
High-Throughput Image Rotation using Sign-Prediction based Redundant CORDIC Algorithm  
 

S. Suchitra   S.K. Lam   T. Srikanthan 
 

Centre for High Performance Embedded Systems 
Nanyang Technological University, Singapore- 639798 

 
ABSTRACT 

 
Real-time image rotation forms a core operation in many 
applications such as medical image processing and 
computer vision. High-throughput computations for image 
rotation are a common requirement in real-time image 
processing. A VLSI design for image rotation that 
employs CORDIC was discussed in [2]. In this paper, we 
propose novel techniques to increase the throughput of the 
CORDIC computations, thereby notably improving the 
overall performance of the rotation unit with acceptable 
increase in VLSI area. An efficient sign-prediction 
method called BTSP (Binary-Tree based Sign Prediction) 
is proposed in our redundant CORDIC system to 
eliminate the sign detection process. Our investigations 
show that the BTSP based CORDIC algorithm for real-
time rotation of a 512×512-pixel image, has a significant 
speed-up over existing redundant CORDIC methods with 
reduced hardware area. 
 

 
I. INTRODUCTION 

 
Real-time image rotation forms a core operation in 

many applications such as medical image processing and 
computer vision. Rotation of a gray level image involves 
performing trigonometric computations on each pixel. For 
example the x′ and y′ values of a pixel, which has been 
rotated by an angle of θ is shown in (1) and (2), where 
(x0,y0) is the original position of the pixel, and δ = +1/–1 
when θ is +ve /-ve (“+ve” refers to positive and “-ve” to 
negative). 
 x′ = cosθ (x0  - δy0tanθ)           (1) 

y′ = cosθ (y0 + δx0tanθ )           (2) 
CORDIC, developed by Volder [1] is a popular 

hardware-efficient algorithm that can be employed to 
compute the complex trigonometric functions in (1) and 
(2). It performs a series of micro-rotations on a vector 
lying on the X-Y plane over a desired input angle using 
simple add-shift operations. The CORDIC algorithm is 
based on the principle that any angle can be approximated 
as a summation of n micro angles of the form arctan (2-i) 

(i.e. θ ≈ (∑ arctan (2
=

±
n

i 1

-i))). Equations (1) and (2) are 

rewritten as (3) and (4) by replacing the multiplication 
with simple shift operations by i positions.  

xi+1 = k(xi  -  δiyi2-i)          (3) 
yi+1 = k(yi  + δixi2-i)          (4) 

The cosθ terms in (1) and (2) accumulates to a constant k 
that converges towards 1.6468. This is known as the 
scaling factor and can be incorporated either at the start or 
end of the CORDIC iterations. To evaluate δ at each step, 
a third variable z is introduced to keep track of the angle 
pending for rotation as shown in (5). z is initialized with 
the input angle and the sign of z at any point indicates the 
direction of the next rotation.   
                  +1, zi ≥ 0 
zi+1 = zi  - δiarctan2-i  where δi  =   - 1, zi < 0        (5) 

 
CORDIC is an approximation algorithm and the smaller 
the value of |zi| is in the final iteration, the higher the 
precision of computation. 
 Ghosh and Majumdar [2] proposed a parallel 
architecture for Image Rotation using CORDIC where a 
512 × 512 image is first divided into an 8 × 8 window 
grid. As explained in [2], the rotated positions of the 

512

  CORDIC 

Fig 1: Illustration of Rotation Method in [2] 

PIPELINE STAGE B:  

Parallel addition of offset
to centers  

512

64 Local 
Adders 

 
INITIALIZATION: 

 
Calculation and 

storage of rotated 
centers 

Centers of 8×8 
Window Grid 

8×8 ROM storing 
Rotated Centers 

PIPELINE STAGE A:  

Calculation of offset

8×8 ROM storing 
Rotated Centers 

64 

64 

Single Window 
    CORDIC 



centers of all windows are first pre-calculated and stored 
in the initialization stage (Fig 1). In Pipeline Stage A, the 
CORDIC engine is used to compute the offset of each 
pixel within a window. In the Pipeline Stage B, this offset 
is simultaneously added to the 64 centers using local 
adders to obtain the positions of the 64 corresponding 
points of all the windows. The CORDIC engine employed 
for a 512 × 512 image in [2] performs 12 iterations on 20-
bit operands followed by a 10 bit truncation. The number 
of CORDIC iterations is limited by the size of the image 
and does not overly increase for larger images. In this 
paper, we propose a novel CORDIC architecture for such 
a rotation engine to realize high throughputs.  

-tan-1 2-1 -…- tan-1 2-N -tan-1 2-1 -…- tan-1 2-N - - 

+ + 

- tan-1 2-1 - tan-1 2-1   
- – – 

(Stored & compared with 
input angle -> Closest leaf 

-> Backtrack for signs) 

(Stored & compared with 
input angle -> Closest leaf 

-> Backtrack for signs) 

+ 
0 (Root 
Node) 

- 
+ + + tan-1 2-1 + tan-1 2-1   + 

- 

 +tan-1 2-1 +…+ tan-1 2-N   +tan-1 2-1 +…+ tan-1 2-N+ 

Fig 2: Binary Tree Representation of ‘Target-Angles’ Fig 2: Binary Tree Representation of ‘Target-Angles’ 

 
II. BTSP CORDIC - THE PROPOSED 

ARCHITECTURE 
 
The problem with conventional CORDIC units that 

employ serial adders for x, y, z computation is that the 
carry propagation delay manifests as a major bottleneck to 
the performance. Hence, we propose to use BSD (Binary 
Signed Digit), the radix-2 Redundant Number System to 
achieve speedup for CORDIC algorithms by exploiting 
the limited carry propagation property of such number 
systems [5]. However, redundant CORDIC carries with it 
the problem of sign-detection [3][4]. It will be 
demonstrated in this paper that the complexity of sign 
detection can nullify the benefits of using Redundant 
Number Systems, especially for CORDIC with low 
number of iterations. So, in order to justify the use of 
BSD, we need to hide the latency of BSD sign detection. 
In this paper, we propose an elegant sign prediction 
method called BTSP (Binary Tree based Sign Prediction) 
that eliminates both the sign detection circuitry and the z 
datapath. Also, we employ a simple pre-scaling method 
for scaling factor compensation. 

 
2.1 BTSP Sign Prediction Scheme 

From (5), it can be seen that for each of the iterations, 
the direction of rotation, given by δi, can be ± 1. So, for n 
micro-rotations, there are 2n possible rotation 
combinations. Hence, an n-bit CORDIC engine would 
approximate any given input angle to one of the following 
2n ‘target-angles’: ±tan-12-1 ±tan-12-2 ±tan-12-3± … ±tan-12-n 
This can be visualized using a binary tree structure as 
shown in Fig 2, where the nodes describe the angles that 
are obtained by following the rotation directions specified 
by the branches. The leaf nodes correspond to the target-
angles. 
As the angle rotated by CORDIC approaches the input 
angle, higher accuracy is achieved. This leads us to an 
interesting corollary: the knowledge of the index of the 
closest ‘target angle’ is sufficient to deduce the CORDIC 
rotation directions that need to be taken. For example, if 

the input is 0.000…01 and the closest-leaf is Leaf #0, then 
the sequence to be taken is “000…0”, where 0 signifies a 
–ve rotation and 1 signifies a +ve rotation. 

The basic steps of the BTSP are summarized below: 
1. Pre-compute and store all these leaves 
2. Match the input angle to the closest leaf 
3. Derive the index of the closest leaf and obtain the 

sequence of δi based on the binary tree topology. 
For a 512×512 image, about 212 = 4096 values need to 

be stored and matched against a single input angle to 
determine the closest-leaf. Hence, for the BTSP algorithm 
to work efficiently, the problems of the large storage and 
complex angle matching must be tackled. 
 
2.2 Tackling the Storage Problem 

To reduce the storage of the leave angles, we can store 
only the +ve leaves. For negative operands, we deduce the 
directions for the corresponding +ve operand and then 
modify the operation sign of CORDIC based on the fact 
that sin(-θ) = -sinθ and cos(-θ) = cosθ.  To further solve 
the problem of storage, we make use of Theorem 1 as 
stated below [7]: 
 
Theorem 1: In N bit CORDIC, the first (N/3 - 1) signed 
digits cannot be precomputed 
 

It follows from Theorem 1 that for i > N/3 - 1, the 
rotation directions can be directly inferred from the bit 
weights since tan-12-i ≈ 2-i. The angle pending for rotation 
after N/3 - 1 iterations (referred to as ‘Remaining-
Angle’) in 2’s complement format can be converted to a 
polar form with digit-set {1, -1} to infer the remaining 
rotation directions. The recoding mechanism uses a simple 
logic, which is independent of the operand length, shown 
in [4]. +1 and –1 would imply rotation directions +ve and 
–ve respectively. Hence, sign-detection becomes an issue 
only for the first (N/3 - 1) rotation directions. This 
means that for an N-iteration CORDIC, we need to store 
only 2N/3 - 1 values. Since we are storing only +ve leaves 
(δ1 = 1), only 4 leaves needs to be stored for a 512×512 
image. A snapshot of the leaves is shown in Fig 3. The 



Remaining-Angle can be obtained by performing a 
subtraction between the input and the closest-leaf. 

 
 
 
 
 
 
 
 
 
 
 
 

2.3 Tackling the Matching Problem  
The complexity to match the input angle to the closest 

leaf is now greatly reduced since we need to check the 
input angle against only 4 values. The matching process 
can be further simplified by the following analysis. It can 
be seen in Fig 3 that the first 2 bits display an incremental 
pattern. Hence checking just 2 bits of the input angle 
would eliminate all but 2 leaves as candidates for the 
‘Closest-Leaf’. As an illustration, consider Input Angle = 
0.101110100111. The first 2 bits signify that the input 
angle lies between leaves A and B. Validating whether the 
input angle is closer to A or B would normally require 2 
subtractions and 1 comparison. Alternatively, a less costly 
approach is used to pre-compute and store all the 
midpoints of two consecutive leaves. So, a single 
comparison with the relevant midpoint would lead us to 
the closest-leaf. The overall-architecture for a 12-iteration 
BTSP CORDIC engine is shown in Fig 4. Note that the 
computation of the Remaining-Angle is done in parallel to 
the first 3 iterations. Due to the parallel inference of δ 
from the recoded Remaining-Angle, an extra rotation has 
to be performed for maintaining the accuracy [4]. 

The following describes an example of the 12-iteration 
CORDIC using BTSP. The midpoints of the leaves shown 
in Fig 3 are: 

Mid Pt # 0 0.001101111111   0.219 
Mid Pt # 1 0.011101101011   0.464 
Mid Pt # 2 0.101101010110   0.709 

Given an input angle (θ): 0.100110011001(0.6 rad), 
1. Fix the first direction to be +ve; δ1 = +1. 
2. Examine the first 2 bits to extract Mid Pt # 2  
3. Perform comparison between Mid Pt # 2 and θ 
4. Since θ is lesser than Mid Pt # 2, Leaf A (Leaf # 2) is 

the Closest-Leaf. This implies δ2-3 = +1,-1 
5. While Iterations 1-3 are being computed, subtract 

Closest-Leaf from θ to obtain the Remaining-Angle 
(0.000001000000) 

6. Perform 2’Complement to Polar Conversion of bits 4 – 
12 to obtain δ4-13 = +1,-1,-1,+1,-1,-1,-1,-1,-1,-1 

 

2 

Closest 
Leaf 

Remaining-Angle

ROM Mid-
Pts Comparator 

ROM 
Leaves 

δ1-3 

Polar 
Recoder 

δ 4 -13 

    Input Angle 

X      Y 

 

.000110000010 0 
(0.094 rad)  

0 
.010101111101 1 
(0.343 rad) 

1 
0.100110011001
(θ = 0.6 rad)

1 .100101011001 0 
(0.584 rad) 

A 

.110101010011 1 
(0.833 rad)  B 

Fig 4: BTSP-based CORDIC Architecture 
Fig 3: Illustration for Closest Leaf Matching  

2.4. Scaling Factor Compensation 
To compensate for k in (3) and (4), a serial pre-scaling 

model described in [6] is employed. During the 
initialization process of the rotation engine, the X and Y 
input registers of the CORDIC engine are first loaded 
with the pre-scaled coordinates of the first center C0/k. 
The subsequent centers are computed by continuously 
incrementing the coordinates by a constant value. So, for 
a 512 × 512 image, X or Y is incremented by 64/k to 
obtain the next pre-scaled center. During the calculation 
of the offsets for a single window in Pipeline Stage A (Fig 
1), an incremental of each pixel coordinate by 1/k is 
performed. These incremented values are passed to the X, 
Y input registers of the CORDIC engine. 

 
III. RESULTS & COMPARISONS 

 
The proposed BTSP CORDIC engine is compared 

with Conventional 2’s complement CORDIC, and those 
that use BSD sign-detection methods proposed by Takagi 
et al [3] viz. Double Rotation and Correction Rotation. 
Table 1 and Table 2 summarize the latency and overall-
area estimates in Full Adder Latency (TFA) and Full-
Adder Area (FA) respectively. The estimates are 
standardized according to the Passport 0.35 Micron 
Library [8]. As specified in [2], a 12-iteration, 20-bit 
CORDIC is used for a 512×512 image. So, the X and Y 
datapaths are 20 digits long. The Z datapath is assumed to 
be 12 digits long. The BTSP Method performs an extra 
13th rotation as mentioned earlier. The overall BTSP 
CORDIC architecture comprises of a pair of 20-digit 
redundant adders, registers and shifters, a 12-bit CLA for 
computing the “Remaining Angle”, a CLA-based 12-bit 
comparator for deducing the closet-leaf, ROM storing 
seven 12-bit values and an angle recoder. Takagi’s 
CORDIC require an additional sign detection circuit. For 
all the BSD methods, redundant adders are used, and a 1-
Bit Redundant Adder (RA) is estimated to be 2FA. 
Latency of an RA is independent of operand length and is 



estimated to be 2TFA. From (8), a register is 1.13 times the 
size of an adder. 

 
Table 1: Comparison of Latency Estimates 

 

 
Table 2: Comparison of Area Estimates 

 
Shifting is carried out using a barrel shifter, implemented 
as a tree of multiplexers. In this case, the maximum shift 
of 12-bits warrants 4 levels of MUX. So the latency 
attributed to the shift operation is 4 × 0.64 = 2.57 TFA. 
Sign Detection in case of Takagi is carried out using a 
CLA-based circuit. The area estimate for a CLA is about 
2n FA and latency is log2nTFA, where n = length of 
operand. In case of Double Rotation, 3 digits are checked 
and 2 redundant additions are performed at every stage. In 
the case of Correction Rotation (for m=4), 3, 4, 5 and 6 
digits need to be checked in consecutive cycles and every 
fourth rotation is a double-rotation. Hence a 6-digit sign-
detection circuit is employed. A similar CLA-based circuit 
is employed for the comparison circuit in BTSP.  The 
latency for a 12-bit comparison is about TFA The 
‘Remaining-Angle’ is computed using a CLA. The angle 
recoding can be realized using a simple circuit consisting 
of inverters. The combined latency of CLA addition and 
recoding is about 3.58 + 0.17 = 3.75 TFA, which can be 
hidden completely during the 1st 3 iterations. As for ROM 
requirements (estimated as DFFs), it is assumed that 12 
arctan values (of length 12-bits each) are stored for both 
the sign-detection methods. For the BTSP Method, 4 
leaves and 3 midpoints are stored. ROM access time is 
ignored in the calculations.  

It can be seen from Table 1 that the latency of BSD 
sign detection-based CORDIC is worse than that of the 

conventional 2’s complement CORDIC. The proposed 
CORDIC using BTSP has 31%, 55%, 46% latency gains 
when compared to Conventional, Double Rotation and 
Correction Rotation methods respectively. The proposed 
method has more area than conventional CORDIC, due to 
the usage of redundant numbers, but has lesser area than 
the other BSD-based sign detection methods. 

 

LATENCY (in TFA) 

 Conv Double Corr (m=4) BTSP 
X, Y (or Z)  log220×12 4×12 [(0.25×4)+ 

(0.75×2)]×12 
2×13 

Shifting 12×4×0.6
4 

12×4×0.64 12×4×0.64 13×4×0.64 

Sign-Detect - log23×12 log26×12 - 

Comparison - - - log212=3.58 

Rem-Angle  - - - 3.58(hidden) 

Recoding - - - 0.17(hidden) 

Total 82.58 97.68 91.68 62.86 

IV. CONCLUSIONS 
 

In this paper, we have proposed novel techniques to 
accelerate BSD CORDIC computation, which forms the 
most compute intensive core of an image rotation unit. 
The technique to eliminate sign detection and z data path 
employs only a simple lookup table. Our investigations 
reveal that the gain in terms of computation time with 
respect to conventional 2’s complement and redundant 
number correction rotation method [3] is about 31% and 
46% respectively. Moreover, the incorporation of a simple 
scaling-factor compensation method have contributed to 
the realization of a high-performance CORDIC unit that is 
suitable for realizing real-time image rotations. 

AREA (in FA) 

 Conv Double Corr(m=4) BTSP 
X,Y  2×20×2.13 2×2×20×2.1

3 
2×2×20×2.1
3 

2×2×20×2.1
3 

Z  12×2.13 2×12×2.13 2×12×2.13 - 
Shifter 20×4×0.47 40×4×0.47 40×4×0.47 40×4×0.47 
ROM 12×12×1.1

3 
12×12×1.13 12×12×1.13 7×12×1.13 

Sign  - 6 12 - 
Comp - - - 2×12 
Recoder - - - 12×0.13 
Adder - - - 2×12 

Total 273.48 459.44 465.44 390.08 

 
V. REFERENCES 

 
[1]  Volder, J.E., “The CORDIC Trigonometric Computing 
Technique”, IRE Trans. Elecron. Comput., Vol. EC-8, pp 330-
334, 1959 
 
[2]  Ghosh, I., and Majumdar, B., Design of an application 
specific VLSI chip for image rotation, Seventh International 
Conference on VLSI Design, pp 275 – 278, 1994 
 
 [3]   Takagi, N., Asada, T., and Yajima, S., Redundant CORDIC 
Methods with a Constant Scaling Factor for Sine and Cosine 
Computation, IEEE Transactions on Computers, Vol. 40, pp 
989-995, 1991 
 
[4]  Timmermann, D., Hann, H., and Hosticka, B.J., Low 
Latency Time CORDIC Algorithms, IEEE Transactions on 
Computers, Vol. 41, pp 1010-1015, 1992  
 
[5]  Parhami, B., Carry-Free Addition of Recoded Binary 
Signed-Digit Numbers, IEEE Transactions on Computers, Vol 
37, pp 1470-1476, 1988 
 
[6]  Feng, Z., and Peter K., A High Speed Hough Transform 
Using CORDIC, Proc. Int. Conf. On Digital Signal Processing, 
Cyprus, 1995.  

 
[7]  Srikanthan, T., and Gisuthan, B., A novel technique for 
eliminating iterative based computation of polarity of micro-
rotations in CORDIC based sine-cosine generators, 
Microprocessors and Microsystems 26, pp 243-252, 2002. 
 
[8] Avant! Passport 0.35 micron, 3.3 Volt SC Library 
CB35OS142, March 2000. 


	High-Throughput Image Rotation using S
	ABSTRACT


