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ABSTRACT 

    A new pipelined architecture for adaptive progressive 
thresholding (APT) is proposed. Unlike the conventional 
architectures that rely heavily on multipliers and dividers to 
evaluate the maximum between-class variance, our method 
employs a reconfigurable logarithmic computing unit to 
simplify the circuitry and increases the application’s agility 
to operational variation.  Our logarithmic conversion 
algorithm avoid large look-up table by streaming the 
operand’s bits into segments so that several small look-up 
tables and simple adders and shifters are sufficient to 
guarantee an accurate result. Besides being cost effective, 
the proposed architecture has also significantly reduced the 
latency of the critical pipelined stage.   
 

1. INTRODUCTION 
Segmentation is an important step in digital image 

processing and thresholding technique is instrumental to 
the success of many segmentation methods. Many 
algorithms have been proposed to automate the threshold 
selection adaptively based on the spatial properties of the 
given image [1][2]. The Adaptive Progressive Thresholding 
(APT) method presented in [3] can be used for the real-
time segmentation of gray level images and a pipelined 
architecture for the implementation of the APT technique 
was developed in [3]. However, there are too many 
complex arithmetic operations such as multipliers and 
dividers in the present circuit implementation of the 
pipelined architecture of APT. For truly demanding high-
speed or cost sensitive applications, binary logarithms can 
be used as an alternative to reduce the complex operations 
to simple arithmetic and improve the overall processing 
speed [4][5]. 

In this paper, a novel architecture for computing 
between-class variance of APT is developed by 
incorporating a logarithm conversion algorithm. The 
logarithm conversion adopted is a hybrid approach that 
strives to balance the size of the lookup table and the 
amount of computational logic. One distinctive advantage 
of our method is that it allows the accuracy of the APT to 
adapt to the application requirement by modulating the 
lookup table content and addresses, which can be done on a 
reconfiguration platform dynamically. A comparison with 
the architecture of [3] in terms of the basic operations 
required shows that our improved architecture for APT has 
substantially lowered the area-time complexity.  

 

2. ADAPTIVE PROGRESSIVE THRESHOLDING 
Otsu’s method [6] is to find the optimal threshold t by 

maximizing the ratio of between-class variance 2
Bσ  and 

total variance 2
Tσ  as follows: 
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     where ni represents the number of pixels with gray level 
i and N is the total number of pixels in the image. wt, μ t 
and μ T  are defined as: 
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    The APT algorithm can be perceived as an iterative 
Otsu’s procedure. When the threshold value t is obtained, 
the image is further divided into two classes. The pixels in 
the virtual new image will have a gray level range of 
{0,1,2,…,t}. This Otsu procedure is applied recursively 
until a convergence criterion governed by the Cumulative 
Limiting Factor (CLF) is met. The CLF for the Δth 
iteration is defined as: 
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The iterative procedure is stopped whenever: 
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where α is a constant. The value of t(Δ) obtained at the 
final recursion will be the optimal threshold of APT. 
 

3. CONVENTIONAL ARCHITECTURE  
In this section, we review the pipelined APT architecture 

designed for an eight-bit gray level image of size 256×256 
proposed in [3] to highlight the drawbacks of the between-
class variance computation module. It consists of the 
cumulative histogram and intensity area computation, the 
between-class variance computation, and the final 
threshold computation modules as shown in Figure. 1. 
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Figure 1. Computational units of APT architecture system 

 
 



 
The module for Cumulative Histogram (CH) and 

Intensity Area (CIA) Computation are used to compute and 
store wt and μ t respectively. The module for Final 
Threshold Computation consists of a comparison process to 
identify the optimal threshold t. Both of these modules 
comprises of relatively simple straightforward operations in 
comparison to the between-class variance computation 
process.  

 
3.1 Architecture of between-class variance computation 

The layer of the APT architecture developed for the 
computation of the between-class variance is shown in 
Figure. 2. The register arrays of CIA and CH are divided 
into 16 blocks with 16 registers in each block. These 
register blocks function independently as 16 different 
arrays. Reg1 and Reg2 hold the contents shifted out from 
the top of the CIA and CH arrays, respectively. They are 
used for computing the value of Tαμ  in each iteration. Each 
block has an address counter to hold the index of the 
current register for transferring the data. The ith block of 
CH register array is circularly shifted and the value of wt is 
computed. μ t is calculated in a similar manner. Based on 
the computed values of wt and μ t,  1−wt, μT−μt and 
finally 2

Bσ max|i  can be obtained. There are 16 parallel blocks 
performing their computations simultaneously in a 
pipelined fashion to determine 2

Bσ max|i  for i = 1, 2,…,16. 
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 Figure 2. Architecture for the computation of 2

Bσ  
 

4. PROPOSED LOGARITHM CONVERSION 
ARCHTECTURE FOR APT 

The bottleneck pipelined stage of the conventional 
architecture is the computation of between-class variance 

2
Bσ  after the CH and CIA arrays have been calculated. We 

proposed the use of an efficient binary logarithm 
conversion unit to convert the computational intensive high 
precision multiplication and division operations into fixed 
point circuitry composed of only simple multiplexer, adders 
and shifters. 

 
4.1   The algorithm 

Let (zu-1 zu-2 … z0 . z-1 z-2 … z-v )2  be a binary 
representation of Z and Zj is the first non-zero bit 
encountered from the most significant bit of Z. The value 

of this number can be written as: 
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     where 0 ≤ x < 1. Thus, 
)1(loglog 22 xjZ ++=                                               (7) 

     where j  is the characteristic of the logarithm and 
log2(1+x) constitutes the mantissa. The approximation can 
be obtained using the linear term in the Taylor’s series, 
log2(1+x) ≈ x. However, this approximation is inaccurate 
and is subjected to a maximum error of 
0.08639(log2(1+x)−x). 

To improve the accuracy, a look-up table can be used to 
represent the fractional part of Eq. (7), i.e., log2(1+x). 
However, for an n-bit binary representation, the size of the 
look-up table has a complexity of O(2n−1). As the data 
length increases, this method becomes costly in view of  
the large VLSI area required. To shrink the size of the look-
up table, we partition the lower order bits of the fractional 
part into groups and use them to access several smaller 
look-up tables. The values retrieved from these look-up 
tables are added to obtain the final result.  

Consider a 16-bit binary number Q = (q15 q14 … q0)2. 
Let α corresponds to the index, j of the first non-zero bit 
encountered from the most significant bit of Q. First, we 
calculate all the fractional logarithm values based on the 
combinations of the four-bit binary word formed by (qj−1 
qj−2 qj−3 qj−4)2 which is the next four bits to the right of j. 
The four-bit binary word (qj−1 qj−2 qj−3 qj−4)2 is used as the 
address to the small look-up table (LUT) and the calculated 
fractional value β  is mapped to the memory location 
pointed by this address. Now, there remains at most 11 bits 
to approximate the value of the fractional logarithm of Q. 
Utilizing a multiplier for this purpose incurs a large 
computational unit and deficits our objective to reduce the 
area complexity. It is observed and verified by rigorous 
experimentation that the size of the multiplier, if used, 
depends on the number of lower order bits to the right of 
qj−4. Hence, the remaining lower order bits of Q  are 
divided into four multiplier groups ZA, ZB, ZC and ZD 
corresponding to (qj−5 qj−6)2, (qj−7 qj−8)2, (qj−9 qj−10)2 and 
(qj−11 qj−12)2, respectively. The multiplicands of each 
multiplier are calculated for every combination of (qj−1 qj−2 
qj−3 qj−4)2 and they form the content DA, DB, DC and DD of 
another four small lookup tables addressable by (qj−1 qj−2 
qj−3 qj−4)2. The complete approximation algorithm can be 
mathematically expressed as follows: 
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It should be noted that this algorithmic approximation 
has a worst case error of 0.0009822 for a 16-bit operand, 
which is, to the best of our knowledge, the smallest among 
all existing linear approximation method.  



4.2   Architecture for logarithm conversion  
A simple design of the logarithm conversion unit of a 

16-bit decimal number is shown in Figure. 3. 
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Figure. 3 Architecture of logarithm conversion unit (LCU) 
 
The resulting architecture for a logarithm conversion 

unit (LCU) of a 16-bit binary number requires only a small 
look-up table of size 448 bits. The address to the LUT and 
the values of ZA, ZB, ZC and ZD can be obtained by the 
output of a barrel shifter of Q. In the event that the least 
significant bit has been shifted out, zeros are appended. 
Since there are only four discrete binary values of ZA, ZB, 
ZC and ZD, the multiplications in Eq. (8) can be replaced by 
a four input multiplexer to select either the constant 0, the 
extracted content D, a left shifted copy of D (i.e., 2D) or a 
shift and accumulated copy of D (i.e., 3D =2D+D) with Z 
as the selector input. Thus, the entire conversion can be 
achieved with a much simpler circuitry. 
 
4.3   Proposed architecture for APT 

From Eq. (2), it is evident that the straightforward 
implementation of the computation of 2

Bσ  requires a large 
number of computational intensive operations of squaring, 
multiplication and division. Since the optimal threshold 
value t corresponds to the maximum value obtained by 
comparison, this computation requirement can be 
simplified by maximizing the logarithm of 2

Bσ  instead of 
the exact between-class variance in Eq. (1). 2

Bσ  in Eq. (2) 
can be rewritten as follows:  
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The binary logarithm conversion method is employed to 
calculate the value of 2

Bσ  in Eq. (9) leading to: 

tttTtB www 222
2

2 log)1(log)(log2log −−−−= μμσ     (10) 
The anti-logarithm function is not required in this case 

as we are only interested in finding out at which iteration 
the logarithm of 2

Bσ  has attained its maximal value. Figure. 
4 shows the architecture for the computation of 

2
Bσ . 
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Figure 4. Proposed architecture for computation of 

between-class variances 
 

5. COMPLEXITY COMPARISION 
Table 1 shows an analysis of the computational 

complexity by comparing the hardware resources used in 
the conventional and proposed architectures for APT. The 
resource utilization appeared in Table 1 compares only the 
two critical architectures shown in Figure. 2 and 4 for the 
computation of between-class variance.  

 
Table 1.  Comparison of conventional and proposed architectures 

Operations Conventional  Proposed  
23-Bit Fix-point Divider 32 Nil 

7-Bit Fix-point Multiplier 16 Nil 

10-Bit Fix-point Multiplier 1  1 

17-Bit Fix-point Multiplier Nil 16 

30-Bit Fix-point Multiplier 16 Nil 

46-Bit Fix-point Multiplier 16 Nil 

4-Bit Adder/substractor Nil 16 

8-Bit Adder/substractor 16 Nil 

10-Bit Adder/substractor Nil 16 

16-Bit Adder/substractor 16 Nil 

17-Bit Adder/substractor Nil 16 

23-Bit Adder/substractor 16 Nil 

16-Bit Right Shifter 33 1 

6-Bit Right Shifter Nil 32 

56 bytes LUT Nil 16 

 
From Table 1, the proposed architecture completely 

eliminates the dividers required in the conventional 
architecture. In addition, the number of multipliers has 
been reduced from 49 to 17. The 17 multipliers used in our 
proposed architecture are of a smaller size (operands’ width 
of 17 bits versus 46 bits). Although the proposed 
architecture uses 16 look-up tables, the size of each LUT is 
only 56 bytes for a 16-bit precision logarithm 



approximation. Hence, the total memory required for the 
LUTs is 896 bytes. The number of transistors required for 
all the LUTs is still far less than a 46-bit multiplier. The 
other trivial resources are shifters and adders used to 
manipulate the content retrieved from the LUT for the 
logarithm computation (see Figure. 3). Based on the 
number and complexity of the required operations, we can 
conclude that the proposed architecture has substantially 
reduced both the time and space complexities of the 
conventional hardware architecture for APT. 

Table 2 shows the maximum error incurred by our 
logarithmic approximation for various different sizes of 
LUT. Depending on the accuracy demanded by the  
application, the size and content of the LUTs can vary.  

 
Table 2. Precision verse size of look-up table 

No. of address lines LUT’s size (bits) Max. error 
2 112 0.0102083 
3 224 0.0031427 
4 448 0.0009822 
5 896 0.0003226 
6 1792 0.0001113 

 
6. A TYPICAL APPLICATION 

A typical application that can be benefited directly from 
the proposed APT architecture is the detection of the lumen 
region of endoscopic images in real time. Lumen region is 
the area in the gastro-intestinal endoscopic image where the 
mean intensity is the lowest. High-speed segmentation of 
lumen region is essential to facilitate online navigation for 
automated micro-robotic endoscopy.  A typical endoscopic 
image with the resolution of 256×256 pixels and its 
thresholded image obtained by our method are shown in 
Figure. 5. With the limiting parameter α chosen optimally 
to be 9.8, the value of CLF and optimal threshold was 
found to be 0.7789 and 32, respectively for the thresholded 
image in Figure. 5.  

 

      
(a)                         (b) 

Figure 5.  Segmentation of an endoscopic image: 
(a) original image (b) thresholded image 

Normalization of wt and μt is necessary to ensure that 
each input to the logarithmic computing unit is represented 
in 16-bit precision to fulfill the accuracy required by the 
application. This is achieved by first multiplying the 
operand by 1024 (210) and then divide the result by the 
image size of 256×256 (216). Effectively, the normalization 
can be implemented with a constant linear shifter shifting 
the operand right by 6 bits.  

In this application, the limiting parameter, α depends on 
the camera lighting environment and the reflection 
characteristics of the objects and should be made adaptive 
to the light intensity and distribution of the light sources 
mounted on the endoscope [3]. These requirements can be 
translated into a set of initialization parameters controlling 
the precision of the computation and the speed of the 
maneuver. As noted in the preceding section, the precision 
of the between-class variance can be adjusted by changing 
the size and content of the lookup table for logarithm 
computation. The LCU can be dynamically reconfigurable 
to adapt to the changes in limiting parameter α required  
for different endoscopic cameras and illumination 
conditions. Such versatility is very difficult to address by 
conventional architecture without incurring excessive area 
overhead and re-engineering effort. 

 
7. CONCLUSIONS 

A novel re-configurable architecture for APT method in 
real-time segmentation of images is proposed in this paper. 
The design exploits a hybrid logarithmic conversion 
algorithm, which combines the advantages of both look-up 
table based method and computational based approach to 
overcome the bottleneck of finding the maximum  
between-class variance. The logarithmic approximation 
operates on small look-up tables with simple logical shift 
and addition operations. Thus, it gets rid of the complexity 
associated with the use of multipliers, divisions and 
exponentiation present in the conventional APT 
architectures. More significantly, the ease of synchronizing 
the precision of the results according to the limiting 
parameter of the APT makes it capable of adapting to 
versatile optical characteristics and illumination conditions 
encountered as a result of equipment variation and 
changing operation environment of the application. 
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