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A Formal Transparency Framework for Validation of Real-Time
Discrete-Event Control Requirements Modeled by Timed Transition

Graphs
Amrith Dhananjayan and Kiam Tian Seow

Abstract— In control of discrete-event systems, translating
natural language control requirements into formal specifications
in computable graphical form can be error prone, and system
designers are often confronted with the longstanding problem
of uncertainty in specification formalization, namely: how do
we know that such a formalized specification is the one in-
tended? This necessitates specification validation, i.e., manual
inspection of the specification’s graphical structure to clarify
if it formalizes the intended requirement. The uncertainty is
compounded in the specification formalization for timed discrete-
event systems (TDESs) as timed transition graphs (TTGs), where
real-time behavior also needs to be correctly specified. In the
fundamental control framework of TDESs, a TTG prescribes
a timed regulation of logical behavior restricting a TDES to
some timed event-transition sequences. To help validate speci-
fication TTGs, we develop a new specification concept of TTG
transparency. Our concept formulation embodies the essence
of ‘summarizing’ a specification TTG’s transition sequences
for a TDES, to highlight intermittent transitions essential or
relevant for comprehending the specification’s non-trivial timed
restrictions. The transparency concept governs the reconstruction
of a specification TTG into a transparent one. We investigate the
problem of maximizing the transparency of specification TTGs
for TDESs and show that it is NP-hard. We then develop a
polynomial time algorithm for computing a highly transparent
TTG. Through two examples, we show that the transparent TTG
computed may support specification validation.

Index Terms— Timed discrete-event systems, human cognition,
formal specification, transparency.

I. INTRODUCTION

The control theory of timed discrete-event systems (TDESs)
by Brandin and Wonham [1] and its extensions [2], [3], [4],
[5] provide a control-theoretic framework for synthesizing
real-time supervisors for event-driven systems to comply with
specified control requirements. The elements of the theory,
namely timed discrete-event systems, control requirements and
supervisors are represented using finite automata in the form
of timed transition graphs (TTGs). This TTG based frame-
work is about the simplest known for modeling controlled
TDESs. However, while computable, requirements formalized
as specification TTGs would need to be manually validated in
general. Manual validation refers to designer inspection of a
specification’s graphical structure, to ascertain and clarify if it
indeed models the intended control requirement for a system.
This paper is concerned with the problem of restructuring a
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specification TTG for clarity, in order to better comprehend
or understand the real-time specification during validation.

In practice, control requirements for discrete-event systems
(DESs), both untimed or logical [6], [7], [8], [9] and timed
[1], are often first described in natural language (English)
statements. Examples of such statements include: follow a
first-come first-served policy, avoid deadlock, and stop a
moving car within, say, 4 seconds after its brake is applied.
System designers then prescribe specifications based on their
understanding of these requirements for the system model. To
harness the potential benefits (“guarantees to do the things
right”) of automata-based control synthesis from supervisory
control theory, the specifications should first correctly formal-
ize these statements [10] (“do the right things”). However,
with these frameworks, the prescription task of formalizing
a natural language description into a graphical specification
is non-trivial and requires expertise in DES modeling [11].
Moreover, with DESs being designed, there are no invari-
ant physical laws to constrain system configurations, often
leading to complex system behavior [12]. These complicate
the designer’s specification formalization. Arbitrarily done,
the mental translation from natural language requirementsto
formal graphical specifications can be tedious and error-prone
[13], [14]; designers hardly get it correct on the first attempt
[15]. In fact, many reported applications of the automata-based
DES control theory [16], such as robotics [17], [18], automated
manufacturing [19], [20], [21], [22], communication networks
[23] and intelligent service transportation [24], have encoun-
tered such difficulties in prescribing specifications.

The specification prescription process should be carried out
iteratively through manual formalization of natural language
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requirements and validation, until the system designer is con-
fident that the prescribed specifications are as intended (Fig.
1). Manual validation of formal specifications is important, as
detecting errors earlier in the system design process can save
time and cost. However, without automated support tools to
aid in human comprehension of formal specifications, manual
validation can be a daunting task. System designers may be
predisposed to presuming that formalized specifications are
truthful and complete, and could find it difficult to ascertain
the correctness of specifications, especially those that are
incomplete [25]. The challenges of human comprehensibility
may limit the use of automata-based supervisory control in
solving industrial problems [26], [16].

To facilitate validation in the specification TTG formaliza-
tion process, we present a framework with the purpose of
enhancing specification comprehensibility. Theoretical frame-
works to help resolve the uncertainty and enhance the com-
prehensibility of untimed specification automata for logical
DESs have been developed in [27], [28] and [29], separately
treating the event set and the state set as fundamental. In a
parallel development for real-time specifications, we propose
the new concept of transparency for specification TTGs, for-
mulated by treating the timed state-event or transition space as
fundamental since timed event evolution is explicitly modeled
by transitions in TTGs [1]. Our concept formulation embodies
the essence of ‘summarizing’ a specification TTG’s event-
transition sequences for a TDES, to highlight intermittent
transitions that may be relevant for supporting the compre-
hension of the specification’s non-trivial timed restrictions.
Essentially, in jointly reachable specification TTG and system
states, events that can occur next in the specification TTG, in
synchrony with, but do not change the specification’s current
restrictions on, the TDES, have their corresponding transitions
deemed as specification irrelevant. Our concept embodiment
‘hides’ in self-loops the events of a specification TTG whose
corresponding transitions are identified as specification irrel-
evant, and explicates all specification relevant transitions as
diligent transitions (i.e., those connecting distinctly different
states). In effect, the transparency concept governs the re-
construction of a specification TTG to reduce the number
of states in it without removing any essential temporal or
sequential prescription of the specified dynamics. The resulting
specification TTG is said to be a transparent one that may be
comprehensible or more readily so in general (in terms of
its prescribed dynamics). Various automata-theoretic control
studies [30], [31], [32], [33] have acknowledged, in one way
or another, that by reducing the number of automaton states
without removing any essential prescription of the control
action, a supervisor automaton may be made more readily
comprehensible in general (in terms of its control action).That
the transparency concept supports specification comprehensi-
bility is inferred from these related but different studies, in
that, without removing any essential information of interest,
state reduction may render an automaton more comprehensible
in general.

The proposed specification transparency framework comple-
ments the one in [34] that translates a class of metric temporal
logic (MTL) specifications to TTGs generating sublanguages

of the (marked) language of a given TDES. While the latter
framework gets a specification TTG right by construction, a
designer may not always know if it is the right specification
TTG for control synthesis without manually inspecting it.
Transforming the translated specification TTG into a more
transparent form with respect to the TDES may aid in compre-
hension of the TTG vis-à-vis the MTL formula, and facilitates
complementing assurances of correctness from the graphical
semantics and temporal syntactic views. Even for specification
TTGs that do not have an MTL counterpart, the framework
is still potentially useful, since a specification TTG hand-
prescribed by one designer might not be readily understood
by another designer.

The rest of the paper is organized as follows. Related work
is discussed in detail in Section II. Section III reviews relevant
concepts in TDES control theory. Section IV describes and
formalizes the concept of timed specification transparency,
states the formal problem of finding a maximally transparent
specification TTG and proves its NP-hardness. As extended
from [35], this paper presents a refined and more complete
mathematical formulation of the transparency framework and
mathematical proofs are given for the stated theorems. A
provably correct polynomial time algorithm for computing
transparent specification TTGs is proposed in Section V. Two
illustrative examples, including one from a real-world appli-
cation, are presented in Section VI to illustrate the concept of
a transparent specification TTG. The discussion is presented
in Section VII.

II. RELATED WORK

Issues of specification comprehensibility are inherent in for-
mal system design [36]. In the rudimentary automata-theoretic
framework of discrete-event control, the concept of specifica-
tion transparency is developed to mitigate the comprehensibil-
ity problem. A related work [29] for untimed DESs attempts to
make specification automata more comprehensible from a state
perspective, by showing the compliant execution of the DES
through a minimum number of specification relevant states
called specification epochs. In [27] and [28], attempts are
made from an event perspective by highlighting the precedence
ordering among a minimal set of events deemed relevant to the
specification. This is done by projecting out [11] and ‘hiding’
in self-loops all events that are considered irrelevant to the
specification but can occur in the DES. To simplify complex
control specifications and reduce redundancy of information,
[37] proposes that a part of the control requirements for a DES
be embedded within the DES model in a process-theoretic
framework. The resulting “partially-supervised” DES model
would require only the remaining part of the requirements to
be formalized, leading to simpler specifications.

This paper presents a transparency framework for TDES
specifications modeled by TTGs [1]. Since timed event evolu-
tion in TTGs is explicitly modeled by interleaving transitions
of events and the specialtick event (denoting the passage of
one unit of time), the timed transition transparency concept
is necessarily formulated in the timed state-event or transition
space.
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Technically related are algorithms for state reduction of
supervisors (e.g., [30], [31]) which may render their control ac-
tion more readily comprehensible to designers. When applied
to specifications, these algorithms may return specification
TTGs that are easier to understand. However, whenever this
happens, it is only coincidental as their main objective is
to reduce the number of states required to express the same
specification (by removing constraints already enforced bythe
TDES) for reasons of economy in implementation. While it
may be more readily comprehensible as a supervisor automa-
ton, the output of these state reduction algorithms is not always
appealing to designers [26] as a specification automaton. The
output may provide clarity as a by-product, but that invariably
focuses only on the control action and not the prescribed
dynamics that matters for understanding a specification.

III. TIMED DISCRETE-EVENT SYSTEMS

In this paper, we use the TDES model proposed by Brandin
and Wonham [1] as the formalism for modeling real-time sys-
tems. In the Brandin-Wonham framework, the base model of a
TDES is a finite automatonGact = (Aact,Σact, δact, a0, Am)
called anactivity transition graph(ATG). The untimed behav-
ior of a TDES is represented by its ATG. In the ATGGact,
Aact is the finite set of activities,Σact is the finite set of events,
δact : Σact × Aact is the partial activity transition function,
a0 ∈ Aact is the initial (starting) activity andAm ⊆ Aact is
the set of marked activities.

Let N denote the set of natural numbers. Each event label
σ ∈ Σact is equipped with alower time boundlσ ∈ N and
an upper time bounduσ ∈ N ∪ {∞} such thatlσ ≤ uσ. Σact

is partitioned into two subsetsΣspe = {σ ∈ Σact | uσ ∈
N} and Σrem = {σ ∈ Σact | uσ = ∞}, denoting the sets
of prospective and remote events, respectively. A prospective
event has a finite upper time bound; a remote event has an
infinite upper time bound. In modeling a system,lσ would
typically represent a delay anduσ would represent a hard
deadline.

For σ ∈ Σact let

Tσ =

{

[0, uσ] , if σ ∈ Σspe

[0, lσ] , if σ ∈ Σrem
.

Tσ is called thetimer interval for σ.
A timed transition graph (TTG)G = (Q,Σ, δ, q0, Qm)

is a finite automaton that incorporates the lower and upper
time bounds of events into its transition structure. The timed
behavior of a TDES is represented by its TTG. The state set
Q is defined asQ = Aact ×

∏

{Tσ | σ ∈ Σact}. Thus a state
q ∈ Q is an element of the formq = (a, {tσ | σ ∈ Σact}),
where a ∈ Aact and tσ ∈ Tσ. The set of eventsΣ is
defined asΣ = Σact ∪ {tick}, where the additional event
tick represents the advancement of one time unit. The initial
state q0 ∈ Q is q0 := (a0, {tσ,0 | σ ∈ Σact}), where

tσ,0 =

{

uσ, if σ ∈ Σspe

lσ, if σ ∈ Σrem
.

The marked states, each of which represents the completion
of some task or operation, constitute the state subset of the
form Qm ⊆ Am ×

∏

{Tσ | σ ∈ Σact}, i.e., a marked state
is represented by a marked activity and a suitable assignment

of the timers. The state transition functionδ : Σ × Q → Q
is defined as follows.δ(σ, q) is defined for anyq = (a, {tσ |
σ ∈ Σact}) ∈ Q and σ ∈ Σ, written δ(σ, q)!, if and only if
any of the following three conditions are satisfied.

1) σ = tick and (∀τ ∈ Σspe)tτ > 0;
2) σ ∈ Σspe, δact(σ, a)!, and0 ≤ tσ ≤ uσ − lσ;
3) σ ∈ Σrem, δact(σ, a)!, andtσ = 0.

We write ¬δ(σ, q)! to denote thatδ(σ, q)! is not defined. An
entrance stateq′ = δ(σ, q) = (a′, {t′τ | τ ∈ Σact}) is defined
as follows wheneverδ(σ, q)!.

• whenσ = tick, a′ = a and∀τ ∈ Σact,

t′τ =

{

tτ − 1, if δact(τ, a)! and tτ > 0
tτ , otherwise

;

• whenσ ∈ Σact, a′ = δact(σ, a), t′σ = tσ,0 and∀τ ∈ Σact

such thatτ 6= σ,

t′τ =

{

tτ , if δact(τ, a
′)!

tτ,0, otherwise
.

In the Brandin-Wonham framework, the control design is
carried out on the TTG of a TDES. Graphically, a TTG
can be represented by an edge-labeled directed graph, with
a node denoting a state and an edge denoting an event-
labeled transition. In the graph, transitions do not have any
time bounds associated with them and all timing behavior is
described using transitions of thetick event.

The set of transitions inG, denoted byTR(G) is defined
asTR(G) = {(q, σ) ∈ Q× Σ | δ(σ, q)!}.

Let Σ∗ be the set of all finite sequences called strings, of
events fromΣ, including the empty stringε (a sequence with
no events). A stringt′ is a prefix of t, if there exists a strings
such thatt′s = t. A languageL overΣ is a subset ofΣ∗. We
sayL1 is a sublanguageof L2 if L1 ⊆ L2. For a languageL,
its prefix closureL̄ is the language consisting of all prefixes
of its strings. As any strings in Σ∗ is a prefix of itself, we
haveL ⊆ L̄. A languageL is consideredprefixed-closedif
L = L̄.

The prefix-closed languageL(G) and the marked language
Lm(G) describe the behavior ofG. L(G) is the set of all
strings that can be generated byG. The marked language is
the set of all strings inL(G) for which the terminal state
is a marked state. Extending the transition functionδ to
Σ∗, we have as follows:δ(ε, q) = q and (∀σ ∈ Σ)(∀s ∈
Σ∗)δ(sσ, q) = δ(σ, δ(s, q)), which is defined ifq′ = δ(s, q)
andδ(σ, q′) are both defined. Then formally,

L(G) = {s ∈ Σ∗ | δ(s, q0)!}, (1)

Lm(G) = {s ∈ L(G) | δ(s, q0) ∈ Qm}. (2)

A stateq ∈ Q is reachableif (∃s ∈ Σ∗) δ(s, q0) = q, and
coreachableif (∃s ∈ Σ∗) δ(s, q) ∈ Qm. G is reachableif all
its states are reachable, and iscoreachableif all its states are
coreachable, i.e.,Lm(G) = L(G). If G is both reachable and
coreachable, then it is said to betrim.

Finally, let |P | denote the cardinality of a setP .
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IV. PROBLEM CONCEPTS AND DESCRIPTION

A. Concept and Problem for Specification Comprehensibility

We now formally develop our concept of TTG transparency
which governs the reconstruction of a specification TTG into
a transparent one in which the events of a specification TTG
whose corresponding transitions are identified as specification
irrelevant are ‘hidden’ as self-loops and specification relevant
transitions are explicated as diligent transitions. A transparent
specification TTG is hopefully more comprehensible as all
the self-loop transitions at a state of the transparent TTG,
considered irrelevant to the specification, always have at least
one associated event defined and can therefore occur in a state
of the TDES, entered upon every possible TDES-synchronized
and diligent transition into the state of the transparent TTG.
This means that, upon entering any such state of the transpar-
ent TTG, the next synchronized transition with the TDES need
not immediately exit that state, implying that it is a distinct
state of ongoing activity for the specification of interest.As a
result, a transparent TTG is not only generally more compact,
but also retains those a priori TDES constraints that help
furnish a clearer structure of specification-distinct states that
aids in specification comprehension.

The goal is finding the most or maximally transparent TTG
for a full specification TTGH (‘full’ in the sense that the
specification TTG generates a sublanguage of that for a TDES,
and has all the a priori transitional constraints of the TDES
embedded in it). Different transparent specification TTGs can
be obtained forH based on the latter’s relevant transition sets
of different cardinality. Subject to human cognition limits, a
maximally transparent TTG is one that models the original
restrictiveness ofH on the TDES, and is constructed fromH
based on a relevant transition set of minimal cardinality. Such
a maximally transparent specification TTG could graphically
display only what is needed to understand the specification.
With a more tractable linguistic description, a TTG may be
more readily interpreted by designers when deciding if the
given specification captures the intended control requirement.
We formulate the transparency maximization problem and
prove that it is NP-hard. As a polynomial time algorithm
cannot be expected for this problem, we propose a polynomial
time algorithm that can achieve maximal transparency in
individual cases but not in general.

B. Specification TTG and Transparency

A specification TTGA for TDES G models a (marked)
sublanguage ofG over the setΣ of events. The sublanguage
Lm(A) ∩ Lm(G) is well modeled so that every common
prefix string inL(A) ∩ L(G) can be extended to a marked
string inLm(A) ∩ Lm(G), thereby specifying an uninhibited
sequence of executions that complete some task. Definition 1
of a specification TTG (adapted from [27]) follows naturally.

Definition 1: Given a TDESG = (Q,Σ, δ, q0, Qm), and a
regular languageL such that for TTGA = (X,F, ξ, x0, Xm)
we haveL = Lm(A). If A is said to be a specification TTG
(of L for TDES G), then 1)F = Σ, 2) Lm(A) ∩ Lm(G) =
L(A) ∩ L(G), and 3)A is trim.

Given a specification TTGA for TDES G, a trim speci-
fication TTGH such thatLm(H) = Lm(A) ∩ Lm(G) also
embodies the a priori transitional constraints ofG. Such a
specification TTGH, so thatLm(H) ⊆ Lm(G), is said to
be a full specification TTG representing the full nonblocking
behavioral specification forG underLm(A), and can easily
be computed fromA andG using the composition operation
in TDES theory [1].

For a given full specification TTGH = (Y,Σ, ζ, y0, Ym)
for a TDESG = (Q,Σ, δ, q0, Qm), we define the following.

Let E : Y → 2Σ be the set of events that are defined at
y ∈ Y such thatE(y) = {σ ∈ Σ | ζ(σ, y)!}.

Let D : Y → 2Σ be the set of events that are not permitted
at y ∈ Y such thatD(y) = {σ ∈ Σ | ¬ζ(σ, y)! and (∃s ∈
Σ∗)[ζ(s, y0) = y and δ(sσ, q0)!]}.

Let S : Y → {true, false} with S(y) = true if (∃s ∈
Σ∗)[ζ(s, y0) = y and δ(s, q0) ∈ Qm]. S(y) is true if y is
reachable by some string in the marked language ofG.

Let M : Y → {true, false} with M(y) = true if y ∈ Ym.
M(y) is true iff y is a marked state.

Using these definitions, we now define the specification
compatibility of a pair of states ofH.

Definition 2: For a given full specification TTGH =
(Y,Σ, ζ, y0, Ym) on TDES G, let C ⊆ Y × Y be the set
of specification compatible state pairs ofH on G. Then
for y, y′ ∈ Y , we have (y, y′) ∈ C (i.e., the state pair
(y, y′) ∈ Y × Y is specification compatible) iff

1) E(y) ∩D(y′) = E(y′) ∩D(y) = ∅;
2) S(y) = S(y′) ⇒ M(y) = M(y′).
By Condition 1 of Definition 2, for(y, y′) ∈ C, an event

that is permitted aty should not be denied permission aty′

and vice versa. Condition 2 articulates that for(y, y′) ∈ C, y
andy′ should be consistently markedtrue or false if both the
states are reachable by some strings in the marked language
of G (i.e., wheneverS(y) = S(y′) = true), or if neither is
reachable by any string in the marked language ofG (i.e.,
wheneverS(y) = S(y′) = false).

ProcedureChkIfCompatible is developed to check if a
state pair is specification compatible. Lemma 1 follows.

ProcedureChkIfCompatible(y, y′)
Input : Two statesy, y′ ∈ Y of a full specification TTG

H = (Y,Σ, ζ, y0, Ym);
Output : true if (y, y′) ∈ C; false, otherwise;

1 begin
2 if (E(y) ∩D(y′)) ∪ (E(y′) ∩D(y)) = ∅ then
3 if S(y) = S(y′) then
4 if M(y) = M(y′) then
5 return true;
6 end
7 end
8 else
9 return true;

10 end
11 end
12 return false;
13 end
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Lemma 1:Let C be the set of specification compatible state
pairs of a full specification TTGH = (Y,Σ, ζ, y0, Ym) on
TDESG. Then for a pair of input statesy, y′ ∈ Y , Procedure
ChkIfCompatible(y, y′) returnstrue iff (y, y′) ∈ C.

A cover of a setY is a family of nonempty subsets ofY
whose union isY . Each element of a cover is called a cell. A
partition is a cover in which the cells are pairwise disjoint.

We now formally define what is called a specification-
equivalent partition.

Definition 3: Let C be the set of specification compatible
state pairs of a full specification TTGH = (Y,Σ, ζ, y0, Ym)
on TDESG andX an index set. A partitionP = {Yx ⊆ Y |
x ∈ X} is a specification-equivalent partition ofH if

1) (∀x ∈ X)(∀y, y′ ∈ Yx)(y, y
′) ∈ C;

2) (∀x ∈ X)(∀σ ∈ Σ)(∃x′ ∈ X)[(∀y ∈ Yx)ζ(σ, y)! ⇒
ζ(σ, y) ∈ Yx′ ].

For a specification-equivalent partitionP = {Yx ⊆ Y | x ∈
X} of H, a cell containing a statey ∈ Y is represented as
[y], i.e., for y ∈ Yx, we have[y] = Yx.

According to Condition 1 of Definition 3, all pairs of states
within a cell of a specification-equivalent partition should
be specification compatible. According to Condition 2 of
Definition 3, the states reachable by a one-step transition of
the same event from states of a cellYx of P should all belong
to some cellYx′ of P .

We now present a procedure calledTTran to compute and
return an induced TTGA = (X,Σ, ξ, x0, Xm) from a given
specification-equivalent partitionP = {Yx ⊆ Y | x ∈ X}
defined on a full specification TTGH = (Y,Σ, ζ, y0, Ym).
Each cellYx of P induces a statex of A such that the initial
statex0 of A corresponds to the cell containing the initial
statey0 of H and the marked states ofA correspond to cells
containing marked states ofH. A transition with event label
σ ∈ Σ is defined from statex to statex′ if there is a transition
having the same event label from some state inYx to some
state inYx′ . The procedure considers all states and events of
H while computingA, resulting in a complexity ofO(|Y ||Σ|).

Procedure TTran(H,P )
Input : A full specification TTGH = (Y,Σ, ζ, y0, Ym) and a

specification-equivalent partitionP = {Yx ⊆ Y | x ∈ X} of
H;

Output : An induced specification TTGA, where each state ofA
represents a cell ofP ;

1 begin
2 x0 = x ∈ X such thaty0 ∈ Yx;
3 Xm = {x ∈ X | Yx ∩ Ym 6= ∅};
4 ξ : Σ×X → X(pfn) with ξ(σ, x) = x′ for

(x, x′ ∈ X) and (σ ∈ Σ), such that
(∃y ∈ Yx)ζ(σ, y) ∈ Yx′ ;

5 return A = (X,Σ, ξ, x0, Xm);
6 end

We now state our first theorem.
Theorem 1:For a given full specification TTGH on TDES

G and a specification-equivalent partitionP of H, A =

TTran(H,P ) is a specification TTG modelingLm(H) on
G, i.e.,Lm(A) ∩ Lm(G) = Lm(H).

Proof: Let H = (Y,Σ, ζ, y0, Ym), G = (Q,Σ, δ, q0, Qm)
andA = (X,Σ, ξ, x0, Xm).
A is a specification TTG forG if it satisfies the three

conditions of Definition 1. By construction, the event set ofA
is Σ, the same as that ofG, satisfying Condition 1. SinceH is
trim, we haveLm(H) = L(H). As a result, Condition 2, that
Lm(A) ∩ Lm(G) = L(A)∩L(G), can be proved by showing
thatLm(H) = Lm(A) ∩ Lm(G) andL(H) = L(A) ∩ L(G).
Condition 3 requiresA to be trim, i.e., both reachable and
coreachable. Consider any statex ∈ X. Let y ∈ Y be such
that y ∈ Yx. As H is trim, (∃s ∈ Σ∗) such thatζ(s, y0) = y
and (∃s′ ∈ Σ∗) such thatζ(s′, y) ∈ Ym. By construction,
this impliesξ(s, x0) = x (i.e., reachable) andξ(s′, x) ∈ Xm

(i.e., coreachable), respectively. Repeating this argument for
all x ∈ X, we haveA is trim, satisfying Condition 3.

According to Definition 1, a specification TTGH on G
models a sublanguageLm(H)∩Lm(G) of G overΣ. SinceH
is a full specification TTG ofG, Lm(H) ⊆ Lm(G), implying
Lm(H) ∩ Lm(G) = Lm(H). A specification TTGA models
the same sublanguage ofG if Lm(A) ∩ Lm(G) = Lm(H) ∩
Lm(G) = Lm(H).

From our discussion so far, to prove that underG, A is a
specification TTG modelingLm(H), we need to show that
Lm(H) = Lm(A) ∩ Lm(G) andL(H) = L(A) ∩ L(G).

For proving Lm(H) = Lm(A) ∩ Lm(G), we show that
Lm(H) ⊆ Lm(A)∩Lm(G) andLm(H) ⊇ Lm(A)∩Lm(G).
Similarly, for provingL(H) = L(A) ∩ L(G), we show that
L(H) ⊆ L(A) ∩ L(G) andL(H) ⊇ L(A) ∩ L(G).

1) Proof ofLm(H) ⊆ Lm(A) ∩ Lm(G).
To prove this, we show thatLm(H) ⊆ Lm(G) and
Lm(H) ⊆ Lm(A).
SinceH is a full specification TTG onG, Lm(H) ⊆
Lm(G).
We now show thatLm(H) ⊆ Lm(A), i.e., every string
in Lm(H) also belongs toLm(A). Consider a string
s ∈ Lm(H).
Supposes = ε, we havey0 ∈ Ym. By line 2 of
ProcedureTTran, we havey0 ∈ Yx0

. By line 3 of
ProcedureTTran, Yx0

∩ Ym 6= ∅ ⇒ x0 ∈ Xm. So
ε ∈ Lm(A).
Supposes = σ0, we haveζ(σ0, y0)!. Let y′ = ζ(σ0, y0).
By Condition 2 of Definition 3,(∃x, x′ ∈ X) such that
y0 ∈ Yx andy′ ∈ Yx′ . Sincey0 ∈ Yx0

, we getx = x0.
By the definition ofξ (line 4 of ProcedureTTran), we
haveξ(σ0, x0) = x′. Also, σ0 ∈ Lm(H) implies y′ ∈
Ym. By line 3 of ProcedureTTran, y′ ∈ Ym and y′ ∈
Yx′ ⇒ x′ ∈ Xm. Soσ0 ∈ Lm(A).
Similarly for s = σ0σ1, (∃x, x′ ∈ X) such that
ζ(σ0, y0) ∈ Yx and ζ(σ0σ1, y0) ∈ Yx′ , implying
ξ(σ0, x0) = x and ξ(σ1, x) = x′. Also, ζ(σ0σ1, y0) ∈
Ym ⇒ x′ ∈ Xm. So s = σ0σ1 ∈ Lm(A).
Repeating this argumentj-times for a string s =
σ0σ1 · · ·σj ∈ Lm(H), we get, s ∈ Lm(H) implies
s ∈ Lm(A).

2) Proof ofL(H) ⊆ L(A) ∩ L(G).
We have Lm(H) ⊆ Lm(A) ∩ Lm(G). On taking
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closures, we getLm(H) ⊆ Lm(A) ∩ Lm(G). We have
L(H) = Lm(H) (asH is trim) andLm(A) ∩ Lm(G) ⊆
L(A) ∩ L(G), implying L(H) ⊆ L(A) ∩ L(G).

3) Proof ofL(H) ⊇ L(A) ∩ L(G).
Assume thats ∈ L(A) ∩ L(G). We need to show that
s ∈ L(H), as follows.
Supposes = ε. As L(H) 6= ∅, we haves = ε ∈ L(H).
Supposes = σ, we haveσ ∈ L(A) ⇒ ξ(σ, x0)!.
Then ∃y ∈ Yx0

such thatζ(σ, y)!, i.e., σ ∈ E(y). By
line 2 of ProcedureTTran, y0 ∈ Yx0

. By Condition
1 of Definition 3, we haveσ /∈ D(y0). Then, either
ζ(σ, y0)! or (∄s′ ∈ Σ∗)[ζ(s′, y0) = y0 and δ(s′σ, q0)!].
The second condition fails fors′ = ε as ζ(ε, y0) = y0
and s = σ ∈ L(G) ⇒ δ(σ, q0)!. So ζ(σ, y0)!, implying
s ∈ L(H).
Repeating this argumentj-times for a string s =
σ0σ1 · · ·σj ∈ L(A) ∩ L(G), we get ξ(s, x0)! and
δ(s, q0)! ⇒ ζ(s, y0)!. Therefore,L(H) ⊇ L(A)∩L(G).

4) Proof ofLm(H) ⊇ Lm(A) ∩ Lm(G).
Assume thats ∈ Lm(A) ∩ Lm(G). We need to show
that s ∈ Lm(H), as follows.
SinceL(H) ⊇ L(A) ∩ L(G), we haves ∈ Lm(A) ∩
Lm(G) ⇒ s ∈ L(H), i.e., ζ(s, y0)!. Let ζ(s, y0) = y.
Sinces ∈ Lm(G), S(y) = true.
Sinces ∈ Lm(A), we haveξ(s, x0)!. Let ξ(s, x0) = x.
By line 3 of ProcedureTTran, ∃y′ ∈ Yx such that
y′ ∈ Ym, i.e.,M(y′) = true.
Let s′ be such thatζ(s′, y0) = y′. Then asLm(H) ⊆
Lm(G), we haves′ ∈ Lm(H) ⇒ s′ ∈ Lm(G), implying
S(y′) = true.
By Condition 1 of Definition 3,y, y′ ∈ Yx ⇒ (y, y′) ∈
C. By Condition 2 of Definition 2, if(y, y′) ∈ C, then
S(y) = S(y′) ⇒ M(y) = M(y′). So we haveM(y) =
true, i.e, ζ(s, y0) = y ∈ Ym and hences ∈ Lm(H).

Hence, underG, A is a specification TTG modeling
Lm(H).

Remark 1:The concept of a specification-equivalent parti-
tion (in Definition 3) for TDES specifications is mathemati-
cally equivalent to that of a control congruence defined for
untimed or logical DES supervisors, ifLm(H) is assumed to
be controllable [30]. It follows that, for a control congruence
Pc defined on such an automatonH, invoking Procedure
TTran(H,Pc) returns a state-reduced supervisor [30] that
realizesLm(H) for G. Using this partition, our work shares
the same mathematical basis as that on supervisor state reduc-
tion [30]. Beyond this point, however, our problem of interest
requires a new and more specialized partition of specification-
equivalence forH, as presented next.

Definition 4: Given a full specification TTG H =
(Y,Σ, ζ, y0, Ym) on TDESG. A specification-equivalent par-
tition P = {Yx ⊆ Y | x ∈ X} of H is said to be aT -
transparent partition ofH for T ⊆ TR(H) if (∀(y, σ) ∈
T )[(∃x ∈ X)(y ∈ Yx) ⇒ (ζ(σ, y) ∈ Yx).

A T -transparent partition formalizes a specification trans-
parent partition. The states connected by a transition inT
belong to the same cell of the partition.

Definition 5: Given a full specification TTGH on TDES
G. UnderG, for T ⊆ TR(H), a TTG A is said to be aT -

transparent specification ofH if A = TTran(H,P ), where
P is a T -transparent specification-equivalent partition ofH.

A T -transparent specification TTG formalizes a transparent
specification, whereT is said to define an irrelevant transition
set of TTGH, andTR(H) − T defines a relevant transition
set. Intuitively, in aT -transparent specification TTGA of H,
all transitions corresponding to transitions ofH in T appear
only as self-loops.

We postulate that the most (or maximally) transparent spec-
ification TTG A should hide in self-loops as many irrelevant
transitions ofH as possible, i.e.,T should be of maximal
cardinality.

C. Problem Statement

The transparency maximization problem can now be for-
mally stated as follows.

Problem 1: Given a full specification TTGH for a TDES
G. Construct a specification TTGA so that

1) UnderG, A is aT -transparent specification TTG ofH;
2) (∀T ′ ⊆ TR(H), |T ′| > |T |), there is noT ′-transparent

specification TTGA′ of H that modelsLm(H) on G.
We now state our second theorem.
Theorem 2:Problem 1 is NP-hard.

Proof: See Appendix.

V. PROCEDURES AND SOLUTION ALGORITHM

As the transparency maximization problem is NP-hard, we
cannot expect a polynomial-time algorithm that can always
return a specification TTG of maximal transparency. In this
section, we propose a polynomial-time algorithm that can
achieve maximal transparency in individual cases but not in
general.

A. Transition Irrelevance Check

ProcedureChkIrrelevance is developed to check the spec-
ification irrelevance of transitions of a full specificationTTG
H. To check the irrelevance of a transition, the procedure takes
in as input the state pair connected by the transition and returns
true if the transition is irrelevant to the specification. For this,
initially, the procedure checks if the input state pair is specifi-
cation compatible by invoking ProcedureChkIfCompatible
and thereafter recursively checks if all state pairs reachable by
identical strings from the input state pair are also specification
compatible, thereby ensuring that the computed partition is a
specification-equivalent partition. The procedure returns true
if all the state pairs considered are specification compatible;
andfalse, otherwise. A listwaitlist (that is initialized to the
empty set∅ whenever ProcedureChkIrrelevance is invoked
by ProcedureCompTransPartition) is updated with each
state pair that is considered. In the worst case, the greedy
procedure may have to check the specification compatibility
of every possible pair of states ofH = (Y,Σ, ζ, y0, Ym). In
that case, the procedure could make1

2 |Y |(|Y | − 1) calls to
itself, resulting in a complexity ofO(|Y |2).
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ProcedureChkIrrelevance(y, y′, waitlist)
Input : Two statesy, y′ of a full specification TTGH and a list

waitlist of state pairs that are considered so far;
Output : flag = true, if the transition connectingy andy′ is

irrelevant to the specification;flag = false, otherwise;

1 begin
2 Let W (y) = {y′′ | {(y, y′′), (y′′, y)} ∩ waitlist 6= ∅};
3 foreach y1 ∈ [y] ∪

⋃

y′

1
∈W (y)[y

′

1] do
4 foreach y2 ∈ [y′] ∪

⋃

y′

2
∈W (y′)[y

′

2] do
5 if {(y1, y2), (y2, y1)} ∩ waitlist =

∅ and [y1] 6= [y2] then
6 if ChkIfCompatible(y1, y2) = false

then
7 return false;
8 end
9 waitlist := waitlist ∪ {(y1, y2)};

10 foreach
σ ∈ Σ such thatζ(σ, y1)! and ζ(σ, y2)!
do

11 flag = ChkIrrelevance(ζ(σ, y1),
ζ(σ, y2), waitlist);

12 if flag = false then
13 return false;
14 end
15 end
16 end
17 end
18 end
19 return true;
20 end

B. Computation of a Specification Transparent Partition

For an input full specification TTGH on TDES G,
ProcedureCompTransPartition computes a specification
transparent partitionP of H. Initially, the procedure de-
fines a ∅-transparent partition ofH such that each state
belongs to a distinct cell. The procedure then uses Pro-
cedure ChkIrrelevance to check the specification irrele-
vance of each transition ofH. Whenever a transition un-
der consideration is irrelevant to the specification, Procedure
ChkIrrelevance returnstrue and each state pair inwaitlist
is placed in the same cell ofP . The procedure terminates
after it has considered all transitions ofH. As the procedure
has to consider all transitions ofH (i.e., in worst case,
|Y ||Σ| transitions), calling ProcedureChkIrrelevance for
each transition, the complexity isO(|Y |3|Σ|).

C. Solution Algorithm

For an input full specification TTGH on TDES G,
Algorithm 1 computes a transparent specification TTG of
H. The algorithm uses ProcedureCompTransPartition to
compute a specification transparent partitionP of H. The
algorithm then computes and returns a specification TTG
A = TTran(H,P ), which by Theorem 1 and Definition 5,
is a transparent specification TTG ofH such thatLm(A) ∩

ProcedureCompTransPartition(H,G)
Input : A full specification TTGH = (Y,Σ, ζ, y0, Ym) on TDESG;
Output : A specification transparent partitionP of H;

1 begin
2 Let W (y) = {y′′ | {(y, y′′), (y′′, y)} ∩ waitlist 6= ∅};
3 P = {[y] | [y] = {y} for y ∈ Y };
4 foreach y ∈ Y and σ ∈ Σ do
5 if ζ(σ, y)! then
6 Let ζ(σ, y) = y′;
7 waitlist := ∅;
8 flag = ChkIrrelevance(y, y′, waitlist);
9 if flag = true then

10 P ′ = {[y] ∪
⋃

y′∈W (y)[y
′] | [y], [y′] ∈ P};

11 P = P ′;
12 end
13 end
14 end
15 return P ;
16 end

Lm(G) = Lm(H), modelingLm(H) on G. The complex-
ity of Algorithm 1 is the sum of complexities of proce-
duresCompTransPartition andTTran, i.e.,O(|Y |3|Σ|+
|Y ||Σ|) ≈ O(|Y |3|Σ|).

Algorithm 1: Computation of a transparent specification
TTG

Input : A full specification TTGH on TDESG;
Output : A transparent specification TTGA of H on G;

1 begin
2 P = CompTransPartition(H,G);
3 A = TTran(H,P );
4 return A;
5 end

We now state our third theorem.
Theorem 3:Given a full specification TTGH on TDESG,

Algorithm 1 returns a transparent specification TTG ofH on
G.

Proof: For proving that Algorithm 1 returns a trans-
parent specification TTG, we need to show that for a full
specification TTGH on TDESG, the outputP of Procedure
CompTransPartition is a specification transparent partition
of H, i.e., (∃T ⊆ TR(H)) such thatP is T -transparent.

Let H = (Y,Σ, ζ, y0, Ym). The for loop in line 4 of
ProcedureCompTransPartition considers every state and
event ofH and theif condition in line 5 checks whether a
transition labeled by the event under consideration is defined
at the state that is considered. This ensures that all transitions
of H are considered. Let(y1, σ1) be the first transition to be
considered such thatζ(σ1, y1) = y′1, y

′

1 ∈ Y . By Definition 4,
a T -transparent partition is a specification-equivalent partition
in which states connected by transitions inT belong to same
cells. We now proceed to show thatP is a specification-
equivalent partition ofH.

Initially P = {[y] | [y] = {y} for y ∈ Y } is a
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∅-transparent partition ofH, satisfying Definition 4 (of a
specification transparent partition). The listwaitlist is ini-
tialized to the empty set∅ whenever a new transition is
considered. ProcedureChkIrrelevance(y1, y

′

1, waitlist) is
called to check if the transition(y1, σ1), connecting states
y1 andy′1, is irrelevant to the specification. The listwaitlist
is updated with state pairs reachable by identical strings
from y1 and y′1. If the procedure returnsfalse, then P
does not change and remains a specification-equivalent par-
tition. If ProcedureChkIrrelevance returnstrue, Procedure
CompTransPartition computes a partitionP ′ by augment-
ingP such that each state pair inwaitlist is placed in the same
cell of P ′. By line 10 of ProcedureCompTransPartition,
there is no sharing of states between cells ofP ′. As the
procedure then replacesP with P ′ (line 11), the cells ofP
are disjoint.

By lines 3-4 and 6-8 in ProcedureChkIrrelevance,
and Lemma 1, we can derive for the outputP of Pro-
cedure CompTransPartition that (∀p ∈ P )(∀y1, y2 ∈
p)[(y1, y2) ∈ C], satisfying Condition 1 of Definition 3 (of
a specification-equivalent partition). By lines 3-4 and 10-15
of ProcedureChkIrrelevance, we can derive that(∀p ∈
P )(∀σ ∈ Σ)(∃p′ ∈ P )[(∀y1 ∈ p)ζ(σ, y1)! ⇒ ζ(σ, y1) ∈ p′],
satisfying Condition 2 of Definition 3.

Applying the same argument for every transition ofH, i.e.,
for each (y, σ) ∈ TR(H), we can show that the resulting
P is a specification transparent partition ofH. Let T be
the set of all transitions that are computed as irrelevant to
the specification, i.e., those transitions for which Procedure
ChkIrrelevance returnstrue. Then, by construction, the out-
putP of ProcedureCompTransPartition is aT -transparent
partition ofH.

Hence, by Theorem 1 and Definition 5, the output of
Algorithm 1,A = TTran(H,P ), is a transparent specification
TTG of H on G.

Remark 2:Note that, when applied to specificationH,
supervisor state reduction algorithms (such as those in [30])
would perform “state reduction whenever possible”, unlike
Algorithm 1 that does so only upon satisfying the non-
trivial conditions of transition relevance (see Definition4).
Intuitively, therefore, Algorithm 1 constructsA by self-looping
only as many of the specification irrelevant transitions ofH as
possible. As a result, Algorithm 1 returns a transparent spec-
ification TTG that hides in self-loops only those transitions it
determines to be irrelevant to the specification, and exposes as
diligent all relevant transitions it determines in the process to
capture the essence of the specification. A specification TTG
that is merely state-reduced is not guaranteed to be transparent
(Definition 5), as Example 2 in Section VI will expose.

VI. ILLUSTRATIVE EXAMPLES

The concept of specification transparency and how it may
be useful for human designer validation are now illustrated
using two examples. Every TTG is depicted as a directed
graph with each state represented by a node, the initial state
by a node with an entering arrow and each marked state by
a darkened node. Directed edges, representing state-to-state
transitions, are labeled by events.

Example 1 (Railroad crossing system):The first example
is a railroad system (inspired by an example from [38]) that
consists of a gate and a train. The train is modeled to approach
a gate (app), arrive at the gate (arr) and then depart from the
gate (dep). The gate is modeled to detect the approach of the
train (app), and can be lowered (low) and lifted up (up). The
ATG models of the train and gate, along with time bounds of
events are given in Fig. 2. The corresponding TTG models,
TRAIN and GATE respectively, with timing constraints
explicitly modeled using transitions oftick, are displayed in
Fig. 3. The TDESG for the real-time system is formed by the
composition [1] ofTRAIN andGATE.

app: [0,∞)

arr: [3,4]

dep: [1,∞)

(a) Train

app: [0,∞)

low: [0,∞)

up: [0,∞)

(b) Gate

Fig. 2. Railroad crossing system: ATG models with time bounded events

tick

tick tick tick tickapp

dep
tick

tick

arr
arr

(a) TrainTRAIN

lowapp

tick tick

up

tick

(b) GateGATE

Fig. 3. Railroad crossing system: TTG models

A control requirement forG is to prevent collision between
the train and vehicles passing through the railroad crossing.
This can be achieved by making sure that the gate is lowered
before the train arrives at the gate. As a precaution, the gate
is required to lift up only after one unit of time has passed
since the departure of the train.

A full specification TTGH of this control requirement
for TDES G is given in Fig. 4(c). It may be prescribed
by a designer either directly as such, or initially as some
specification TTGB (Figs. 4(a) and 4(b)), such thatLm(B)∩
Lm(G) = Lm(H). Applying Algorithm 1 toH, we obtain a
highly transparent specification TTGA [Fig. 4(d)] of H. It is
incidental thatA is in fact maximally transparent.

The TTG A shows that the gate must be lowered before
the arrival of the train (low precedesarr) and that the gate
must be lifted up only after one unit of time has lapsed
following train departure (up succeedsdep and onetick).
This safety-critical essence as captured byA may not be as
readily evident in some other specification TTG prescribingthe
same requirement. InterpretingA, the designer may be able to
more easily validate if the given specification is technically the
intended requirement, as only those execution sequences that
form the essence of the control requirement are highlightedin
A.

Example 2 (Preemptive scheduling of sporadic tasks):
The second example is that of a processor executing two
sporadic tasks and is adapted from [39]. In this example
we also differentiate the task of making a specification
transparent from that of minimizing the number of states of
the specification.
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dep ticklow

tick,

arr tick

up

tick,

app

(a) A probable specification TTGB

dep ticklow

tick tick

up

tick,

app

arr

(b) Another probable specification TTGB

tick

tick tick

tick tick tick tick

tick tick tick tickapp

tick tickdep

up

low low lowlowlow

arrarr

(c) Full specification TTGH

deplow

tick,

arr

tick

tick,

app,

up

(d) Maximally transparent specification TTGA

Fig. 4. Specification models

We consider two sporadic tasksT1 [Fig. 5(a)] andT2 [Fig.
5(b)] that can arrive at any arbitrary time. Each task is divided
into segments that take one unit of time to execute. In the
model, this is represented by atick transition following the
execution of each segment. Fori ∈ {1, 2}, let Ei and Di

denote the time taken for execution and the relative deadline
for execution (i.e., the time within which an accepted task
should finish its execution) of taskTi, respectively. In this
example, we consider a case whereE1 = 2, D1 = 3,
E2 = 1 and D2 = 1. Accordingly, T1 has two segments,
1seg and 1end, while T2 has only one segment,2end. Each
task arriving for processing can either be accepted or rejected
by the processor. Once a task is accepted, each segment of the
task is executed. A newly arrived task can always preempt the
currently executing task. Table I summarizes the description
of events. The TDESG for the real-time system is formed by
the composition [1] ofT1 andT2.

TABLE I

DESCRIPTION OFEVENTS

Event Description
iarr Arrival of task Ti

irej Rejection of taskTi

iacc Acceptance of taskTi

1seg Execution of segment1 of taskT1

iend Execution of the last segment of taskTi

tick Advancement of one unit of time

1arr 1acc tick

tick

1seg

1rej

1end

tick

(a) TaskT1

2arr 2acc

tick

2end

2rej

tick

(b) TaskT2

Fig. 5. Task execution models

Given the execution time and deadline of each task, a
specification for the system requires that a newly arrived task
should be accepted only if it can be completed without missing
the deadlines for previously accepted tasks. From the given
execution times and deadlines for execution, it is clear that T1

can be preempted only once byT2 (asD1 − E1 = E2) and
that T2 cannot be preempted (asD2 − E2 = 0).

A full specification TTGH of this control requirement for
TDES G is given in Fig. 6(a). In general, it is the result
of initially prescribing the requirement as some specification
TTG B, such thatLm(B) ∩ Lm(G) = Lm(H). Applying
Algorithm 1 to H, we obtain a specification TTGA [Fig.
6(b)] of H that, incidentally, is maximally transparent. A
minimal-state specification TTGHminstate of the same con-
trol requirement is shown in Fig. 6(c). As explained below, the
control requirement ofA is easy to comprehend, while that of
Hminstate is not.

WhenT2 arrives whileT1 is being executed, the processor
preemptsT1 and switches toT2. T1 resumes only after the
last segment ofT2 has finished execution. Subsequent arrival
of T2 before the execution of the last segment ofT1 is
rejected. In terms of event execution sequences, whenever
2arr succeeds1arr and precedes1end, 2end precedes1end.
Any subsequent occurrence of2arr before1end will result in
the occurrence of2rej. Observe that this execution trajectory
is clearly highlighted inA. But for a designer tracking
this execution sequence inHminstate, the fact that1end is
permitted immediately following the execution of the event
sequence1arr → 1acc → 2arr may cause confusion. Only
a close study ofG would reveal that, even though1end is
permitted in the specification, its occurrence is preventedby
the a priori constraints enforced byG.

Also, when T1 arrives while T2 is being executed, the
processor acceptsT1, but starts executingT1 only after the last
segment ofT2 is executed. In terms of execution sequences,
whenever2arr precedes1arr, 2end precedes1end. In this
case also, we can observe that the transparent specification
TTG A highlights the essence of the specification. It may
not be so in some other specification TTGs prescribed for
the same requirement by a system designer. For example
in Hminstate, even at some instances where2arr precedes
1arr, both 1end and2end are immediately permitted by the
specification, causing confusion, even though the occurrence
of 1end is prevented by the a priori constraints ofG.
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1arr

2rej

2rej

1acc 1seg tick 1end

tick

2arr

2acc

2end

tick

tick

2arr

2acc 2acc

2arr

1end

1arr 1acc

2end

tick

2end

2arr 2arr

tick

tick

1end

tick

(a) Full specification TTGH

1arr

tick

2arr

1seg, 2arr,

2rej, tick

2end
1acc, 2acc

1arr

2end

1end

1end

2acc, 1arr

1acc, 1seg,

tick

2arr

(b) Maximally transparent specification TTGA

tick, 1arr, 

2arr

tick, 1seg, 

2arr, 2rej

2end

1end

1acc,

2acc
tick, 1arr, 

1seg, 2arr

1acc, 1end, 

2acc, 2end

(c) State-minimized specification
TTG Hminstate

Fig. 6. Specification models

VII. CONCLUSION

To support comprehensibility of specification TTGs and
facilitate their validation, the concept of specification TTG
transparency is developed, and the problem of maximizing
TTG transparency for TDESs is formulated and shown to
be NP-hard. A polynomial time algorithm for transforming
a given specification TTG into a highly transparent one is
proposed. Through examples, it is demonstrated that the trans-
parent TTG computed can provide a structure that may support
comprehensibility. Together with the transparency concept for
untimed specification automata for logical DESs [27], [28],
[29], a unified automata-theoretic transparency frameworkis

now in place for both logical and timed specification automata.
Human comprehensible specification TTGs will always ex-

hibit some form of transparency as formalized in this paper.
While the illustrative examples show that the transparent
specification TTGs computed are human comprehensible, fu-
ture work will need to experimentally investigate how often
a transparent specification TTG computed by our proposed
framework is human comprehensible. The experimental in-
sights gained could motivate additional new concepts for
specification TTG comprehensibility.

APPENDIX

In this appendix, we show that Problem 1 is NP-hard.
Before presenting the proof, we present some basics in

graph theory [40]. An undirected graphGr is a 2-tuple
(Vertex ,Edge), where V ertex is the set of vertices and
Edge ⊆ V ertex× V ertex is the set of edges.

For a full specification TTGH on TDES G, the trans-
parency maximization problem (Problem 1) requires comput-
ing the largest setTr ⊆ TR(H) such that there is aTr-
transparent partition ofH.

We reduce in polynomial time a known NP-hard problem,
the Maximum Edge Clique Partitionproblem [41], to Prob-
lem 1. Given an undirected graphGr = (V ertex,Edge),
a clique is a subset of its vertices such that each pair
of vertices in the subset are connected by an edge. The
Maximum Edge Clique Partition problem is to partition
V ertex into cliques such that the total number of edges within
the cliques is maximized.

We shall now map a TDESGrTDES and a full specifi-
cation TTGGrSpec for GrTDES onto an undirected graph
Gr = (V ertex,Edge), in such a way that the problem of
computing the largest setTr ⊆ TR(H) such that there is a
Tr-transparent partition ofH corresponds to the problem of
partitioningGr into cliques with maximum edges within the
cliques. The transformation process is as follows.

1) Let V ertex = {u0 · · ·un}. Define symbolsV ertex′ :=
{uij | 0 ≤ i < j ≤ n}. Let

Y ′ := V ertex ∪ V ertex′

Q′ := Y ′

Σ = ∅

2) Define (partial) transition functionζ andδ as follows.

a) Create eventsei, 0 ≤ i < n and add them toΣ.
Let

ζ(ei, ui) = ui+1

δ(ei, ui) = ui+1

b) ∀i, j, 0 ≤ i < j ≤ n such that(ui, uj) /∈ Edge,
create eventseij and add them toΣ. Define

ζ(eij , uj) = uij (3)

δ(eij , ui) = δ(eij , uj) = uij (4)

3) Removing unreachable states and considering all states
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as marked, we define

Y := {u ∈ Y ′ | (∃s ∈ Σ∗)ζ(s, u0) = u} (5)

y0 := u0 (6)

Ym := Y (7)

Q := {u ∈ Q′ | (∃s ∈ Σ∗)δ(s, u0) = u} (8)

q0 := u0 (9)

Qm := Q (10)

GrSpec = (Y,Σ, ζ, y0, Ym) (11)

GrTDES = (Q,Σ, δ, q0, Qm) (12)

We now have a lemma that relates a specification transparent
partition of GrSpec (for GrTDES) to a clique partition on
Gr.

Lemma 2:Gr can be partitioned into cliques such that there
are K,K ≤ |Edge| edges within cliques iff there is aTr-
transparent partition ofGrSpec such thatTr ⊆ TR(GrSpec)
and |Tr| = K.
We are now ready to prove Theorem 2, as follows: Problem
1 involves computing the largest setTr ⊆ TR(H) such that
there is aTr-transparent partition ofH. By Lemma 2, the
Maximum Edge Clique Partitionproblem, which is a known
NP-hard problem, is polynomially reducible to the problem of
computing the largest setTr ⊆ TR(H) such that there is a
Tr-transparent partition ofH. As a result, finding a maximally
transparent specification TTG is at least as hard finding a
maximum edge clique partition. Hence Problem 1 is NP-hard.
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