility of
extending their instruction set for a specific application by introducing custom functional units within
the processor architecture. This application-specific instruction set extension to the computational
capabilities of a processor, provides an efficient mechanism to meet the growing performance and
TTM demands of embedded systems. However, the NRE (Non-Recurring Engineering) costs of
redesigning a new extensible processor can still be quite high. This is exacerbated as the cost,
associated with design, verification, manufacture and test of deep sub-micron chips, continue to
increase dramatically with the mask cost.

A RISP (Reconfigurable Instruction Set Processor) [5] consists of a microprocessor core that has been
extended with a reconfigurable fabric. Similar to extensible processors, the RISP facilitate critical parts
of the application to be implemented using a specialized instruction set on reconfigurable functional
units. The advantages of a RISP over the extensible processors stem from the reusability of its
hardware resources in various applications without incurring high NRE costs. Due to this, RISP are
more flexible than an extensible processor, which precludes post design flexibility. However,
reconfigurability of the RISP incurs an overhead that can hamper its ability to outperform conventional
instruction set processors.

In this paper, we introduce a methodology for instruction set customization on RISPs that relies on a
set of morphable structures to implement the custom instructions. A one-time effort is required to
identify a unique set of morphable structures from a subset of enumerated custom instruction instances.
The pattern enumeration method introduced in [6] is combined with graph isomorphism [7] to identify
unique custom instruction instances from a set of embedded applications. The process of selecting a
subset of custom instruction instances or templates is called template generation. We present a heuristic
approach for selecting the templates from the enumerated patterns, and show that only a limited
number of templates are required to achieve comparable results with known techniques.

The morphable structures are then constructed by using a subgraph isomorphism method to combine
the selected templates into a set of maximal unique structures. These morphable structures are then
characterized to obtain their hardware performance and cost models to be used for future design
exploration. We show that the total number of unique morphable structures generated from eight
applications in the MiBench embedded benchmark suite [8], is only 23. Moreover, a maximum of only
8 morphable structures are required for a particular application. This restricted set of morphable
structures is sufficient to achieve high performance gain, while keeping the reconfigurable logic area
low.

The availability of a predefine set of morphable structures dispenses the need for hardware
implementations during design exploration. This can significantly increase the efficiency of the custom
instruction selection process. The main goal of custom instruction selection is to determine viable
custom instruction candidates from the application DFG (Data Flow Graph) to be implemented on a
morphable structure. The custom instruction selection process in the methodology employs template
matching that utilizes the restricted set of templates for improved efficiency. In this paper, we will not
discuss the custom instruction selection process and limit the scope to the construction of morphable
structures.

In the following section, we discuss some previous work in the areas of RISP and instruction set
customization. In Section 3, we describe the notion of morphable structures on RISP and in Section 4,
present our methodology for instruction set customization using these structures. Section 5 presents the
experimental results, and the paper concludes with some consideration on future directions.

2 Background

An inherent problem in RISP arises from the reconfiguration overhead that is incurred while reusing
the hardware resources for various functions. For example, the DISC (Dynamic Instruction Set
Computer) processor proposed in [9] requires a reconfiguration time that is projected to contribute up
to 16% of an application’s total execution time. In [10], a compiler tool chain was presented to encode
multiple custom instructions in a single configuration to reduce the reconfiguration overhead and
maximize the utilization of the resources. However, the compiler tool chain incorporates a hardware
synthesis flow that hampers the efficiency of the design exploration process.

In commercial RISPs, the run-time reconfiguration overhead is exacerbated by the fine-grained
programmable structure. For example, the Stretch processor [11] requires 80µs to change an instruction
on their proprietary programmable logic. In order to maximize the efficiency of hardware execution,
commercial RISPs [12], [13] often provide a large reconfigurable area to accommodate all the custom
instructions of an application. These custom instructions are implemented on the reconfigurable fabric
prior to execution to avoid run-time reconfiguration. However, these processors are likely to violate the
tight area constraints imposed by most embedded systems.

For a given application, a RISP configuration that outperforms the conventional processors must be
determined rapidly without delaying the short TTM requirements for embedded systems. However,
automatically determining the right set of extensible instructions for a given application and its
constraints remains an open issue [2]. The problem of custom instruction identification can be loosely
described as a process of detecting a cluster of operations or sub-graphs from the application DFG to be
collapsed into a single custom instruction to maximize some metric (typically performance). Previous
works in custom instruction identification can be broadly classified into the following four categories:
1) pattern matching [14], 2) cluster growing [15], 3) heuristic-based [16], and 4) pattern enumeration
[6].

In [14], an approach that combines template matching and generation have been proposed to identify
clusters of operations based on recurring patterns. The clusters identified with this approach are
typically small and may not lead to a notable gain when implemented as custom instructions. The
method proposed in [15] attempts to grow a candidate sub-graph from a seed node. The direction of
growth relies on a guide function that reflects the merit of each growth direction. In [16], a genetic
algorithm was devised to exploit opportunities of introducing memory elements during custom
instruction identification.

The methods discussed above have demonstrated possible gains, but they can potentially miss out on
identifying some good custom instruction candidates. The pattern enumeration method proposed in [6]
employs a binary tree search approach to identify all possible custom instruction candidates in a DFG.
In order to speed up the search process, unexplored sub-graphs are pruned from the search space if they
violate a certain set of constraints (i.e. number of input-output ports, convexity, operation type, etc.). In
[17], pattern enumeration is combined with pattern generation and matching to identify the most
profitable custom instructions in an application. Although these two approaches can lead to promising
results, they can still become too time-consuming especially when dealing with large applications.

The methodology proposed in this paper differs from previously reported work as it aims to identify a
predefine set of morphable structures that can implement custom instructions of numerous applications.
Unlike existing methods (i.e. [6], [17]), which employs a time-consuming pattern enumeration process
for each application, the proposed technique performs this process only once on a standard set of
applications. The enumerated patterns are used to generate a set of morphable structures, which are
then characterized to obtain their hardware properties. The pre-characterized structures lead to
substantial reduction in the design time, as it does not necessitate a lengthy hardware synthesis process
during application mapping such as that required in existing methods (i.e. [10]). Our preliminary
studies show that only a small number of morphable structures can sufficiently cater to eight embedded
applications, while providing comparable performance gain with existing techniques. In addition, this
study opens up new possibilities for area-efficient designs of commercial RISPs [12], [13], as the
proposed methodology provides an insight to the reconfigurable area needed for efficient custom
instruction implementations.

3 Instruction Set Customization Using Morphable Structures

A morphable structure consists of a group of operators that are chained together to implement a
restricted set of custom instructions. These operators are derived from the set of primitive operations in
the processor’s instruction set. Fig. 1a) illustrates an example of a morphable structure and Fig. 1b)
describes how it can be used to implement three different custom instructions. Each of the custom
instruction is sub-graph isomorphic to the structure. These custom instructions can be efficiently
mapped onto the morphable structure by enabling and disabling the necessary operators. Operators that
are disabled allow the input operand to bypass the primitive operation, and directly routed to the output
port.

<< +

OR

OR

<< +

OR

OR

+

OR

<< +

OR

OR

<< +

OR

<< +

OR

OR

<< +

OR

OR

Enabled

Disabled

(a) (b)

Morphable Structure

Custom Instruction 1 Custom Instruction 2

Custom Instruction 3

Fig. 1. Implementation of custom instructions on a morphable structure

Fig. 2 shows an example of a RISP, which is four-wide VLIW (Very Long Instruction Word)
architecture that has been extended with a reconfigurable fabric for implementing custom instructions.
The morphable structures (denoted as MS) implemented on the reconfigurable fabric obtain their input
data from the integer unit’s register file, and outputs the results to an arbitrator. High-speed arbitrators
such as that found in the Altera Nios configurable platform [13] are commonly used to facilitate the
sharing of register files or memory between the processor core and other peripherals. In the example
RISP, the arbitrator is used to share the integer unit’s register file between the ALU and custom logic.
It is evident that the number and complexity of the morphable structures will affect the required area of
the reconfigurable fabric. In addition, since the complexity of the arbitrator logic is dependent on the
number of connections to the morphable structures, it is imperative to keep the number of morphable
structures tractable.

Instruction Cache

Memory
Unit

Floating -
Point Unit Register File

ALU

Arbitrator

Integer Unit Reconfigurable Fabric

MS ...MS MS

RISP

Branch
Unit

Data Cache

Fig. 2. Implementing morphable structures in a RISP

The morphable structures are pre-defined from a set of custom instruction instances obtained by
enumerating a number of embedded applications. Since the morphable structures are derived from the
custom instruction instances, they are likely to implement a large variation of custom instructions in
embedded applications. This is a plausible assumption as it has been shown that domain-specific
applications exhibit common dataflow sub-graph patterns [18], [19]. It is noteworthy that although a
substantial amount of effort is required to obtain the morphable structures, this process is performed
only once. In a later section, we will describe an approach to obtain the maximal unique set of
morphable structures in a tractable manner.

The advantage of using morphable structures stems from the availability of a predefine set of
morphable structures that can lead to rapid design exploration without a time-consuming hardware
synthesis flow to evaluate the feasibility of the custom instruction candidates. This is possible as the
morphable structures can be pre-characterized to facilitate area-time estimations of the custom
instructions on hardware. In addition, a minimal set of morphable structures can be mapped onto the
reconfigurable logic prior to the application execution to avoid run time reconfiguration. The
reconfigurable logic space to accommodate the morphable structures is also minimized, as the number
of morphable structures that are specific to a particular application is reasonably small.

4. Proposed Methodology

Fig. 3 illustrates an overview of the proposed methodology for instruction set customization using
morphable structures.

The proposed methodology consists of several key stages, but in this paper, we limit the discussion to
the construction of morphable structures. This comprises of two stages: template generation and
identification of morphable structures. It is noteworthy that these two stages along with the hardware
characterization of morphable structures is a one-time process, whereas custom instruction selection
performs template matching to select the custom instructions for each new application. The selected
custom instructions, and the corresponding morphable structures are passed to the compiler and
hardware synthesis flow, which are beyond the scope of this paper. In the following sub-sections, we
will provide more detailed descriptions of the two stages to construct morphable structures.

C application

Trimaran
Compiler

DFG of a set of applications

Custom Instruction
Identification

Pattern
Grouping

Custom
instructions
instances

Pattern
Library

Identify Maximal
Unique Pattern Set

Template
Selection

Template
Library

Template Matching
for Custom

Instruction Selection

Hardware
Characterization of

Morphable Structures

Compiler Support
for Instruction Set

Customization
and Hardware

Synthesis Flow

Selected
custom
instructions

Identification of
Morphable Structures

Template Generation

Constraints

DFG of an application

Morphable
Structures and
their Hardware
Characteristics

Selected
templates

Fig. 3. Overview of proposed methodology

4.1. Template Generation

The main task of this stage is to perform template selection from a subset of custom instruction
instances. The templates are used for two purposes. Firstly, the templates form the basic structures to
construct the morphable structures, and secondly the templates are used to select custom instruction
candidates from a given application.

It is noteworthy that compared to [17], the template generation process in our methodology is
performed only once from a set of embedded applications. Let’s denote this set of embedded
applications as the standard application set. Hence, although this process can be time-consuming due to
pattern enumeration of large applications, it does not affect the custom instruction selection process.

The proposed approach is divided into three steps: 1) Custom instruction identification and 2) Pattern
grouping, and 3) Template selection.

4.1.1 Custom Instruction Identification

The objective of this step is to enumerate the custom instruction instances from an application’s DFG.
We have modified the pattern enumeration algorithm in [6] to identify all the custom instruction

instances from the standard application set. As mentioned earlier, the method in [6] employs a binary
tree search approach that prunes unexplored sub-graphs from the search space if they violate a certain
set of constraints.

We have used the Trimaran [20] IR (Intermediate Representation) for custom instruction identification.
In order to avoid false dependencies within the DFG, the IR is generated prior to register allocation.
For the purpose of this study, we have imposed the following constraints on the custom instructions to
increase the efficiency of the identification process:

1. Only integer operations are allowed in the custom instruction instance.
2. Each custom instruction instance must be a connected sub-graph.
3. Maximum number of input ports ≤ 5 and maximum number of output ports ≤ 2. Previous

work [21] has shown that input-output ports more than this range results in little performance
gain when no memory and branch operations are allowed in the custom instructions.

4. Only convex sub-graphs [6] are allowed in the custom instructions instance.
5. The operation that feeds an input to the custom instruction instance must execute before the

first operation in the custom instruction instance.

4.1.2 Pattern Grouping

The custom instruction instances are subjected to pattern grouping, whereby identical patterns that
occur in different basic blocks and applications are grouped to create a unique set of custom instruction
patterns. Patterns are considered identical if they have the same internal sub-graphs, without
considering their input and output operands. The static occurrences of each unique pattern are also
recorded. We have used the graph isomorphism method in the vflib graph-matching library [22] for the
pattern grouping process. Due to the limited size of the constrained custom instruction instances, the
pattern-grouping step can be accomplished rapidly.

These unique custom instruction patterns are stored in the pattern library for the template selection
process. Fig. 4 presents the static occurrences and the corresponding pattern size of the unique patterns
in the pattern library. The pattern size is calculated as the number of operations in the custom
instruction. It can be observed that custom instructions with small pattern sizes occurs more frequently
in the set of embedded applications as compared to custom instructions with large pattern sizes.

0

100

200

300

400

500

600

700

2 3 4 5 6 7 8 9 10

Pattern Size

O
cc

ur
en

ce
s

Fig. 4. Static occurrences and the pattern size of the unique patterns

4.1.3 Template Selection

In this step, a subset of templates is selected from the pattern library to reduce the complexity of the
custom instruction selection process. This is necessary as the number of templates influences the
computational complexity of the template matching process in custom instruction selection. In

addition, restricting the number of templates can also lead to more efficient construction of morphable
structures.

Although, custom instructions with small pattern sizes are likely to appear frequently in the embedded
applications (see Fig. 4), templates with larger pattern sizes should also be selected as they can lead to
significant speedup in certain applications. We employ a heuristic approach for template selection,
which account for the performance gain and area utilization of the custom instruction in hardware.
Each pattern p is assigned a gain as shown in (1), where the performance gain obtained by mapping p
on hardware is calculated as shown in (2). TSW denotes the number of clock cycles taken for the custom
instruction to run on a processor, and we assume each operation takes 1 clock cycle. THW denotes the
number of clock cycles taken for the custom instruction in hardware, and we estimate this by the length
of the critical path in the custom instruction sub-graph.

)(
)()(

psizePattern
pGainePerformancpGain = (1)

)(
)()(

pT
pTpGainePerformanc

HW

SW= (2)

Patterns with higher gain values are selected as templates and stored in the template library. It is
noteworthy that we do not consider the occurrences of the patterns in the selection decision as in [17].
This is because in our methodology, the templates are not used specifically for the standard application
set. However, the pattern size of the custom instructions implicitly associate the occurrences of patterns
in the gain as smaller patterns are likely to occur more frequently in embedded applications.

4.2 Identification and Characterization of Morphable Structures

The main task in this stage is to identify a unique set of morphable structures from the template library.
Specifically, we aim to find a maximal unique set of patterns that can cover all the templates. This is
achieved by combining the larger sub-graphs in the template library, with smaller sub-graphs that are
subsumed by it. The combination of subsumed sub-graphs is based on maximal similarity, which is
defined as the minimal difference in the operations nodes of the two sub-graphs. Each pattern in the
resulting maximal unique set cannot be subsumed by any other patterns in the set.

Fig. 5 illustrates the process of identifying a maximal unique set of patterns from the templates. In can
be observed that although Template 1 can be subsumed by Template 2 and 3, it exhibit maximal
similarity with Template 2. Hence, Template 1 is first combined with Template 2. Subsequently,
Template 2 is combined with Template 3, and Template 5 is combined with Template 4. Finally, the
remaining Templates 3 and 4 cannot be subsumed by each other and they formed the final set of
maximal unique patterns. We can visually inspect that Templates 3 and 4 can cover Templates 1-5.

+

OR

<< +

OR

<< +

OR

OR
<< x

+

<<

+

Template 1 Template 2 Template 3

Template 4 Template 5

Template Template with
Maximal Similarity

1

2

3

4

5

2

3

4

None

None

Fig. 5. Identifying a maximal unique set of patterns from the templates

Combination of the subsumed patterns is equivalent to the sub-graph isomorphism problem. It is
evident that this task is time consuming given the NP-completeness of the problem and the growing
complexity of DFGs in modern embedded application. We have relied on the vflib graph-matching
library [22] to find a maximal unique pattern set from the selected templates.

The morphable structures are then characterized to obtain their hardware performance and cost models
to be used during custom instruction selection.

5 Experimental Results

In this section, we present experimental results to evaluate the benefits of our proposed methodology.
We have selected a total of eight benchmarks from the MiBench embedded benchmark suite [8] as the
standard application set. The baseline machine for the experiments is a four-wide VLIW architecture
that can issue one integer, one floating-point, one memory, and one branch instruction each cycle.

Table 1 shows the results obtained from the custom instruction identification process and pattern
grouping. Although the pattern enumeration generates up to 1119 custom instruction instances, most of
them can be grouped. After pattern grouping the number of unique patterns in the pattern library is
reduced to 82 patterns.

Table 1. Results obtained from custom instruction identification and pattern grouping.

Benchmarks Custom instruction
instances

Number of patterns
in the pattern library

adpcm dec 17
adpcm enc
blowfish

22
990

crc32 10
dijkstra 18
FFT 6
sha 34
stringsearch 22
Total 1119

82

As can be observed from Table 1, a total of 82 templates can be used for custom instruction selection.
Although it is desirable to limit the number of templates in order to increase the efficiency of template
matching, we need to ensure that the resulting gain is not heavily compromised.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of templates

Pe
rc

en
ta

ge
 c

yc
le

s
sa

ve
d

(%
)

adpcm dec
adpcm enc
blowfish
crc32
dijkstra
FFT
sha
stringsearch

Fig. 6. Percentage cycles saved with varying number of selected templates used for template matching

Fig. 6 shows the percentage cycles saved that can be achieved with varying number of templates used
for template matching. The percentage cycles saved for application A is computed as shown in (3),
where pi for i = 1 to k, represent the k custom instructions selected for the application A, dynamic
occurrences(pi) is the execution frequency of the custom instruction pi in application A, and SW Clock
Cycles(A) denotes the number of clock cycles of the application A that is reported from Trimaran.

100
)(

)()(
)(1 ×

×

=
∑
=

ACyclesClockSW

poccurencesdynamicpsavedcyclesClock
AsavedcyclesPercentage

k

i
ii

 (3)

It can be observed that increasing the number of templates for matching will not lead to any notable
gain after a certain point for each application. Hence, it is possible to reduce the number of templates
for matching in order to achieve more efficient custom instruction selection, without compromising on
the performance gain.

A total of 60 templates with highest gain values have been selected based on the approach described in
Section 4.1.3. These templates consist of various pattern sizes (i.e. 2, 3, 4, 5, 6), which is necessary to
accommodate to the different embedded applications. For example in Fig. 7, although the performance
gain in most benchmark applications is contributed by small custom instructions (i.e. 2), larger custom
instructions form a significant portion of the performance gain in certain benchmarks (i.e. sha).

0

2

4

6

8

10

12

14

16

18

20

adpcm dec adpcm enc blow fish crc32 dijkstra FFT sha stringsearch

Benchmarks

Pe
rc

en
ta

ge
 c

yc
le

s
sa

ve
d

(%
)

2 3 4 5 6

Fig. 7. Percentage cycles saved contributed by varying pattern sizes of the templates

Fig. 8 compares the performance obtained by the proposed technique with an approach based on
application-centric template selection. We denote the latter as an application-centric approach. The
application-centric approach performs pattern enumeration on each application individually to select
templates using a gain that combines speedup and the pattern occurrences, which is similar to the
approach presented in [17]. In the application-centric approach, template matching is performed on the
application using all the templates in the order of descending gain values. When a pattern match occurs,
a custom instruction has been identified and the corresponding pattern is removed from the application
DFG. The template matching process is repeated until there is no more pattern matches. It can be
observed from Fig. 8 that the proposed method, which employs the same strategy for template
matching (except that the gain in (1) is used and the number of templates are restricted to 60), provides
comparable results with the application-centric approach. It is noteworthy that the proposed
methodology executes much faster as it only performs the pattern enumeration process once. Moreover,
as mentioned earlier, the employment of morphable structures dispenses the need for hardware
syntheses flow in design exploration, and can give rise to area efficient implementations.

0

2

4

6

8

10

12

14

16

18

20

adpcm dec adpcm enc blow fish crc32 dijkstra FFT sha stringsearch

Benchmarks

Pe
rc

en
ta

ge
 c

yc
le

s
sa

ve
d

(%
)

Application-centric Proposed

Fig. 8. Performance comparison of the proposed method with an application-centric approach

Table 2 shows the number of morphable structures required for each application and the total pattern
sizes. As can be observed, the average number of morphable structures and the average number of
operations for the eight applications is only 5.125 and 18.75 respectively. The maximum number of
morphable structures is 8 with 45 operations, which is required by the sha application. These results
imply that the reconfigurable area on the RISP can be kept small to cater to efficient custom instruction
implementations.

Table 2. The number of morphable structures and the total pattern sizes for each application

Benchmarks Required number of

morphable structures
Sum of Pattern Sizes of

the morphable structures
adpcm dec 5 19
adpcm enc 6 18
blowfish 6 21
crc32 2 8
dijkstra 5 14
FFT 6 15
sha 8 45
stringsearch 3 10
Average 5.125 18.75

Fig. 8 shows the 23 morphable structures that have been constructed and the corresponding
applications that they cater to.

ADDL

AND

blowfish

ADD

AND

blowfish
FFT

MPY

ADDL

dijkstra

ADD

MOVE

dijkstra

REM

MOVE ADD_

dijkstra

SUBL

AND

FFT

ADDL SUB

ADD
sha

SHL

ADDL ADD

ADD
dijkstra

ADDL

ADDL

MOVE

sha
stringsearch

SHL SHR

OR XOR

XOR

ADDL

ADDL

sha

EXTS

AND

SHL

stringsearch

ADD

SHR

AND

ADDL

SHL

ADD

blowfish
sha

AND

XOR

AND

SHL

ADD

crc32

AND AND AND SHL SHR

OROR

OR

ADDL

ADDL

sha

XOR AND_W SHL SHR

ORAND

OR

ADDL

ADDL

sha

SHL AND

OR

adpcm enc
FFT

SHL

AND

adpcm enc
FFT

SHRA

AND

ADD

adpcm dec
adpcm enc

sha

SHRA SHRA EXTS

SHRA

AND

adpcm dec
adpcm enc

blowfish
FFT
sha

AND

AND

adpcm dec

EXTS

SUB

adpcm enc

SHL ADD

ADD

adpcm dec
adpcm enc

blowfish
crc32

dijkstra
FFT

stringsearch

SHRA

AND

ADD

SHRA

ADD

ADD

adpcm dec
blowfish

Fig. 9. The set morphable structures constructed through the proposed methodology

6 Conclusion

We have proposed a methodology for instruction set customization on RISPs that uses morphable
structures. The advantage of using morphable structures stems from the availability of a predefine set
of morphable structures that can lead to rapid design exploration without a time-consuming hardware
synthesis flow to evaluate the feasibility of the custom instruction candidates. In addition, the
reconfigurable logic space to accommodate the morphable structures can also be minimized, as the
number of morphable structures that are specific to a particular application is very small. The
experimental results show that 23 predefined morphable structures can sufficiently cater to any
application in a set of eight MiBench benchmarks, and the average number of morphable structures per
application is only 5.125 in order to achieve high performance gain. Future work includes validation of
the methodology on a larger standard application set, and defining more effective criteria for the
construction of morphable structures.

References

1. Dutt, N., Choi, K.: Configurable Processors for Embedded Computing, Computer, Vol. 36, No. 1, (2003)
120-123

2. Henkel, J.: Closing the SoC Design Gap, IEEE Computer, Vol. 36, No. 9 (2003) 119-121.
3. Xtensa Microprocessor: http://www.tensilica.com
4. ARCtangent Processor: http://www.arc.com
5. Barat, F., Lauwereins, R., Deconinck, G.: Reconfigurable Instruction Set Processors from a

Hardware/Software Perspective, IEEE Transactions on Software Engineering, Vol. 28, No. 9 (2002) 847-862
6. Atasu, K., Pozzi, L., Ienne, P.: Automatic Application-Specific Instruction-Set Extensions Under

Microarchitectural Constraints, Proceedings of the 40th IEEE/ACM Design Automation Conference (2003)
256-261

7. Ohlrich, M., Ebeling, C., Ginting, E., Sather, L.: SubGemini: Identifying Subcircuits Using a Fast Subgraph
Isomorphism Algorithm, Proceedings of the 30th ACM/IEEE Design Automation Conference (1993) 31-37

8. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: A Free,
Commercially Representative Embedded Benchmark Suite, IEEE International Workshop on Workload
Characterization (2001) 3-14

9. Wirthlin, M.J., Hutchings, B.L.: A Dynamic Instruction Set Computer, Proceedings of the IEEE Symposium
on FPGAs for Custom Computing Machines (1995) 99-107

10. Kastrup, B., Bink, A., Hoogerbrugge, J.: ConCISe: A Compiler-Driven CPLD-based Instruction Set
Accelerator, Proceedings.of the 7th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (1999) 92-101

11. Flaherty, N.: On the Chip or On the Fly, IEE Review, Vol. 50, No. 9 (2004) 48-51
12. Xilinx Platform FPGAs: http://www.xilinx.com
13. Altera Nios Soft Core Embedded Processor: http://www.altera.com
14. Kastner, R., Kaplan, A., Memik, S.O., Bozorgzadeh, E.: Instruction Generation for Hybrid Reconfigurable

Systems, ACM Transactions on Design Automation of Embedded Systems, Vol. 7, No. 4, (2002) 605-627
15. Clark, N., Zhong, H., Mahlke, S.: Processor Acceleration Through Automated Instruction Set Customization,

Proceedings of the 36th IEEE/ACM International Symposium on Microarchitecture (2003)
16. Biswas, P., Choudhary, V., Atasu, K., Pozzi, L., Ienne, P., Dutt, N.: Introduction of Local Memory Elements

in Instruction Set Extensions, Proceedings of the 41st Annual IEEE/ACM Design Automation Conference,
(2004) 729-734

17. Cong, J., Fan, Y., Han, G., Zhang, Z.: Application-Specific Instruction Generation for Configurable Processor
Architectures, Proceedings of the 12th International Symposium on Field Programmable Gate Arrays (2004)
183-189

18. Sassone, P.G., Wills, D.S.: On the Extraction and Analysis of Prevalent Dataflow Patterns, Proceedings of the
Workshop on Workload Characterization (2004)

19. Spadini, F., Fertig, M., Patel, S.: Charaterization of Repeating Dynamic Code Fragments, Technical Report
CRHC-02-09, University of Illinois, Urbana-Champaign (2002)

20. Trimaran: An Infrastructure for Research in Instruction-Level Parallelism: http://www.trimaran.org
21. Yu, P., Mitra, T.: Characterizing Embedded Applications for Instruction-Set Extensible Processors,

Proceedings of the 41st IEEE/ACM on Design Automation Conference (2004) 723-728
22. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance Evaluation of the VF Graph Matching

Algorithm, International Conference on Image Analysis and Processing (1999) 1172-1177

	4.1.1 Custom Instruction Identification
	4.1.2 Pattern Grouping
	4.1.3 Template Selection
	4.2 Identification and Characterization of Morphable Structu
	Total
	Average

