
AN EFFICIENT ARCHITECTURE FOR ADAPTIVE PROGRESSIVE THRESHOLDING

H. Tian, S. K. Lam, T. Srikanthan, C. H. Chang*
Center for High Performance Embedded Systems, Nanyang Technological University,

N4-B3B-06, Nanyang Avenue, Singapore 639798
*Phone: +65-67905873, Fax: +65-67920774, Email: echchang@ntu.edu.sg

ABSTRACT

 A new pipelined architecture for adaptive progressive
thresholding (APT) is proposed. Unlike the conventional
architectures that rely heavily on multipliers and dividers to
evaluate the maximum between-class variance, our method
employs a reconfigurable logarithmic computing unit to
simplify the circuitry and increases the application’s agility
to operational variation. Our logarithmic conversion
algorithm avoid large look-up table by streaming the
operand’s bits into segments so that several small look-up
tables and simple adders and shifters are sufficient to
guarantee an accurate result. Besides being cost effective,
the proposed architecture has also significantly reduced the
latency of the critical pipelined stage.

1. INTRODUCTION
Segmentation is an important step in digital image

processing and thresholding technique is instrumental to
the success of many segmentation methods. Many
algorithms have been proposed to automate the threshold
selection adaptively based on the spatial properties of the
given image [1][2]. The Adaptive Progressive Thresholding
(APT) method presented in [3] can be used for the real-
time segmentation of gray level images and a pipelined
architecture for the implementation of the APT technique
was developed in [3]. However, there are too many
complex arithmetic operations such as multipliers and
dividers in the present circuit implementation of the
pipelined architecture of APT. For truly demanding high-
speed or cost sensitive applications, binary logarithms can
be used as an alternative to reduce the complex operations
to simple arithmetic and improve the overall processing
speed [4][5].

In this paper, a novel architecture for computing
between-class variance of APT is developed by
incorporating a logarithm conversion algorithm. The
logarithm conversion adopted is a hybrid approach that
strives to balance the size of the lookup table and the
amount of computational logic. One distinctive advantage
of our method is that it allows the accuracy of the APT to
adapt to the application requirement by modulating the
lookup table content and addresses, which can be done on a
reconfiguration platform dynamically. A comparison with
the architecture of [3] in terms of the basic operations
required shows that our improved architecture for APT has
substantially lowered the area-time complexity.

2. ADAPTIVE PROGRESSIVE THRESHOLDING
Otsu’s method [6] is to find the optimal threshold t by

maximizing the ratio of between-class variance 2
Bσ and

total variance 2
Tσ as follows:

)}/(max{ 22

10 TBLi
Argt σσ

−≤≤
= (1)

In Eq. (1), L is the gray levels and
22)

1
)(1(

t

t

t

tT
ttB ww

ww μμμσ −
−
−

−= and
N
ni i

L

i
TT ∑

−

=

−=
1

0

22)(μσ (2)

 where ni represents the number of pixels with gray level
i and N is the total number of pixels in the image. wt, μ t
and μ T are defined as:

1

0 0 0
, and

t t L
i i i

t t T
i i i

n n n
w i i

N N N
μ μ

−

= = =

= = =∑ ∑ ∑ (3)

 The APT algorithm can be perceived as an iterative
Otsu’s procedure. When the threshold value t is obtained,
the image is further divided into two classes. The pixels in
the virtual new image will have a gray level range of
{0,1,2,…,t}. This Otsu procedure is applied recursively
until a convergence criterion governed by the Cumulative
Limiting Factor (CLF) is met. The CLF for the Δth
iteration is defined as:

1,)()(2

2

≥Δ
Δ

=Δ forCLF
T

B

σ
σ (4)

The iterative procedure is stopped whenever:
 () 2

T

T

CLF μα
σ

Δ ≤ (5)

where α is a constant. The value of t(Δ) obtained at the
final recursion will be the optimal threshold of APT.

3. CONVENTIONAL ARCHITECTURE
In this section, we review the pipelined APT architecture

designed for an eight-bit gray level image of size 256×256
proposed in [3] to highlight the drawbacks of the between-
class variance computation module. It consists of the
cumulative histogram and intensity area computation, the
between-class variance computation, and the final
threshold computation modules as shown in Figure. 1.

TB α μσ ≤2
max

2
Bσ

Output t at

Final Threshold t
Computation

wt tμ,

Progressive Computation Activation at TB α μσ >2
max

Between-class
Variance

Computation

Cumulative Histogram
and Intensity Area

Computation

Figure 1. Computational units of APT architecture system

The module for Cumulative Histogram (CH) and

Intensity Area (CIA) Computation are used to compute and
store wt and μ t respectively. The module for Final
Threshold Computation consists of a comparison process to
identify the optimal threshold t. Both of these modules
comprises of relatively simple straightforward operations in
comparison to the between-class variance computation
process.

3.1 Architecture of between-class variance computation

The layer of the APT architecture developed for the
computation of the between-class variance is shown in
Figure. 2. The register arrays of CIA and CH are divided
into 16 blocks with 16 registers in each block. These
register blocks function independently as 16 different
arrays. Reg1 and Reg2 hold the contents shifted out from
the top of the CIA and CH arrays, respectively. They are
used for computing the value of Tαμ in each iteration. Each
block has an address counter to hold the index of the
current register for transferring the data. The ith block of
CH register array is circularly shifted and the value of wt is
computed. μ t is calculated in a similar manner. Based on
the computed values of wt and μ t, 1−wt, μT−μt and
finally 2

Bσ max|i can be obtained. There are 16 parallel blocks
performing their computations simultaneously in a
pipelined fashion to determine 2

Bσ max|i for i = 1, 2,…,16.

|1

|16
Reg 1

0

15

CH

+

CIA

×

×

16

239
240

255

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 1

6

w t

⊕-
⊕

Reg 2

/ Tμ
α

Reg 3 Tα μ

⊕
+

-
/

1μ

tμ

0μ

+

-

/

w1 × ×

2
Bσ t

Reg 4
2

maxBσ

2
maxBσ

N

/

/

⊕+ -
Signbit

Clock

 Figure 2. Architecture for the computation of 2

Bσ

4. PROPOSED LOGARITHM CONVERSION
ARCHTECTURE FOR APT

The bottleneck pipelined stage of the conventional
architecture is the computation of between-class variance

2
Bσ after the CH and CIA arrays have been calculated. We

proposed the use of an efficient binary logarithm
conversion unit to convert the computational intensive high
precision multiplication and division operations into fixed
point circuitry composed of only simple multiplexer, adders
and shifters.

4.1 The algorithm

Let (zu-1 zu-2 … z0 . z-1 z-2 … z-v)2 be a binary
representation of Z and Zj is the first non-zero bit
encountered from the most significant bit of Z. The value

of this number can be written as:

∑ ∑
−

−=

−

−=

− +=+=+=
1 1

)1(2)21(222
j

vi

j
j

vi
i

jij
i

ij xzzZ (6)

 where 0 ≤ x < 1. Thus,
)1(loglog 22 xjZ ++= (7)

 where j is the characteristic of the logarithm and
log2(1+x) constitutes the mantissa. The approximation can
be obtained using the linear term in the Taylor’s series,
log2(1+x) ≈ x. However, this approximation is inaccurate
and is subjected to a maximum error of
0.08639(log2(1+x)−x).

To improve the accuracy, a look-up table can be used to
represent the fractional part of Eq. (7), i.e., log2(1+x).
However, for an n-bit binary representation, the size of the
look-up table has a complexity of O(2n−1). As the data
length increases, this method becomes costly in view of
the large VLSI area required. To shrink the size of the look-
up table, we partition the lower order bits of the fractional
part into groups and use them to access several smaller
look-up tables. The values retrieved from these look-up
tables are added to obtain the final result.

Consider a 16-bit binary number Q = (q15 q14 … q0)2.
Let α corresponds to the index, j of the first non-zero bit
encountered from the most significant bit of Q. First, we
calculate all the fractional logarithm values based on the
combinations of the four-bit binary word formed by (qj−1
qj−2 qj−3 qj−4)2 which is the next four bits to the right of j.
The four-bit binary word (qj−1 qj−2 qj−3 qj−4)2 is used as the
address to the small look-up table (LUT) and the calculated
fractional value β is mapped to the memory location
pointed by this address. Now, there remains at most 11 bits
to approximate the value of the fractional logarithm of Q.
Utilizing a multiplier for this purpose incurs a large
computational unit and deficits our objective to reduce the
area complexity. It is observed and verified by rigorous
experimentation that the size of the multiplier, if used,
depends on the number of lower order bits to the right of
qj−4. Hence, the remaining lower order bits of Q are
divided into four multiplier groups ZA, ZB, ZC and ZD
corresponding to (qj−5 qj−6)2, (qj−7 qj−8)2, (qj−9 qj−10)2 and
(qj−11 qj−12)2, respectively. The multiplicands of each
multiplier are calculated for every combination of (qj−1 qj−2
qj−3 qj−4)2 and they form the content DA, DB, DC and DD of
another four small lookup tables addressable by (qj−1 qj−2
qj−3 qj−4)2. The complete approximation algorithm can be
mathematically expressed as follows:

)*()*()*()*()(log2 DDCCBBAA ZDZDZDZDQ +++++= βα (8)

It should be noted that this algorithmic approximation
has a worst case error of 0.0009822 for a 16-bit operand,
which is, to the best of our knowledge, the smallest among
all existing linear approximation method.

4.2 Architecture for logarithm conversion
A simple design of the logarithm conversion unit of a

16-bit decimal number is shown in Figure. 3.
B in a ry R epresen ta tio n o f a
1 6 -B its D ec im a l N um b er Q

1 5 0

E xtra ctio n o f th e F irst N o n -zero B it j

E xtra ctio n o f th e S ub seq u ent B its

j-1 j-9j-8j-7j-6j-5j-4 j-1 2j-1 1j-1 0

L U T A dd ress ZA ZDZCZB

L U T

β

D A

D B
D C
D D

S h ifter + A d d er

4 2 2 2 2

+

A p prox im a ted
V a lue o f lo g 2(Q)

j=α

Figure. 3 Architecture of logarithm conversion unit (LCU)

The resulting architecture for a logarithm conversion

unit (LCU) of a 16-bit binary number requires only a small
look-up table of size 448 bits. The address to the LUT and
the values of ZA, ZB, ZC and ZD can be obtained by the
output of a barrel shifter of Q. In the event that the least
significant bit has been shifted out, zeros are appended.
Since there are only four discrete binary values of ZA, ZB,
ZC and ZD, the multiplications in Eq. (8) can be replaced by
a four input multiplexer to select either the constant 0, the
extracted content D, a left shifted copy of D (i.e., 2D) or a
shift and accumulated copy of D (i.e., 3D =2D+D) with Z
as the selector input. Thus, the entire conversion can be
achieved with a much simpler circuitry.

4.3 Proposed architecture for APT

From Eq. (2), it is evident that the straightforward
implementation of the computation of 2

Bσ requires a large
number of computational intensive operations of squaring,
multiplication and division. Since the optimal threshold
value t corresponds to the maximum value obtained by
comparison, this computation requirement can be
simplified by maximizing the logarithm of 2

Bσ instead of
the exact between-class variance in Eq. (1). 2

Bσ in Eq. (2)
can be rewritten as follows:

()
()

2
2

1
t T t

B
t t

w
w w

μ μ
σ

−
=

−
 (9)

The binary logarithm conversion method is employed to
calculate the value of 2

Bσ in Eq. (9) leading to:

tttTtB www 222
2

2 log)1(log)(log2log −−−−= μμσ (10)
The anti-logarithm function is not required in this case

as we are only interested in finding out at which iteration
the logarithm of 2

Bσ has attained its maximal value. Figure.
4 shows the architecture for the computation of

2
Bσ .

Normalization

Normalization

× +
-

+
1

+

-
LCU

+

0

CHCIA

16

239

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 1

6

w t

tμ

240

255

Tμ

Reg 1 ×
α

Tα μ

Reg 2

Tμ

|1

|16

2
max2log Bσ

2
max2log Bσ

⊕
Signbit

Clock

t
Reg 3

+ -

Tα μ2log

+
+
- -

Figure 4. Proposed architecture for computation of

between-class variances

5. COMPLEXITY COMPARISION
Table 1 shows an analysis of the computational

complexity by comparing the hardware resources used in
the conventional and proposed architectures for APT. The
resource utilization appeared in Table 1 compares only the
two critical architectures shown in Figure. 2 and 4 for the
computation of between-class variance.

Table 1. Comparison of conventional and proposed architectures

Operations Conventional Proposed
23-Bit Fix-point Divider 32 Nil

7-Bit Fix-point Multiplier 16 Nil

10-Bit Fix-point Multiplier 1 1

17-Bit Fix-point Multiplier Nil 16

30-Bit Fix-point Multiplier 16 Nil

46-Bit Fix-point Multiplier 16 Nil

4-Bit Adder/substractor Nil 16

8-Bit Adder/substractor 16 Nil

10-Bit Adder/substractor Nil 16

16-Bit Adder/substractor 16 Nil

17-Bit Adder/substractor Nil 16

23-Bit Adder/substractor 16 Nil

16-Bit Right Shifter 33 1

6-Bit Right Shifter Nil 32

56 bytes LUT Nil 16

From Table 1, the proposed architecture completely

eliminates the dividers required in the conventional
architecture. In addition, the number of multipliers has
been reduced from 49 to 17. The 17 multipliers used in our
proposed architecture are of a smaller size (operands’ width
of 17 bits versus 46 bits). Although the proposed
architecture uses 16 look-up tables, the size of each LUT is
only 56 bytes for a 16-bit precision logarithm

approximation. Hence, the total memory required for the
LUTs is 896 bytes. The number of transistors required for
all the LUTs is still far less than a 46-bit multiplier. The
other trivial resources are shifters and adders used to
manipulate the content retrieved from the LUT for the
logarithm computation (see Figure. 3). Based on the
number and complexity of the required operations, we can
conclude that the proposed architecture has substantially
reduced both the time and space complexities of the
conventional hardware architecture for APT.

Table 2 shows the maximum error incurred by our
logarithmic approximation for various different sizes of
LUT. Depending on the accuracy demanded by the
application, the size and content of the LUTs can vary.

Table 2. Precision verse size of look-up table

No. of address lines LUT’s size (bits) Max. error
2 112 0.0102083
3 224 0.0031427
4 448 0.0009822
5 896 0.0003226
6 1792 0.0001113

6. A TYPICAL APPLICATION

A typical application that can be benefited directly from
the proposed APT architecture is the detection of the lumen
region of endoscopic images in real time. Lumen region is
the area in the gastro-intestinal endoscopic image where the
mean intensity is the lowest. High-speed segmentation of
lumen region is essential to facilitate online navigation for
automated micro-robotic endoscopy. A typical endoscopic
image with the resolution of 256×256 pixels and its
thresholded image obtained by our method are shown in
Figure. 5. With the limiting parameter α chosen optimally
to be 9.8, the value of CLF and optimal threshold was
found to be 0.7789 and 32, respectively for the thresholded
image in Figure. 5.

(a) (b)

Figure 5. Segmentation of an endoscopic image:
(a) original image (b) thresholded image

Normalization of wt and μt is necessary to ensure that
each input to the logarithmic computing unit is represented
in 16-bit precision to fulfill the accuracy required by the
application. This is achieved by first multiplying the
operand by 1024 (210) and then divide the result by the
image size of 256×256 (216). Effectively, the normalization
can be implemented with a constant linear shifter shifting
the operand right by 6 bits.

In this application, the limiting parameter, α depends on
the camera lighting environment and the reflection
characteristics of the objects and should be made adaptive
to the light intensity and distribution of the light sources
mounted on the endoscope [3]. These requirements can be
translated into a set of initialization parameters controlling
the precision of the computation and the speed of the
maneuver. As noted in the preceding section, the precision
of the between-class variance can be adjusted by changing
the size and content of the lookup table for logarithm
computation. The LCU can be dynamically reconfigurable
to adapt to the changes in limiting parameter α required
for different endoscopic cameras and illumination
conditions. Such versatility is very difficult to address by
conventional architecture without incurring excessive area
overhead and re-engineering effort.

7. CONCLUSIONS

A novel re-configurable architecture for APT method in
real-time segmentation of images is proposed in this paper.
The design exploits a hybrid logarithmic conversion
algorithm, which combines the advantages of both look-up
table based method and computational based approach to
overcome the bottleneck of finding the maximum
between-class variance. The logarithmic approximation
operates on small look-up tables with simple logical shift
and addition operations. Thus, it gets rid of the complexity
associated with the use of multipliers, divisions and
exponentiation present in the conventional APT
architectures. More significantly, the ease of synchronizing
the precision of the results according to the limiting
parameter of the APT makes it capable of adapting to
versatile optical characteristics and illumination conditions
encountered as a result of equipment variation and
changing operation environment of the application.

REFERENCES
[1] P. K. Sahoo, S. Soltani, A. K. C. Wong and Y. C. Chen, ``A
Survey of Thresholding Techniques'', Comput. Vision Graphics
Image Process, Vol. 41, pp. 233-260, 1988.
[2] C. A. Glasbey, ``An Analysis of Histrogram-based
Thresholding Algorithm'', CVGIP: Graphical Models and Image
Proccesing, Vol. 55, No. 6, pp. 532-537, 1993.
[3] K. V. Asari, T. Srikanthan, S. Kumar, and D. Radhakrishnan,
``A Pipelined Architecture for Image Segmentation by Adaptive
Progressive Thresholding '', Microprocessors and Microsystems,
Vol. 23, No. 8-9, pp. 493-499, 1999.
[4] I. Koren, Computer Arithmetic Algorithms, Prentice Hall,
1993.
[5] D. K. Kostopoulos, ``An Algotithm for the Computation of
Binary Logarithms'', IEEE Transactions on Computers, Vol. 40,
No. 11, pp. 1267-1270, 1991.
[6] N. Otsu,, ``A Threshold Selection Method from Gray-level
Histograms'', IEEE Trans. Syst., Man and Cybern., SMC-9, pp.
62-66, 1979.

