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A B S T R A C T

Audio-driven talking face generation, which aims to synthesize talking faces with realistic facial animations
(including accurate lip movements, vivid facial expression details and natural head poses) corresponding to
the audio, has achieved rapid progress in recent years. However, most existing work focuses on generating
lip movements only without handling the closely correlated facial expressions, which degrades the realism of
the generated faces greatly. This paper presents DIRFA, a novel method that can generate talking faces with
diverse yet realistic facial animations from the same driving audio. To accommodate fair variation of plausible
facial animations for the same audio, we design a transformer-based probabilistic mapping network that can
model the variational facial animation distribution conditioned upon the input audio and autoregressively
convert the audio signals into a facial animation sequence. In addition, we introduce a temporally-biased
mask into the mapping network, which allows to model the temporal dependency of facial animations and
produce temporally smooth facial animation sequence. With the generated facial animation sequence and a
source image, photo-realistic talking faces can be synthesized with a generic generation network. Extensive
experiments show that DIRFA can generate talking faces with realistic facial animations effectively.
1. Introduction

Audio-driven talking face generation aims to synthesize talking
faces with realistic facial animations that correspond to the input audio
signals, which has attracted increasing interest from both academia and
industry due to its wide applications in digital human, visual dubbing,
virtual reality, etc. Facial animations are usually closely entangled with
the corresponding speech, which contain strong non-verbal information
that helps the audience understand the speech contents [1]. Generat-
ing naturally-looking facial animations is therefore one key factor in
realistic talking face generation, which remains a very open research
challenge. Specifically, modelling facial animations from audio signals
is not a rigid one-to-one mapping problem, which requires to accom-
modate fair variations of plausible facial animations given the same
audio.

Audio-driven talking face generation has been explored extensively
with the prevalence of deep generative networks in recent years. One
typical approach is static talking face generation [2–4] which edits lip
movements only without considering other facial animations (i.e., head
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poses and facial expressions). Another approach focuses on dynamic
talking face generation [5–7], which includes head movements for
modelling full-face animations but the generated faces are still expres-
sionless. Hence, most existing work focuses on generating lip-synced
talking faces with respect to the driving audio signals (with or without
head movements) but neglects facial expressions which are crucial to
realistic talking face generation.

At the other end, generating realistic audio-driven facial expres-
sions is a non-trivial task. This is largely due to the fact that facial
expressions do not have very strong correlations with the corresponding
audio. Specifically, there often exist fair variations of plausible facial
expressions for the same audio signal, and the variations might further
expand while extending to the temporal dimension with a sequence of
audio signals as input. To model such uncertainty, the desired network
should be capable of accommodating fair variations of plausible facial
expressions for the same input audio. Deterministic prediction of fa-
cial expressions from the input audio will drive the regression to the
vailable online 4 August 2023
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mean facial expression which often leads to expressionless talking face
videos [5–7].

This paper presents DIRFA, an innovative audio-driven talking face
eneration method that can generate talking faces with DIverse yet
Realistic Facial Animations (including accurate lip movements, vivid
facial expression details and natural head poses) from the same driving
audio. Specifically, we design a mapping network to model the uncer-
tain relations between audio and visual signals. The design is inspired
by the transformer architecture [8], which allows the mapping network
to model the variational facial animation distribution conditioned upon
the input audio and convert the audio into facial animation sequence
in an autoregressive manner. In addition, we introduce a temporally-
biased mask into the mapping network, which allows to model the
temporal dependency of facial animations and produce temporally
coherent animation sequences effectively by assigning higher attention
weights to closer facial frames while generating new animations. With
the generated facial animation sequence and a source facial image,
talking face videos with realistic facial animations can be synthesized
with a generic generation network.

The contributions of this work can be summarized in three aspects.
First, we propose DIRFA, a novel audio-driven talking face generation
method that can generate talking face videos with diverse yet realistic
facial animations from the same input audio. Second, we design a
probabilistic mapping network that can model the uncertain relations
between audio and visual signals effectively. In addition, we introduce
a temporally-biased mask into the mapping network, which enables
it to generate temporally coherent facial animations. Third, extensive
experiments show that DIRFA can generate realistic talking face videos
with naturally-looking facial animations.

2. Related work

2.1. Talking face generation

Audio-driven Talking Face Generation: Audio-driven talking face
generation has been studied in both computer graphics and computer
vision communities for years. Early studies focus on subject-specific
talking face synthesis. For example, Suwajanakorn et al. [9] generate
mouth movement from the driving audio and composite it with video
frames of the same speaker to synthesize talking faces. This approach
requires a large amount of video footage of one speaker to train a
speaker-specific model that cannot generalize to new persons. Recently,
several studies [4,10–16] exploit deep generative networks for subject-
independent talking face generation. For example, Chen et al. [11]
present a hierarchical structure that first predicts facial landmarks from
the audio and then generates talking faces conditioned on the predicted
landmarks. However, all aforementioned methods generate head-fixed
talking faces which degrades the realism of the synthesized videos
greatly. To improve the perceptual realism, some recent work [5–7,17,
18] considers head poses while generating talking face videos.

Although modelling head movements from speech improves the
realism of talking faces, most existing methods share a common con-
straint that they usually synthesize expressionless talking faces as they
neglect to model facial expressions from the audio. This directly de-
grades the realism of the generated talking faces as human facial
expressions usually change with the speech. Leveraging the dedicatedly
collected data, some recent studies [19,20] attempt to control the facial
expressions of the generated talking faces of a specific person, but their
models cannot generalize to new persons. Liang et al. [21] propose to
use an additional emotional video for guiding expression synthesis. Our
proposed DIRFA instead can synthesize talking faces with diverse yet
realistic facial expressions from audio only and the trained model is
generalizable to unseen persons.

Video-driven Talking Face Generation: The task of video-driven
talking face generation aims to transfer facial animations from a refer-
ence actor to a target person. For example, Zakharov et al. [22] propose
2

a few-shot talking head model that generates talking faces conditioned
on the facial landmarks. Ren et al. [23] leverage 3D face models to
transfer facial animations. Wiles et al. [24] introduce a warping-based
talking face generation network. Although these methods can generate
photo-realistic talking face videos, they require videos with desired
facial animations to guide the synthesis.

2.2. Modelling facial animations from audio

One fundamental challenge in audio-driven talking face generation
is how to accurately convert audio contents into visual signals. Existing
methods tackle this challenge by either implicitly modelling facial ani-
mations from audio with latent features [10,12] or explicitly converting
audio into intermediate visual representations such as 2D facial land-
marks [11,13] and 3D face coefficients [18,23]. Though great progress
has been witnessed in generating accurate lip sync, most existing work
models audio-to-visual mapping in a deterministic manner and ignores
the uncertainty between audio and facial expressions. This leads to
regress-to-mean problem [17] where the synthesized faces have little
variation in facial expressions.

Differently, our proposed mapping network is trained to model the
variational facial animation distribution conditioned upon the input
audio, which allows to convert the audio signals into facial animation
sequences with diverse yet realistic facial animations. Specifically, we
map audio signals to facial animations by exploiting continuous Action
Units (AUs) [25] for jointly modelling mouth movements and facial
expressions, and a rigid 6 degrees of freedom (DoF) movement vector
(pitch, yaw, roll and 3D translation) for modelling head pose.

2.3. Transformers in vision

Transformer [8] emerges as a powerful tool for modelling long-
range contextual information, which has been widely studied in natural
language processing. The core of transformer is the attention mecha-
nism that allows for interaction between sequences regardless of the
relative positions. A basic transformer building block consists of a
multi-head attention-layer (Attn) followed by a feed forward layer (FF),
which embeds input sequence 𝑋 into an internal representation 𝐶,
which is often referred to as the context vector [26]. Specifically, 𝐶
is computed using the query 𝑄, the key 𝐾 and the value 𝑉 via:

𝐶 = 𝐹𝐹 (𝐴𝑡𝑡𝑛(𝑄,𝐾, 𝑉 ,𝑀)) = 𝐹𝐹 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 +𝑀
√

𝑁𝑘

)𝑉 ),

𝑄 = 𝑋𝑊 𝑄, 𝐾 = 𝑋𝑊 𝐾 , 𝑉 = 𝑋𝑊 𝑉 ,
(1)

where 𝑁𝑘 is the number of channels, 𝑊 𝑠 are the trainable weights and
𝑀 is a mask that enables causal attention, where each token can only
attend to its past inputs [27].

Dosovitskiy et al. [28] make the first attempt to apply transformer
to image classification, which shows the potential of transformer in
solving computer vision problems. From then on, transformer-based
models have been exploited for different tasks, including object detec-
tion [29], image generation [30], video understanding [31], etc. Some
recent work explores applying transformer to model sequential data
and produces impressive results on motion synthesis [32] and dance
generation [26,33]. Nevertheless, most existing methods either focus
on motion generation without considering audio information, or cannot
generate diverse motion sequences given audio only. In this paper, we
employ transformer to convert audio signals into diverse yet realistic
facial animation sequences for talking face generation.

3. Method

3.1. Overview

Fig. 1 shows the framework of our proposed DIRFA. As audio

usually has strong correlations with lip shapes and relatively weak
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Fig. 1. The framework of DIRFA: Given the driving audio, we first convert it into audio features that are temporally aligned with the video frames. The audio features are then
fed to a mapping network that generates plausible facial animations in an autoregressive manner. A temporally-biased mask is introduced to the mapping network to enable it
to better model the temporal dependency of facial animations and produce temporally coherent facial animation sequence. Finally, the generated facial animations and a source
image are forwarded to a generation network to synthesize talking faces with accurate lip movements, vivid facial expressions and natural head poses.
𝑦

correlations with facial expressions and head poses, our goal is to
generate talking faces with accurate lip movements, vivid facial expres-
sion details and natural head poses corresponding to the driving audio.
To achieve this goal, we design a probabilistic mapping network that
exploits transformer for capturing uncertain relations between audio
signals and facial animations. Specifically, the mapping network models
the probability distribution of variational facial animations conditioned
upon the driving audio signals, which can autoregressively transfer the
audio into diverse yet realistic facial animation sequences for guiding
talking face generation. In addition, we introduce a temporally-biased
mask into the mapping network, which allows to model the temporal
dependency of facial animations and produce temporally coherent
facial animation sequence effectively. With the generated facial anima-
tion sequence and a source image, a generation network can directly
synthesize photo-realistic talking faces. More details to be described in
the ensuing subsections.

3.2. Mapping network

3.2.1. Facial animations representation
The goal of the mapping network is to convert the driving audio

signals into reasonable and coherent visual signals for guiding talking
face generation. Before learning the audio-to-visual mapping, it is
crucial to define a compact yet informative representation for the facial
animations as visual signal. In this paper, we exploit 17 continuous Ac-
tion Units (AUs) [25] for jointly modelling accurate mouth movements
and rich facial expression details. Meanwhile, we model the head pose
as a rigid 6 degrees of freedom (DoF) movement (pitch, yaw, roll and
3D translation). In this way, we encode the facial animations of each
talking face frame into a 23 dimensional vector.

Existing audio-driven talking face generation methods [11,13] rep-
resent facial animations with continuous value (e.g., the coordinates
of 2D landmarks or the 3D face coefficients) and learn the audio-to-
visual mapping in a deterministic manner. This paradigm ignores the
uncertainty between audio signals and facial expressions and often
leads to regress-to-mean problem [17] where the synthesized faces have
little variation in facial expressions. Differently, we represent facial ani-
mations as discrete categories and formulate the output of the mapping
network as a probability tensor of the categorical distribution, which
allows to sample diverse yet realistic facial animations at inference.
Specifically, we uniformly discretize facial animations into 𝐷 constant
intervals and obtain 23 𝐷-dimensional one-hot vectors (including 17
AUs and 6 DoF of head movement). Given a facial animation vector 𝑌𝑡 =
[𝑦1, 𝑦2,… , 𝑦23] of frame 𝑡, its discrete representation 𝑌 𝑡 = [𝑦1, 𝑦2,… , 𝑦23]
can be obtained as follows:

𝑦𝑖 = argmin‖𝑦𝑖 − 𝑦𝑑‖1, (2)
3

𝑑∈𝐷
where 𝑦𝑖 ∈ 𝑌𝑡, 𝑦𝑖 ∈ 𝑌 𝑡 and 𝑦𝑑 is the centroid value of 𝑑th category. In
our experiments, we empirically set 𝐷 at 500.

3.2.2. Audio-to-visual mapping
Inspired by the power of transformer in modelling long-range con-

textual information, we introduce transformer [8] into the mapping
network for modelling the uncertain relations between audio and visual
signals and converting the driving audio signals into facial animations
in an autoregressive manner.

Autoregressive generation has been widely explored for generating
sequential data, where the probability of each new observation con-
ditions on its previous observations and the joint distribution of the
whole sequence is modelled by the product of conditional distributions.
With the conditional nature of audio-driven talking face generation, we
train the mapping network to autoregressively predict facial animations
conditioned on both audio context and previously generated facial
animations. Following Bayes’ Rule, the probability of discrete facial
animation sequence 𝑌 1∶𝑇 under driving audio 𝐴1∶𝑇 can be decomposed
by:

𝑝(𝑌 |𝐴) = 𝑝(𝑌 1∶𝜏 |𝐴1∶𝜏 ) ⋅
𝑇
∏

𝑡=𝜏+1
𝑝(𝑌 𝑡|𝑌 𝑡−𝜏∶𝑡−1, 𝐴𝑡−𝜏∶𝑡), (3)

where we assume that facial animations at next time step 𝑡 depends
on at most 𝜏 previous facial animations (besides the audio signals).
Following [8], a mask is applied to the transformer to ensure the
currently predicting facial animations attend to its previously generated
frames only.

Once the mapping network is trained, it allows to generate diverse
and plausible facial animations from the same audio in an autore-
gressive manner. Specifically, given the audio signals and previously
generated animations, the mapping network first predicts the likelihood
of possible facial animations for current time step. The top-k sampling
is then adopted to sample facial animations from the likelihood as the
newly generated facial animations. This process repeats until sequence
of desired length is produced. Finally, the generated discrete facial
animations 𝑌𝑡 are converted back to continuous facial animations 𝑌𝑡 by
replacing the discrete categorical label with the corresponding centroid
value:

̃𝑖 = 𝑘 such that 𝑦̂𝑖 = 𝑦𝑘, (4)

where 𝑦̂𝑖 ∈ 𝑌𝑡, 𝑦̃𝑖 ∈ 𝑌𝑡, 𝑦̂𝑖 is the converted continuous value of 𝑦̃𝑖 and 𝑦𝑘
is the centroid value of the 𝑘th category, respectively.

3.2.3. Improving temporal coherence
As facial animations change smoothly when we talk, modelling tem-

poral dependency of facial animations is one key factor in generating
realistic talking faces. Without considering the temporal dependency,
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Fig. 2. Comparison of the original mask in [8] and the proposed temporally-biased mask: Our temporally-biased mask negatively biases attention weights with a linearly decreasing
enalty that is proportional to the distance between the current prediction and previously predicted animations. Our mask allows the mapping network to better model the temporal
ependency of facial animations and produce temporally coherent facial animation sequence effectively. The attention weights in upper triangular are set at −∞ to ensure currently

predicting facial animations attend to its previously generated frames only [8].
the vanilla transformer [8] assigns equal attention weights to all previ-
ously generated facial animations while generating the new one, which
often leads to abrupt facial animations in the generated faces.

Inspired by the intuition that the closer facial animation frames
should have stronger correlations with the current frame and thus
are more likely to affect its prediction, we introduce a temporally-
biased mask into the mapping network, which biases the attention by
assigning higher attention weights to the closer frames. Specifically, our
temporally-biased mask negatively biases the attention weights with a
linearly decreasing penalty [34] that is proportional to the distance
between the previously predicted frames and current prediction as
illustrated in Fig. 2. After that, a softmax function is employed to
obtain the final attention weights as in Eq. (1). With the proposed
temporally-biased mask, the mapping network is encouraged to take
into account the temporal dependency of facial animations across
consecutive frames while generating facial animations at current time
step, which enables it to produce temporally coherent facial animation
sequence effectively. Fig. 2 shows the comparison between the original
attention mask in [8] and our temporally-biased mask.

3.2.4. Loss functions
Given the predicted facial animation probability 𝑝(𝑌 |𝐴) and ground-

truth discrete facial animation sequence 𝑌 1∶𝑇 , we train the mapping
network by minimizing the cross-entropy loss:

𝐿𝐶𝐸 = 1
𝑇
CrossEntropy(𝑝(𝑌 |𝐴), 𝑌 1∶𝑇 ). (5)

3.3. Generation network

Given a source image and the facial animations generated by the
mapping network, a generation network is designed to synthesize plau-
sible talking faces with desired facial animations while preserving the
source identity attributes.

We design the generation network based on face-vid2vid [35] and
follow existing talking face generation methods [7,11] to train it on
video datasets [36,37]. Specifically, we first randomly extract two
frames from the same video track and pick one of them as the source
image 𝐼𝑠𝑟𝑐 . We then treat the other frame as the target image 𝐼𝑡𝑔𝑡
and extract the facial animation attributes from the it as the driving
attributes 𝑍𝑡𝑔𝑡. Finally, 𝐼𝑠𝑟𝑐 and 𝑍𝑡𝑔𝑡 are fed into the generation network
𝐺, which is trained to transform 𝐼𝑠𝑟𝑐 to 𝐼𝑡𝑔𝑡 conditioned on 𝑍𝑡𝑔𝑡:

𝐼𝑡𝑔𝑡 = 𝐺(𝐼𝑠𝑟𝑐 , 𝑍𝑡𝑔𝑡), (6)

̂

4

where 𝐼𝑡𝑔𝑡 the generated image.
With a source facial image and the facial animation sequence gen-
erated by the mapping network, the trained generation network can
generate talking faces with realistic facial animations as illustrated in
the right part of Fig. 1.

3.3.1. Loss functions
The loss for training the generation network consists of three terms:

(1) the adversarial loss for improving the photo-realism of the output;
(2) the reconstruction loss for penalizing the reconstruction error; (3)
the attribute loss that examines whether the generated image contains
desired facial animations. The overall objective function is:

 = 𝑎𝑑𝑣 + 𝜆𝑟𝑒𝑐𝑟𝑒𝑐 + 𝜆𝑎𝑡𝑡𝑟𝑎𝑡𝑡𝑟. (7)

Adversarial Loss: We adopt an adversarial loss for improving the
photo-realism of the synthesized talking face images. Specifically, LS-
GAN [38] is employed to optimize network parameters. The adversarial
loss is formulated as:

𝑎𝑑𝑣 = 1
2
E(𝐷𝐼 (𝐼𝑡𝑔𝑡)2) +

1
2
E((1 −𝐷𝐼 (𝐼𝑡𝑔𝑡))2), (8)

where 𝐷𝐼 is the discriminator.
Reconstruction Loss: We employ a reconstruction loss to reduce the
error between the output of the generation network and the ground-
truth image:

𝑟𝑒𝑐 = E(‖𝜙(𝐼𝑡𝑔𝑡) − 𝜙(𝐼𝑡𝑔𝑡)‖1), (9)

where 𝜙 is the pre-trained VGG network.
Attribute Loss: We adopt an attribute loss to encourage the generation
network to generate a face image with similar facial animations as
the ground-truth. Specifically, we include an auxiliary head on top of
the discriminator (𝐷𝑍 ) to predict attributes, and apply L2 loss on the
predicted attributes of both ground-truth and generated images:

𝑎𝑡𝑡𝑟 = E(‖𝐷𝑍 (𝐼𝑡𝑔𝑡) −𝑍𝑡𝑔𝑡‖
2
2) + E(‖𝐷𝑍 (𝐼𝑡𝑔𝑡) −𝑍𝑡𝑔𝑡‖

2
2). (10)

4. Experiments

4.1. Experimental settings

Datasets: We conduct experiments over two in-the-wild audio–visual
datasets Voxceleb2 [36] and LRW [37], which are widely used in
existing audio-driven talking face generation studies. Specifically, Vox-
celeb2 [36] contains over 1 million utterances for 6112 celebrities, ex-
tracted from videos uploaded to YouTube. LRW [37] contains 1000 ut-
terances of 500 different words, spoken by hundreds of different speak-
ers. We split each dataset into training and testing sets by following the

official settings.
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Fig. 3. Qualitative comparisons of DIRFA with state-of-the-art audio-driven talking face generation approaches: The first row shows the source image and audio-synced frames that
provide ground-truth lip shapes. The rest rows show the synthesized faces. DIRFA can generate accurate lip shapes with respect to the audio-synced frames, vivid facial expressions
and natural head poses conditioned on audio only. Note PC-AVS [7] takes the audio-synced frames as additional input for head pose control.
Implementation Details: The audios are pre-processed to 16 kHz,
then converted to mel-spectrograms with FFT windows size 1280, hop
length 160 and 20 Mel filter-banks. The facial animations (i.e., the
continuous AUs and head pose parameters) of each frame are extracted
by OpenFace [39]. To match facial animations of each video frame with
audio features, we align the extracted mel-spectrogram segment to a
short video clip that has the same time duration, where the target video
frame is strategically positioned at the center. 𝜏 is set at 50. All experi-
ments are conducted in PyTorch environment with four 11 GB GeForce
RTX 2080 Ti GPUs. The mapping network and the generation network
are trained separately. Please refer to the supplementary material for
the network training details.

4.2. Qualitative evaluation

We first qualitatively compare DIRFA with three state-of-the-art
subject-independent audio-driven talking face generation methods, in-
cluding ATVG [11], MakeItTalk [13] and PC-AVS [7]. The results are
shown in Fig. 3. Note all compared methods take the source image and
the driving audio as inputs (unseen in training) for generating talking
faces, while PC-AVS [7] takes the audio-synced videos as additional
input for controlling head poses.

ATVG [11] generates talking faces conditioned on 2D landmarks
predicted from the audio. It can generate faces with good lip-sync with
respect to the audio, but its generated head poses are static. Leveraging
speaker-aware 3D landmarks, MakeItTalk [13] can synthesize photo-
realistic talking faces, but their head poses show slight movements only
and the lip shapes are not well-aligned with the audio-synced frames.
PC-AVS [7] can generate more diverse head motions and accurate lip
movements than MakeItTalk [13], but it requires additional videos for
pose guidance and struggles to preserve the identity of source image.
Further, all three methods model audio-to-visual mapping in a deter-
ministic manner without considering the uncertainty between audio
and facial animations. This leads to regression-to-mean problem [17]
where the synthesized faces have little variation in facial expressions.
As a comparison, DIRFA generates talking faces with accurate lip
shapes, vivid facial expressions and natural head poses conditioned on
audio only. Its superior synthesis is largely attributed to our probabilis-
tic mapping network that can model the variational facial animation
distribution conditioned upon the input audio.

We further compare DIRFA with two state-of-the-art subject-specific
audio-driven emotional talking face generation methods, including
Wang et al. [20] and EVP [19], both of which are trained on the
MEAD dataset [20]. It is worth mentioning that DIRFA is trained on
5

Voxceleb2 [36] only and directly applied to MEAD images without
finetuning. As Fig. 4 shows, the subject-specific training in Wang et al.’s
method [20] and EVP [19] helps to generate talking faces with sharper
texture, but their lip shapes and facial expressions are not consistent
with the audio-synced frames and the generated head poses are static.
In contrast, DIRFA generates talking faces with better lip-sync and
more consistent facial expressions as well as natural head motions.
In addition, DIRFA is more flexible and generalizable, which can be
applied to different persons as shown in Fig. 3.

4.3. Quantitative evaluation

Evaluation Metrics: We perform quantitative evaluations with
several metrics that have been widely adopted in existing audio-driven
talking face generation studies. Specifically, we use peak signal-to-noise
ratio (PSNR) to evaluate the generation quality and average content
distance (ACD) [40] to measure the facial identify preservation quality.
We also adopt the landmark distance (LMD) around mouths [11],
confidence score (S𝑐𝑜𝑛𝑓 ) and synchronization offset (S𝑜𝑓𝑓 ) as described
in [37] to measure the accuracy of mouth shapes and lip sync. Note
the S𝑜𝑓𝑓 here refers to the absolute difference between video-audio
lags of the generated and audio-synced videos. In addition, we measure
the eye blinking rate (EBR) [18] of the generated faces which is more
realistic when it is similar to the average human eye blinking rate
around 0.28–0.45 blinks per second [41].
Quantitative Results: Table 1 shows quantitative comparisons of
several subjective-independent audio-driven talking face generation
methods. We can see that DIRFA achieves the best PSNR on both
datasets, indicating that the DIRFA synthesized faces are sharper and
more realistic than those generated by other methods. In addition,
DIRFA achieves the best LMD, S𝑐𝑜𝑛𝑓 and S𝑜𝑓𝑓 in most cases, showing
that DIRFA can generate accurate lip-sync videos from audio signals.
Note DIRFA obtains slightly lower ACD than MakeItTalk [13], largely
because MakeItTalk [13] deals with a much simpler task of generating
limited facial movements while DIRFA generates various face poses
and facial expressions. Further, only MakeItTalk [13] and DIRFA can
generate natural eye blinking but DIRFA can generate more realistic
facial animations as illustrated in Fig. 3.

We also compare DIRFA with subjective-specific audio-driven talk-
ing face generation methods. As Table 2 shows, [19,20] can achieve
better PSNR and ACD as they conduct subject-specific training. How-
ever, their generated lip shapes are not well aligned with the audio
which leads to low LMD, S𝑐𝑜𝑛𝑓 and S𝑜𝑓𝑓 . In addition, their generated
eye blinks are static, which impairs the realism of the synthesized
talking faces. As a comparison, DIRFA can synthesize more realistic
facial animations with better lip-sync.
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Fig. 4. Qualitative comparisons of DIRFA with Wang et al.’s method [20] and EVP [19] on MEAD [20]: The audio-synced frames provide ground-truth lip shapes. The subject-specific
training in Wang et al.’s method [20] and EVP [19] helps to generate sharper facial texture, while DIRFA can generate better lip-sync and more consistent facial expressions with
respect to the audio-synced frames as well as natural head movements.
Table 1
Quantitative comparisons of DIRFA with state-of-the-art audio-driven talking face generation approaches on datasets Voxceleb2 [36] and LRW
[37]. N/A in EBR means eye blinks are completely static in the synthesized talking faces.
Dataset Methods PSNR ↑ ACD ↓ LMD ↓ S𝑐𝑜𝑛𝑓 ↑ S𝑜𝑓𝑓 ↓ EBR

Voxceleb2 [36]

ATVG [11] 28.79 0.376 4.28 5.45 0.57 N/A
MakeItTalk [13] 29.15 0.320 6.13 5.11 1.08 0.39
PC-AVS [7] 29.42 0.354 4.67 5.39 0.36 N/A
Ours 29.56 0.331 4.45 5.82 0.25 0.31

LRW [37]

ATVG [11] 29.64 0.303 3.71 4.47 0.66 N/A
MakeItTalk [13] 29.93 0.274 6.62 3.56 0.82 0.27
PC-AVS [7] 30.65 0.288 3.35 6.21 0.33 N/A
Ours 30.97 0.280 3.16 6.39 0.45 0.24
Fig. 5. Qualitative results of ablation study: The probabilistic design (Prob) and the temporally-biased mask (TBM) help to model audio-to-visual uncertainty and generate temporally
coherent facial animations, respectively. The L1 difference maps between the currently and the previously generated frames are illustrated in the bottom right.
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Table 2
Quantitative comparisons of DIRFA with Wang et al.’s method [20] and EVP [19]
on MEAD [20] dataset. N/A in EBR means eye blinks are completely static in the
synthesized talking faces.

Methods PSNR ↑ ACD ↓ LMD ↓ S𝑐𝑜𝑛𝑓 ↑ S𝑜𝑓𝑓 ↓ EBR

Wang et al. [20] 28.67 0.366 11.94 2.38 1.70 N/A
EVP [19] 28.90 0.307 8.23 4.21 0.88 N/A

Ours 28.42 0.391 6.45 5.09 0.63 0.35

Table 3
User study in mean opinion scores: Users rate videos from 1 to 5. Larger scores
mean better performance. Subject-inde. and subject-spec. mean subject-independent and
subject-specific, respectively.

Methods Video
realness

Lip sync
quality

Expression
naturalness

Subject-inde.
methods

Ground truth 4.83 4.75 4.64
ATVG [11] 1.49 2.68 1.35
MakeItTalk [13] 2.07 2.11 1.84
PC-AVS [7] 3.16 3.53 2.80
Ours 3.95 4.02 3.76

Subject-spec.
methods

Ground truth 4.89 4.92 4.78
Wang et al. [20] 2.57 1.33 1.16
EVP [19] 3.25 3.64 3.12
Ours 3.68 3.91 3.50

Table 4
Quantitative results of ablation study: Prob denotes the probabilistic design; TBM
denotes the temporally-biased mask; N/A in EBR means eye blinks are static in the
faces.

Methods PSNR ↑ ACD ↓ LMD ↓ S𝑐𝑜𝑛𝑓 ↑ S𝑜𝑓𝑓 ↓ EBR

w/o Prob 29.52 0.318 4.71 5.60 0.43 N/A
w/o TBM 29.38 0.347 6.22 4.39 0.74 0.59

Full Model 29.56 0.331 4.45 5.82 0.25 0.31

Table 5
Effect of different number of discrete categories 𝐷 on the accuracy of generated lip
shapes on Voxceleb2 [36].
𝐷 10 100 250 500 750

LMD ↓ 9.31 5.92 4.77 4.45 4.68

4.4. User study

We evaluate and benchmark the DIRFA generated videos by con-
ducting Amazon-Mechanical-Turk (AMT) user studies. The subjects are
presented by randomly-ordered videos synthesized by DIRFA and the
compared methods (each method generates 3 videos). They are tasked
to rate video quality (from 1 to 5) based on three criteria: (1) the
realness of the video; (2) the lip sync quality; and (3) the naturalness
of facial expressions. A total of 83 AMT users participated in the study
and provided valid questionnaires. Table 3 shows the mean opinion
scores. DIRFA consistently outperforms the competing methods under
all metrics, demonstrating the effectiveness of our method. Please refer
to the supplementary materials for the designed questions.

4.5. Discussion

Ablation Studies: We conduct ablation studies to analyse the ef-
fectiveness of the proposed mapping network in realistic talking face
generation with three variants. The first replaces the discrete category
facial animation representations with continuous representations (‘w/o
Prob’). The second replaces the proposed temporally-biased mask with
the original mask in [8] (‘w/o TBM’). The third is our full model (‘Full
Model’). The facial animation sequences produced by different mapping
networks are fed to the same generation network to generate talking
7

faces.
Fig. 5 shows the qualitative results, where each row shows five
consecutive generated frames and the L1 difference maps between the
currently and the previously generated frames are illustrated in the bot-
tom right. Without the probabilistic design, the mapping network tends
to learn a deterministic mapping between audio and facial animations,
which suffers from regression-to-mean problem and generates static
and expressionless faces, resulting in minimal L1 differences between
consecutive frames. Without the temporally-biased mask, the mapping
network produces facial animation sequences without considering the
temporal dependency of facial animations, leading to generating faces
with abrupt head poses and very large L1 differences. Including the
probabilistic design and temporally-biased mask, our full model gen-
erates temporally smooth talking faces with natural facial animation
transition.

Table 4 shows the quantitative evaluation results, our full model
achieves the best under most metrics. The mapping network without
probabilistic design obtains better ACD as its generated faces have
limited variations in head poses and expressions. In contrast, our full
model generates natural talking faces with much more rich variations
in head poses and expressions. As reported in [42], the rich variations
can influence the visual perception of person identities and lead to
degraded ACD.
Discrete Category Analysis: To allow sampling diverse yet realis-
tic facial animations at inference, we represent facial animations as
discrete categories and formulate the output of the mapping network
as a probability tensor of categorical distribution. Specifically, we
uniformly discretize facial animations into 𝐷 constant intervals. We
conduct an ablation study to examine the impact of the parameter 𝐷
n the accuracy of lip shapes in the generated talking faces. In the
xperiments, we adopt the LMD metric (lower LMD indicates better lip
hape accuracy) and examine 𝐷 over the Voxceleb2 benchmark [36].

As Table 5 shows, the accuracy of lip shapes degrades clearly when
𝐷 is very small (e.g., 10), largely because a small 𝐷 restricts possible
states of facial animations and leads to inaccurate and unnatural lip
movements. While increasing 𝐷 gradually, we first observe a drop of
LMD scores and then a convergence to a plateau while 𝐷 is around 500.
Further increasing 𝐷 after that degrades LMD scores. One plausible rea-
son is that too many fine-grained categories introduce ambiguity during
model optimization and increase the complexity of the prediction task.
We therefore use 𝐷 = 500 as the default setting.
Comparison of Model Complexity: We compare the parameter num-
ber of different audio-driven talking face generation methods in Ta-
ble 6. Our model has 112.2M parameters, including 11.2M from the
mapping network and 101M from the generation network. Its parame-
ter counts are comparable to that of ATVG [11], MakeItTalk [13] and
Wang et al. [20] but clearly lower than PC-AVS [7] and EVP [19].
Diverse Talking Faces Generation: DIRFA can generate diverse
talking faces from the same driving audio. Thanks to our designed
probabilistic mapping network, we can easily obtain diverse facial
animation sequences by randomly sampling facial animations from the
predicted likelihood (as discussed in Section 3.2.2). The generation
network can then generate diverse talking faces with the same source
image plus diverse animation sequences as shown in Fig. 6.
Ethical Considerations: With the convenience of generating talking
faces from audio and a single source image, our method may be
misused by immoralists to spread misinformation. To avoid improper
use, we will include a watermark to the generated videos making it
clear that they are synthetic.

5. Conclusion

This paper presents DIRFA, an audio-driven talking face generation
method that can generate talking faces with diverse yet realistic facial
animations from the same driving audio. We design a transformer-
based probabilistic mapping network to model the uncertain relations
between audio and visual signals and introduce a temporally-biased
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Fig. 6. Diverse talking faces generation: By randomly sampling facial animation sequences from the same audio, DIRFA can synthesize talking faces with accurate and consistent
lip shapes with respect to the audio-synced frames as well as diverse and realistic expressions and head poses as illustrated in Rows 2 and 3.
Table 6
Comparisons of parameter number of different methods.
Method ATVG [11] MakeItTalk [13] PC-AVS [7] Wang [20] EVP [19] Ours

No. of Params 88.5M 72.9M 152.3M 121M 403.3M 112.2M
mask into the mapping network to convert audio into temporally
smooth facial animations in an autoregressive manner. Our generation
network then takes the generated facial animations and a source image
as input to synthesize talking faces. Extensive experiments show that
DIRFA can generate talking faces with accurate lip movements, vivid
facial expressions and natural head poses.

The proposed method effectively addresses the audio-to-visual map-
ping problem with a transformer-based probabilistic network, which
could be applied to various tasks such as audio-driven dance synthesis
or co-speech gesture generation. However, the current design generates
visual signals from audio via a fully automatic pipeline. It remains an
open challenge to incorporate user interaction for controlling certain
desired synthesized facial animations. We will explore it in our future
work.

Data availability

The authors do not have permission to share data

Acknowledgments

This work is funded by the Ministry of Education, Singapore, under
the Tier-1 Project RG94/20.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.patcog.2023.109865.
8

References

[1] J. Cassell, D. McNeill, K.-E. McCullough, Speech-gesture mismatches: Evidence
for one underlying representation of linguistic and nonlinguistic information,
Pragmat. Cogn. 7 (1) (1999) 1–34.

[2] B. Fan, L. Wang, F.K. Soong, L. Xie, Photo-real talking head with deep
bidirectional LSTM, in: 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP, IEEE, 2015, pp. 4884–4888.

[3] L. Chen, Z. Li, R.K. Maddox, Z. Duan, C. Xu, Lip movements generation at a
glance, in: Proceedings of the European Conference on Computer Vision, ECCV,
2018, pp. 520–535.

[4] K. Prajwal, R. Mukhopadhyay, V.P. Namboodiri, C. Jawahar, A lip sync expert
is all you need for speech to lip generation in the wild, in: Proceedings of the
28th ACM International Conference on Multimedia, 2020, pp. 484–492.

[5] L. Chen, G. Cui, C. Liu, Z. Li, Z. Kou, Y. Xu, C. Xu, Talking-head generation with
rhythmic head motion, in: European Conference on Computer Vision, Springer,
2020, pp. 35–51.

[6] R. Yi, Z. Ye, J. Zhang, H. Bao, Y.-J. Liu, Audio-driven talking face video
generation with learning-based personalized head pose, 2020, arXiv preprint
arXiv:2002.10137.

[7] H. Zhou, Y. Sun, W. Wu, C.C. Loy, X. Wang, Z. Liu, Pose-controllable talking face
generation by implicitly modularized audio-visual representation, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 4176–4186.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[9] S. Suwajanakorn, S.M. Seitz, I. Kemelmacher-Shlizerman, Synthesizing obama:
learning lip sync from audio, ACM Trans. Graph. (ToG) 36 (4) (2017) 1–13.

[10] Y. Song, J. Zhu, D. Li, X. Wang, H. Qi, Talking face generation by conditional
recurrent adversarial network, 2018, arXiv preprint arXiv:1804.04786.

[11] L. Chen, R.K. Maddox, Z. Duan, C. Xu, Hierarchical cross-modal talking face
generation with dynamic pixel-wise loss, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 7832–7841.

[12] H. Zhou, Y. Liu, Z. Liu, P. Luo, X. Wang, Talking face generation by adversarially
disentangled audio-visual representation, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33, 2019, pp. 9299–9306.

[13] Y. Zhou, X. Han, E. Shechtman, J. Echevarria, E. Kalogerakis, D. Li, MakeltTalk:
speaker-aware talking-head animation, ACM Trans. Graph. 39 (6) (2020) 1–15.

[14] N. Liu, T. Zhou, Y. Ji, Z. Zhao, L. Wan, Synthesizing talking faces from text and
audio: an autoencoder and sequence-to-sequence convolutional neural network,
Pattern Recognit. 102 (2020) 107231.

[15] R. Wu, G. Zhang, S. Lu, T. Chen, Cascade ef-gan: progressive facial expression
editing with local focuses, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020, pp. 5021–5030.

https://doi.org/10.1016/j.patcog.2023.109865
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb1
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb1
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb1
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb1
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb1
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb2
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb2
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb2
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb2
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb2
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb3
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb3
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb3
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb3
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb3
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb4
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb4
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb4
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb4
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb4
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb5
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb5
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb5
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb5
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb5
http://arxiv.org/abs/2002.10137
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb7
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb7
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb7
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb7
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb7
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb7
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb7
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb8
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb8
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb8
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb9
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb9
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb9
http://arxiv.org/abs/1804.04786
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb11
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb11
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb11
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb11
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb11
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb12
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb12
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb12
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb12
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb12
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb13
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb13
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb13
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb14
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb14
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb14
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb14
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb14
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb15
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb15
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb15
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb15
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb15


Pattern Recognition 144 (2023) 109865R. Wu et al.
[16] R. Wu, S. Lu, Leed: label-free expression editing via disentanglement, in:
Proceedings of the European Conference on Computer Vision, ECCV, 2020, pp.
781–798.

[17] S. Wang, L. Li, Y. Ding, C. Fan, X. Yu, Audio2Head: Audio-driven one-shot
talking-head generation with natural head motion, 2021, arXiv preprint arXiv:
2107.09293.

[18] C. Zhang, Y. Zhao, Y. Huang, M. Zeng, S. Ni, M. Budagavi, X. Guo, FACIAL:
Synthesizing dynamic talking face with implicit attribute learning, in: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.
3867–3876.

[19] X. Ji, H. Zhou, K. Wang, W. Wu, C.C. Loy, X. Cao, F. Xu, Audio-driven emotional
video portraits, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 14080–14089.

[20] K. Wang, Q. Wu, L. Song, Z. Yang, W. Wu, C. Qian, R. He, Y. Qiao, C.C. Loy,
Mead: A large-scale audio-visual dataset for emotional talking-face generation,
in: European Conference on Computer Vision, Springer, 2020, pp. 700–717.

[21] B. Liang, Y. Pan, Z. Guo, H. Zhou, Z. Hong, X. Han, J. Han, J. Liu, E. Ding,
J. Wang, Expressive talking head generation with granular audio-visual control,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 3387–3396.

[22] E. Zakharov, A. Shysheya, E. Burkov, V. Lempitsky, Few-shot adversarial learning
of realistic neural talking head models, in: Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 9459–9468.

[23] Y. Ren, G. Li, Y. Chen, T.H. Li, S. Liu, PIRenderer: Controllable portrait image
generation via semantic neural rendering, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 13759–13768.

[24] O. Wiles, A. Sophia Koepke, A. Zisserman, X2face: A network for controlling face
generation using images, audio, and pose codes, in: Proceedings of the European
Conference on Computer Vision, ECCV, 2018, pp. 670–686.

[25] P. Ekman, W. Friesen, J. Hager, Facial Action Coding System (FACS) A Human
Face, Salt Lake City, 2002.

[26] R. Li, S. Yang, D.A. Ross, A. Kanazawa, Learn to dance with aist++: Music
conditioned 3d dance generation, 2021, arXiv e-prints, arXiv–2101.

[27] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving language
understanding by generative pre-training, 2018.

[28] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth
16x16 words: Transformers for image recognition at scale, 2020, arXiv preprint
arXiv:2010.11929.

[29] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-
end object detection with transformers, in: European Conference on Computer
Vision, Springer, 2020, pp. 213–229.

[30] P. Esser, R. Rombach, B. Ommer, Taming transformers for high-resolution image
synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 12873–12883.

[31] R. Girdhar, J. Carreira, C. Doersch, A. Zisserman, Video action transformer
network, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 244–253.

[32] E. Aksan, M. Kaufmann, P. Cao, O. Hilliges, A spatio-temporal transformer for
3D human motion prediction, in: 2021 International Conference on 3D Vision
(3DV), IEEE, 2021, pp. 565–574.

[33] L. Siyao, W. Yu, T. Gu, C. Lin, Q. Wang, C. Qian, C.C. Loy, Z. Liu, Bailando: 3D
dance generation by actor-critic GPT with choreographic memory, in: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 11050–11059.

[34] O. Press, N.A. Smith, M. Lewis, Train short, test long: Attention with linear biases
enables input length extrapolation, 2021, arXiv preprint arXiv:2108.12409.

[35] T.-C. Wang, A. Mallya, M.-Y. Liu, One-shot free-view neural talking-head syn-
thesis for video conferencing, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 10039–10049.
9

[36] J.S. Chung, A. Nagrani, A. Zisserman, Voxceleb2: Deep speaker recognition,
2018, arXiv preprint arXiv:1806.05622.

[37] J.S. Chung, A. Zisserman, Lip reading in the wild, in: Asian Conference on
Computer Vision, Springer, 2016, pp. 87–103.

[38] X. Mao, Q. Li, H. Xie, R.Y. Lau, Z. Wang, S. Paul Smolley, Least squares gener-
ative adversarial networks, in: Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 2794–2802.

[39] T. Baltrusaitis, A. Zadeh, Y.C. Lim, L.-P. Morency, Openface 2.0: Facial behavior
analysis toolkit, in: 2018 13th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2018), IEEE, 2018, pp. 59–66.

[40] S. Tulyakov, M.-Y. Liu, X. Yang, J. Kautz, Mocogan: Decomposing motion
and content for video generation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1526–1535.

[41] A.R. Bentivoglio, S.B. Bressman, E. Cassetta, D. Carretta, P. Tonali, A. Albanese,
Analysis of blink rate patterns in normal subjects, Mov. Disorders 12 (6) (1997)
1028–1034.

[42] F.A. Pavel, E. Iordănescu, The influence of facial expressions on recognition
performance in facial identity, Procedia-Soc. Behav. Sci. 33 (2012) 548–552.

Rongliang Wu is a research scientist at Institute for Infocomm Research, Agency for
Science, Technology and Research (A*STAR), Singapore. He received Ph.D. degree from
Nanyang Technological University. His research interests include computer vision and
deep learning, specifically for facial expression analysis and generation.

Yingchen Yu obtained B.E. degree at Nanyang Technological University, and M.S.
degree at National University of Singapore. He is currently pursuing Ph.D. degree at
School of Computer Science and Engineering, Nanyang Technological University. His
research interests include computer vision and machine learning, specifically for image
synthesis and manipulation.

Fangneng Zhan is a postdoctoral researcher at Max Planck Institute for Informatics. He
received Ph.D. degree from Nanyang Technological University. His research interests
include deep generative models and neural rendering. He serves as program committee
member for top journals and conferences including TPAMI, TIP, ICLR, NeurIPS, CVPR,
ICCV, and ECCV.

Jiahui Zhang obtained the B.E. degree in Information Science and Engineering at
Shandong University. He is currently pursuing the Ph.D. degree at School of Computer
Science and Engineering, Nanyang Technological University. His research interests
include computer vision and machine learning, specifically for super-resolution and
neural radiance field.

Xiaoqin Zhang is an IEEE senior member. He is currently a Professor with Wenzhou
University, China. He has published more than 100 papers in international journals and
conferences, including T-PAMI, IJCV, T-IP, ICCV, CVPR, NIPS, and among others. His
research interests include pattern recognition, computer vision, and machine learning.

Shijian Lu is an Associate Professor in Nanyang Technological University. He received
Ph.D. from National University of Singapore. His research interests include computer
vision and deep learning. He has published more than 100 internationally refereed jour-
nal and conference papers. He is currently an Associate Editor for Pattern Recognition
and Neurocomputing.

http://refhub.elsevier.com/S0031-3203(23)00563-0/sb16
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb16
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb16
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb16
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb16
http://arxiv.org/abs/2107.09293
http://arxiv.org/abs/2107.09293
http://arxiv.org/abs/2107.09293
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb18
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb18
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb18
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb18
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb18
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb18
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb18
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb19
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb19
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb19
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb19
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb19
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb20
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb20
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb20
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb20
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb20
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb21
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb21
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb21
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb21
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb21
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb21
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb21
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb22
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb22
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb22
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb22
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb22
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb23
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb23
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb23
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb23
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb23
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb24
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb24
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb24
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb24
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb24
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb25
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb25
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb25
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb26
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb26
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb26
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb27
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb27
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb27
http://arxiv.org/abs/2010.11929
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb29
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb29
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb29
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb29
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb29
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb30
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb30
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb30
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb30
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb30
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb31
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb31
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb31
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb31
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb31
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb32
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb32
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb32
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb32
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb32
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb33
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb33
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb33
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb33
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb33
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb33
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb33
http://arxiv.org/abs/2108.12409
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb35
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb35
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb35
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb35
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb35
http://arxiv.org/abs/1806.05622
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb37
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb37
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb37
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb38
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb38
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb38
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb38
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb38
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb39
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb39
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb39
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb39
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb39
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb40
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb40
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb40
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb40
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb40
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb41
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb41
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb41
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb41
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb41
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb42
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb42
http://refhub.elsevier.com/S0031-3203(23)00563-0/sb42

	Audio-driven talking face generation with diverse yet realistic facial animations
	Introduction
	Related Work
	Talking Face Generation
	Modelling Facial Animations from Audio
	Transformers in Vision

	Method
	Overview
	Mapping Network
	Facial Animations Representation
	Audio-to-visual Mapping
	Improving Temporal Coherence
	Loss Functions

	Generation Network
	Loss Functions


	Experiments
	Experimental Settings
	Qualitative Evaluation
	Quantitative Evaluation
	User Study
	Discussion

	Conclusion
	Data availability
	Acknowledgments
	Declaration of competing interest
	Appendix A. Supplementary data
	References


