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Abstract

Background: Depression is a prevalent mental disorder that is undiagnosed and untreated in half of all cases. Wearable activity
trackers collect fine-grained sensor data characterizing the behavior and physiology of users (ie, digital biomarkers), which could
be used for timely, unobtrusive, and scalable depression screening.

Objective: The aim of this study was to examine the predictive ability of digital biomarkers, based on sensor data from
consumer-grade wearables, to detect risk of depression in a working population.

Methods: This was a cross-sectional study of 290 healthy working adults. Participants wore Fitbit Charge 2 devices for 14
consecutive days and completed a health survey, including screening for depressive symptoms using the 9-item Patient Health
Questionnaire (PHQ-9), at baseline and 2 weeks later. We extracted a range of known and novel digital biomarkers characterizing
physical activity, sleep patterns, and circadian rhythms from wearables using steps, heart rate, energy expenditure, and sleep data.
Associations between severity of depressive symptoms and digital biomarkers were examined with Spearman correlation and
multiple regression analyses adjusted for potential confounders, including sociodemographic characteristics, alcohol consumption,
smoking, self-rated health, subjective sleep characteristics, and loneliness. Supervised machine learning with statistically selected
digital biomarkers was used to predict risk of depression (ie, symptom severity and screening status). We used varying cutoff
scores from an acceptable PHQ-9 score range to define the depression group and different subsamples for classification, while
the set of statistically selected digital biomarkers remained the same. For the performance evaluation, we used k-fold cross-validation
and obtained accuracy measures from the holdout folds.

Results: A total of 267 participants were included in the analysis. The mean age of the participants was 33 (SD 8.6, range 21-64)
years. Out of 267 participants, there was a mild female bias displayed (n=170, 63.7%). The majority of the participants were
Chinese (n=211, 79.0%), single (n=163, 61.0%), and had a university degree (n=238, 89.1%). We found that a greater severity
of depressive symptoms was robustly associated with greater variation of nighttime heart rate between 2 AM and 4 AM and
between 4 AM and 6 AM; it was also associated with lower regularity of weekday circadian rhythms based on steps and estimated
with nonparametric measures of interdaily stability and autocorrelation as well as fewer steps-based daily peaks. Despite several
reliable associations, our evidence showed limited ability of digital biomarkers to detect depression in the whole sample of working
adults. However, in balanced and contrasted subsamples comprised of depressed and healthy participants with no risk of depression
(ie, no or minimal depressive symptoms), the model achieved an accuracy of 80%, a sensitivity of 82%, and a specificity of 78%
in detecting subjects at high risk of depression.
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Conclusions: Digital biomarkers that have been discovered and are based on behavioral and physiological data from consumer
wearables could detect increased risk of depression and have the potential to assist in depression screening, yet current evidence
shows limited predictive ability. Machine learning models combining these digital biomarkers could discriminate between
individuals with a high risk of depression and individuals with no risk.

(JMIR Mhealth Uhealth 2021;9(10):e24872) doi: 10.2196/24872
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Introduction

Background
Depression is the third-largest contributor to years lost to
disability and affects 264 million people globally [1]. Despite
its high prevalence, depression remains undiagnosed and
untreated in half of all cases [2,3]. At the same time, the
evolving COVID-19 pandemic and related economic crisis are
worsening the population’s mental health [4-6].

Wearable activity trackers are increasingly widely used and
provide an opportunity to harness sensor data for detection of
different health conditions [7]. Wearable trackers can monitor
physiological and behavioral data, including steps, heart rate,
energy expenditure, sleep patterns, respiration rate, blood
oxygen saturation, skin temperature, and skin conductance,
among others. Close interrelationships between everyday
behavior, physiology, and mental well-being makes digital
phenotyping with wearables especially attractive for detection
of mental disorders and discovering respective digital
biomarkers [8-11]. These digital biomarkers could be used for
risk prediction of depression and to scale up population mental
health screening. Moreover, due to the unprecedented granularity
of available data, digital phenotyping can advance our
understanding of etiology and subtypes of mental disorders and
complement established diagnostic criteria. Complementary
smartphone apps could be further used for prevention and
treatment of mental disorders, to deliver digital health
interventions and personalized cognitive behavioral therapy
[12-14]. In this work, we focus on digital biomarkers based on
wearable sensor data for depression screening.

Related Work
Current evidence is mainly comprised of studies investigating
separate associations between depressive symptomatology and
various actigraphy and sensor-based metrics, which capture
meaningful aspects of behavior and physiology, to reveal
objective risk or diagnostic markers. These aspects include
physical activity, sleep characteristics, circadian rhythms, and
physiological parameters. Systematic reviews and meta-analyses
of actigraphy studies demonstrated that patients with depression
were significantly less physically active than healthy controls
[15,16]. Meta-analyses of prospective cohort studies showed
that physical activity had a protective effect against the future
onset of depression [17], while sedentary time increased the
risk of depression [18]. For example, odds of depression
development were 1.8 to 2.7 times lower in participants with

more time spent in moderate to vigorous physical activity
compared to the least active participants [19].

Sleep disturbance is another common symptom and risk factor
for depression that can be measured objectively together with
other sleep characteristics. Meta-analyses of polysomnography
(PSG) studies showed that depression is associated with less
total sleep time (TST), increased sleep onset latency (SOL),
lower sleep efficiency (SE), lower duration and fraction of
slow-wave sleep, lower fraction of light sleep, reduced latency
between sleep onset and onset of rapid eye movement (REM)
sleep, greater duration and fraction of REM sleep, greater
number of awakenings, and increased wake after sleep onset
(WASO) time compared to healthy controls [20,21]. Although
PSG is a gold standard for sleep measurement, contemporary
wearables can measure sleep and identify sleep stages. A
systematic review of actigraphy studies suggested that the most
persistent sleep abnormality in depressive patients is longer
WASO, whereas other parameters had mixed effects [16].
Separate actigraphy studies showed lower SE, longer SOL, later
sleep offset [22,23], and a greater sleep fragmentation in adults
with depression [24].

Contrary to measuring physical activity and sleep as separate
factors, circadian rhythms characterize the activity pattern of a
full 24-hour cycle. Circadian rhythm metrics quantify regularity,
shape, and timing of repeated daily processes and can be derived
from fine-grained wearable data. Actigraphy studies suggested
that people with clinically significant depressive symptoms had
lower mesor, a rhythm-adjusted mean activity level [24-26];
reduced total locomotor activity [27,28]; lower amplitude
[25,26]; shorter active periods [29,30]; delayed acrophase
[22,30]; and less robust circadian activity rhythms [22,25,31].
Longitudinal studies showed that lower rhythm robustness
predicted worsening of depressive symptoms in the future [26].
Depressive symptoms were also associated with heart rate–based
mesor [32] and amplitude [32] as well as increased heart rate
in the night and morning hours [33]. Few studies using
nonparametric rhythm measures demonstrated that participants
with more severe depressive symptoms had lower interdaily
stability (IS) and higher intradaily variability (IV) of circadian
activity rhythm [31,34], reduced relative amplitude (RA)
between the highest and the lowest activity levels [28,35], and
reduced RA of skin temperature [36]. Although findings on
separate circadian rhythm indicators are mixed, the evidence
suggests that depression is often associated with disturbed,
irregular, and delayed circadian behavioral and physiological
rhythms.
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Another stream of evidence is comprised of a few studies that
developed predictive models for depression detection from
multimodal wearable data using data-driven approaches and
machine learning. For example, Jacobson et al extracted 9929
digital markers using signal processing methods from a publicly
available actigraphy data set of 55 individuals to detect people
with depressive disorder [37]. A machine learning model
correctly predicted the diagnostic status in 89% of the cases
with a sensitivity of 94% and a specificity of 83% using
leave-one-cohort-out cross-validation. Only spectral density
features were important predictors [38]. In another study, authors
extracted distribution characteristics of wearable data, including
acceleration, skin conductance, and temperature, collected for
1 month and sampled from different time windows within
24-hour cycles, which resulted in 204 features in total [39]. A
machine learning model with this feature set reached 87%
accuracy in classifying 47 participants with high or low mental
health scores using leave-one-out cross-validation. Nighttime
skin conductance features were most important in prediction
models. Tazawa et al extracted distribution characteristics of
per-hour data from multidimensional wearable data, including
steps, energy expenditure, body motion, heart rate, skin
temperature, sleep time, and ultraviolet light, which resulted in
63 features [33]. A machine learning model with features based
on a 7-day period achieved an accuracy of 76%, a sensitivity
of 73%, and a specificity of 79% in prediction of depression
screening status in 86 participants using 10-fold cross-validation.
Authors found that features of skin temperature and sleep were
most important for the model’s predictive ability.

Objectives
The first stream of evidence from actigraphy and PSG studies
lacks research on the predictive ability of various metrics to
assess the risk of depression, whereas the other stream of
data-driven studies often ignores established risk markers and
leaves associations between depressive symptomatology and
wearable data uninterpreted. Absence of robust and interpretable
digital biomarkers complicates further development of a
comprehensive and explainable algorithm for depression
screening in the general population. To address these gaps, we
examined the associations between depressive symptomatology
and digital biomarkers based on sensor data from
consumer-grade fitness trackers, including established and novel
markers, and explored the predictive ability of these digital
biomarkers in depression screening.

Methods

Study Design and Participants
In a cross-sectional study, we collected data from a multiethnic
working population in Singapore. A total of 290 adult volunteers
(aged ≥21 years) among full-time employees of Nanyang
Technological University (NTU) were recruited to participate
in the study from August to October 2019. Participants
responded to online questionnaires and wore activity trackers
for at least 14 days. Subjects received financial compensation
for participating in the study. The study protocol and informed
consent form were approved by the NTU Institutional Review
Board (application reference: RB-2016-03-033).

Fitbit Charge 2 devices—consumer-grade fitness trackers—were
used for data collection. The accuracy of Fitbit data has been
investigated in several studies [40-44]. According to a systematic
review [42], studies have consistently indicated that Fitbit
devices were likely to provide accurate measures of daily step
counts. However, energy expenditure is less accurately estimated
by Fitbit devices. In general, Fitbit wearables have similar
accuracy for activity assessment as research-grade devices, but
they overestimate moderate to vigorous physical activity in
free-living conditions. According to a recent meta-analysis,
sleep-staging Fitbit devices, such as the Charge 2, showed no
significant difference in measured values of WASO, TST, and
SE, but they slightly underestimated SOL in comparison to the
gold standard PSG [45]. Also sleep-stage transition dynamics
measured by Fitbit devices were found to be inaccurate
compared to PSG [46]. Participants were instructed to wear
trackers all the time and to remove them only when taking a
shower or charging. Data from trackers were synchronized with
the Fitbit mobile app and further transferred to the Fitabase
server.

Depression Screening and Self-reported Covariates
We used validated self-report questionnaires for depression
screening and to collect sociodemographic, lifestyle, and health
characteristics. REDCap (Research Electronic Data Capture),
the research-grade online survey platform, was used for survey
administration. The 9-item Patient Health Questionnaire
(PHQ-9) was used for depression screening. Participants
completed the PHQ-9 at the beginning and at the end of the
observation period. We used different cutoff points and
approaches to define provisionally depressed participants in the
analysis based on common standards and the actual distribution
of scores across two assessments. The average PHQ-9 score of
two assessments was used in statistical analysis.

We collected a range of covariates to control for possible
confounders. Demographics, including age, gender, ethnic group
(ie, Chinese, Malay, Indian, or other), marital status, education
(ie, university degree or below), and income level (ie, above or
below SGD 4000 [US $3000]), were collected. Additionally,
we collected data on alcohol consumption, smoking status, and
self-rated health. We assessed sleep characteristics, including
subjective sleep quality, using the Pittsburgh Sleep Quality
Index [47]; sleep hygiene using the Sleep Hygiene Index [48];
daytime sleepiness using the Epworth Sleepiness Scale [49];
and perceived loneliness using the revised UCLA (University
of California, Los Angeles) Loneliness Scale [50]. All covariates
were collected at the beginning of activity tracking.

Wearable Data Preprocessing
Fitbit devices measure steps; energy expenditure, measured in
metabolic equivalents (METs); and heart rate, measured in beats
per minute (bpm), and they identify sleep stages (ie, wake, light,
deep, or REM sleep). Steps and energy expenditure are available
at by-the-minute intervals, sleep stages are available at
30-second intervals, and heart rate data are available at 5- or
10-second intervals. We examined the completeness of the data
set using heart rate data to verify the actual device use time as
the most sensitive to inappropriate use or nonuse. Missing and
complete time points of heart rate data were determined from
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the full period of participant tracking within the study. Time
points of activity and sleep data corresponding to complete heart
rate data points were sampled and considered as clean data. We
used data from days with at least 20 hours of complete recording
for further analysis. Participants with a minimum of 10 complete
days were included for further analysis (see Multimedia
Appendix 1 for the distribution of complete days among
participants). Outliers were identified using the Tukey rule for
outliers—outliers are values more than 1.5 times the IQR from
the quartiles—either below the first quartile or above the third
quartile.

Extraction of Digital Biomarkers
We extracted a range of digital biomarkers characterizing
physical activity, sleep, circadian rhythms, and physiological
parameters from the raw data. This set of digital biomarkers
relied on previous findings and was substantially extended with
novel metrics hypothetically indicative of depressive symptoms
[15-18,20,21,24-26,30,32,34,36].

First, we extracted physical activity metrics based on steps and
energy expenditure data, including daily steps, time spent at
different intensity levels of physical activity, and sedentary
time. The daily durations of light, moderate, and vigorous
physical activity were determined according to the physical
activity guidelines of the US Centers for Disease Control and
Prevention [51], where moderate activity corresponds to energy
expenditures from 3.0 to 6.0 METs, vigorous activity is above
6.0 METs, and light physical activity is below 3.0 METs. We
sampled minutes within these intervals separately and calculated
the mean daily sum of these minutes. Sedentary time was
defined as any waking behavior with energy expenditure less
than 1.5 METs [52]. Hence, to determine sedentary time, we
excluded all sleep intervals and calculated a daily mean of total
minutes with ≤1.5 METs. Daily steps and sedentary time were
calculated for all days, and for weekdays and for weekends
separately.

Second, we extracted sleep metrics, including average values
and coefficients of variation (CVs) of time in bed, TST, SE,
SOL, and WASO. TST is the difference between the length of
time in bed and the length of wake time, and SE is the ratio of
TST to time in bed. SOL is the length of time in minutes until
the first minute of sleep onset from bedtime (ie, from the
beginning of a sleep episode). WASO was calculated as the
number of wake minutes in the middle half of a sleep episode
(ie, in the second and third quartiles of a sleep episode).
Additionally, we computed the mean and SD of sleep offset
and sleep midpoint time as measured in hours since midnight.
All sleep metrics were calculated for all days, and for weekdays
separately.

Third, we extracted cosinor-based and nonparametric measures
of circadian rhythms using steps and heart rate data. These
metrics were extracted based on data from all days and based
on weekdays only separately. Cosinor-based metrics were
estimated using the extended cosinor model with antilogistic
transformation and included mesor, acrophase, amplitude,
pseudo-F statistic, and α and β parameters. Nonparametric
measures included IS, IV, interdaily coefficient of variation
(ICV), diurnal activity level (mean activity of the 10 consecutive

most active hours of the day [M10]), nocturnal activity level
(mean value of the 5 consecutive least active hours of the day
[L5]), and RA. In addition, we calculated lagged autocorrelation
and peak detection–based metrics. Mesor is a rhythm-adjusted
mean value that estimates central tendency of the distribution
of an oscillating variable, with lower values indicating reduced
activity levels [53]. Acrophase is the time of day of the cosine
curve peak. Amplitude is the difference between the peak value
of the curve and mesor, where lower amplitude indicates a more
dampened rhythm. The pseudo-F statistic is the goodness-of-fit
estimate of the fitted model, which indicates so-called robustness
of the rhythm. α is the relative width of the curve at the middle
of the peak, and β is an indicator of the steepness of the rise and
fall of the curve.

IS is a measure of stability and regularity of activity patterns
across a series of 24-hour cycles and is calculated as the ratio
of variance of the average 24-hour activity profile to the total
variance of data aggregated by the hour from all days [54].
Higher IS indicates more stable, more regular circadian rhythm:

where N is the total number of data points, p is the number of
data points per day (24 in this case), xh represents values of each
hour from the mean 24-hour profile, xi represents each given

hour of raw data, and is the mean of all data.

IV quantifies the fragmentation of rest and activity periods
within a 24-hour cycle and is calculated as the mean square of
differences between successive hourly aggregated data
normalized by the total variance of all days [54]. Higher IV
indicates a more fragmented rhythm and reflects shorter
alternating periods of rest and activity rather than one extended
active period and one extended rest period:

where N is the total number of data points, xi represents the

value of a given hour, and is the mean of all data.

RA reflects the difference between the most and the least active
periods and is calculated as the difference between M10 and
L5 divided by sum of M10 and L5, where higher values show
greater amplitude:

ICV is a novel rhythm stability measure and is calculated as the
24-hour mean of CVs, which is the ratio of the SD to the mean
in each hour between days. A higher coefficient indicates higher
variation and less stable rhythm. We proposed this metric as an
alternative to IS, which aims to assess the same phenomena
with a different approach:
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where p is the number of data points per day (24 in this case;
data are aggregated by the hour), xi represents values
corresponding to each hour from all days, xh represents values
of each hour from the mean 24-hour profile, and N is the number
of days.

Autocorrelation is another measure of rhythm stability,
calculated as the lagged autocorrelation of time series.
Autocorrelation was calculated for time series aggregated into
15-minute, 30-minute, and 60-minute intervals with a day-length
lag:

where AC is autocorrelation, k is the day-length lag (eg, 24 if
data are aggregated by the hour), xi represents values of each

interval, is the mean of all data, and N is total number of data
points.

We applied the robust peak-detection algorithm based on z
scores to times series to identify peaks in steps and heart rate
data [55]. We calculated the daily mean number of peaks and
SD.

Finally, extracted heart rate–based metrics included the overall
average heart rate, resting heart rate (RHR), delta heart rate,
daytime and nighttime heart rate, a variation of these measures
using SD and CV, and the root mean square of successive
differences (RMSSD) of heart rate. RHR was calculated as the
average heart rate for 15-minute intervals with zero steps.
Daytime heart rate was obtained by averaging heart rate values
between 2 PM and 4 PM, whereas nighttime heart rate was
obtained by averaging values sampled from three consecutive
2-hour intervals: 12 AM to 2 AM, 2 AM to 4 AM, and 4 AM
to 6 AM. Unlike daytime heart rate, nighttime heart rates were
sampled from more time intervals because nocturnal
physiological processes seemed to be more sensitive to
depression [56]. We calculated SDs and CVs for all heart rates.
Delta heart rate is the difference between average heart rate and
RHR. RMSSD values of heart rate were calculated from raw
data and from data aggregated into hourly intervals.

In total, we extracted 126 digital biomarkers. The full list of
digital biomarkers with detailed descriptions is presented in
Multimedia Appendix 2.

Statistical Analysis and Predictive Modeling With
Machine Learning
Spearman rank correlation was used to evaluate the strength of
associations between digital biomarkers and severity of
depressive symptoms. The false discovery rate (FDR) was used
for multiple testing correction of P values [57]. A multiple
hierarchical linear regression was used to determine the strength
of association between digital biomarkers and severity of
depressive symptoms adjusted for covariates, including
sociodemographics, alcohol consumption, smoking, self-rated
health, subjective sleep characteristics, and loneliness.

Next, we trained a series of supervised machine learning models
predicting symptom severity and depression screening status
of participants (ie, depressed or healthy) to evaluate the

predictive ability of digital biomarkers identified at the previous
step of statistical analysis. Digital biomarkers were selected
based on Spearman correlation at different levels of significance,
including P<.01, P<.05, and P values between .01 and .05.
Extreme gradient boosting algorithm (DART [Dropouts meet
Multiple Additive Regression Trees]) was used for model
training, as it was the most efficient method in similar studies
[33,37,58]. For performance evaluation of the symptom severity
prediction model, we used repeated k-fold cross-validation with

4 folds and 25 repeats and obtained R2, mean absolute error
(MAE), and root mean square error (RMSE) for holdout folds.
For evaluation of the model predicting depression screening
status, we used k-fold cross-validation with 4 folds and 25
repeats and obtained accuracy, sensitivity, specificity, positive
predictive value, negative predictive value, Cohen κ, and area
under the curve (AUC). The k-fold cross-validation was used
as an alternative to performance evaluation with the testing set,
which is usually between 20% and 30% of a sample and,
therefore, using 4-fold cross-validation corresponds to 25% of
a sample in holdout folds for performance evaluation. Relative
feature importance, which indicates the contribution of each
predictor in the overall improvement of classification accuracy
across all decision trees, was reported. We used RStudio from
R (version 3.6.0; The R Foundation) for all analyses. R scripts
for feature extraction and statistical analyses are available in
Multimedia Appendix 3.

Results

Characteristics of the Data and Participants
We collected 5180 days of observational data in total, or 17
days and 20 hours per participant, on average. The mean
compliance with wearing the activity tracker among participants
within the observation period was 84.8% (SD 10.4), whereas
the total fraction of complete data was 84.0% (6,265,469
minutes of complete data from 5180 days). A total of 77.7%
(4025/5180) of days contained at least 20 hours of complete
data; however, only 277 participants out of 290 (95.5%) had at
least 10 days with enough data (see Table S1 in Multimedia
Appendix 1). Thus, 5,464,248 minutes of complete data from
3948 days in total (83.7%) were included for further analysis,
and 801,221 minutes of complete data (12.8%) were discarded.
Further, we identified and excluded outliers: 1 participant was
excluded due to outlying heart rate, 4 participants were excluded
due to exceeding average steps, and another 5 participants were
excluded due to insufficient sleep data with less than three nights
on weekdays. The final sample comprised of 267 participants
with 14 days of tracking data, on average; the participant
flowchart is presented in Multimedia Appendix 4.

The mean age of the participants was 33 (SD 8.6, range 21-64)
years. Out of 267 participants, a mild female bias was displayed
(n=170, 63.7%). The majority of the participants were Chinese
(n=211, 79.0%), single (n=163, 61.0%), with a university degree
(n=238, 89.1%), and with a monthly income below SGD 4000
(US $3000; n=154, 57.7%). Only 15 participants (5.6%) were
current smokers, while 158 participants (59.2%) reported
drinking alcohol. Finally, most participants rated their health
as “good” (n=124, 46.4%) or “very good” (n=105, 39.3%);
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fewer participants rated their health as “fair” (n=21, 7.9%) and
the lowest number of participants felt that their health was
“excellent” (n=17, 6.4%). The mean step count was 10,252 (SD
2822) steps per day and the mean heart rate was 74 (SD 7.1)

bpm. Figure 1 shows the smoothed 24-hour daily profile of
heart rate and steps averaged in 1-hour windows in the study
sample. Table 1 summarizes the characteristics of the
participants.

Figure 1. Average 24-hour profiles of heart rate and steps measured by the wearable activity tracker. The purple and orange lines represent the means
and the gray shaded areas represent the SDs. bpm: beats per minute.
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Table 1. Sociodemographic characteristics, self-reported health outcomes, and basic wearable metrics of participants.

Value (N=267)Participant characteristics

32.8 (8.6)Age (years), mean (SD)

Gender, n (%)

97 (36.3)Male 

170 (63.7)Female 

Ethnicity, n (%)

211 (79.0)Chinese 

22 (8.2)Indian 

10 (3.7)Malay 

24 (9.0)Other 

Marital status, n (%)

104 (39.0)Married 

163 (61.0)Single 

Education, n (%)

238 (89.1)University degree 

29 (10.9)Below university degree 

Monthly income (SGDa), n (%)

154 (57.7)<4000 

113 (42.3)≥4000 

Alcohol consumption, n (%)

109 (40.8)No 

158 (59.2)Yes 

Smoking, n (%)

15 (5.6)Current smoker 

252 (94.4)Nonsmoker 

Overall self-rated health, n (%)

21 (7.9)Fair 

105 (46.4)Good 

124 (39.3)Very good 

17 (6.4)Excellent 

16.9 (5.7)Sleep Hygiene Index score, mean (SD)

5.4 (2.7)Pittsburgh Sleep Quality Index score, mean (SD)

7.2 (4.2)Daytime sleepiness score (ESSb), mean (SD)

37.8 (9.8)Loneliness score (UCLAc Loneliness Scale), mean (SD)

14.2 (2.1)Complete actigraphy days, mean (SD)

10,252 (2822)Steps per day, mean (SD)

74.4 (7.1)Heart rate (beats per minute), mean (SD)

aA currency exchange rate of SGD 1=US $0.75 is applicable.
bEpworth Sleepiness Scale.
cUCLA: University of California, Los Angeles.

Table 2 and Figure 2 display the distribution of PHQ-9 scores
across two assessments and show the change in scores over a
2-week period. PHQ-9 scores are highly and linearly correlated

(r=0.73, P<.001), showing that the change in depressive
symptoms over time is quite smooth and gradual rather than
quick and sharp. However, participants experienced an overall
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decrease in depressive symptoms over time; for example, 20
participants with moderate (score 10-14) depressive symptoms
at the first assessment shifted to the mild range (score 5-9) at
the second assessment, while just 5 participants with mild
symptoms at the first assessment appeared to have moderate
symptoms at the second assessment. Figure 2 shows the same
trend. Hence, using the widely adopted cutoff score of ≥10 for
both assessments significantly reduced the prevalence rate of
depressed participants: only 8 participants had PHQ-9 scores
of ≥10 at both assessments. Given that the overall change in
symptom severity is gradual, we used less strict criteria and
defined a participant as provisionally depressed if he or she
scored 10 at one or both assessments and was otherwise healthy.

Having a PHQ-9 score of ≥10 at any time point means that the
score at an adjacent time point is likely to be comparable in
magnitude. In total, 38 out of 267 (14.2%) participants had
PHQ-9 scores of ≥10 at either of the two assessments and were
identified as depressed. In addition, we used alternative cutoff
points to define depression in participants. First, a meta-analysis
by Manea et al [59] showed that a PHQ-9 cutoff score of ≥8
also has acceptable screening properties; in our sample, there
were 22 (8.2%) participants who had scores of ≥8 at both
assessments. Second, given the linearity of PHQ-9 change over
time, we used an average PHQ-9 score of ≥8 as another criterion;
42 (15.7%) participants had an average PHQ-9 score ≥8.

Table 2. The distribution of PHQ-9 scores across two assessments.

Participants within each category of PHQ-9 scores at the second assessment (N=267), n (%) PHQ-9a score at the first assessment

TotalModerately severe:

score of ≥15

Moderate:

score of 10-14

Mild:

score of 5-9

Normal:

score of 0-4

157 (58.8)0 (0)0 (0)14 (5.2)143 (53.6)Normal: score of 0-4

77 (28.8)0 (0)5 (1.9)40 (15.0)32 (12.0)Mild: score of 5-9

29 (10.9)1 (0.4)5 (1.9)20 (7.5)3 (1.1)Moderate: score of 10-14

4 (1.5)0 (0)2 (0.7)1 (0.4)1 (0.4)Moderately severe: score of ≥15

267 (100)1 (0.4)12 (4.5)75 (28.0)179 (67.0)Total

aPHQ-9: 9-item Patient Health Questionnaire.

Figure 2. Scatterplot of 9-item Patient Health Questionnaire (PHQ-9) scores at two assessments (T1 and T2). The blue line is the linear projection of
the relationship between two scores with CIs and the dashed diagonal line represents no change in scores between two assessments.

Associations Between Digital Biomarkers and
Depressive Symptoms
Correlation analysis revealed that 36 digital biomarkers were
significantly associated with the average PHQ-9 score—absolute
coefficients of Spearman rank correlation were weak and varied
from 0.12 to 0.26—and only 17 of them remained significant

predictors after the FDR correction (Table 3). Severity of
depressive symptoms was correlated to variation in nighttime
heart rate in several time intervals, regularity of circadian
rhythms measured with nonparametric and cosinor measures,
daily peaks, and timing and variation in sleep offset and
midpoint. Physical activity metrics were not associated with
PHQ-9 scores.
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Table 3. Correlation between digital biomarkers and 9-item Patient Health Questionnaire scores.

Adjusted P valueaP valueSpearman rank correlation coefficientCategory and digital biomarkers

Heart rate metrics

.18.0470.121DHRb.cvc

.001<.0010.262NHRd.0204.sde

.001<.0010.257NHR.0204.cv

.04.0030.182NHR.0406.sd

.04.0020.185NHR.0406.cv

.08.010.149NHR.0002.sd

.11.020.138NHR.0002.cv

Circadian rhythm metrics: nonparametric

.049.007–0.165ISf.stg.wdh

.02.001–0.199IS.hri.wd

.15.04–0.125ACj.st.60mk

.04.004–0.175AC.st.15m

.07.01–0.155AC.st.30m

.06.009–0.159AC.st.60m.wd

.04.004–0.177AC.st.15m.wd

.04.004–0.177AC.st.30m.wd

.08.01–0.150AC.hr.60m.wd

.08.02–0.144AC.hr.30m.wd

.04.0040.176ICVl.st.wd

.04.0040.177ICV.hr

.004<.0010.237ICV.hr.wd

.02<.001–0.205peaks.st

.02<.001–0.202peaks.st.wd

Circadian rhythm metrics: cosinor based

.12.030.133acrom.st

.17.046–0.121F.st.wd

.04.0060.169beta.hr

.09.020.146acro.hr

.15.04–0.126F.hr

.15.040.126beta.hr.wd

.07.010.154acro.hr.wd

.11.03–0.137F.hr.wd

Sleep metrics

.09.020.144sleep.offset

.04.0050.172sleep.midpoint

.12.030.134sleep.offset.wd

.02.0010.199sleep.offset.wd.sd

.09.020.146sleep.midpoint.wd

.09.020.146sleep.midpoint.wd.sd
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aP values were adjusted for multiple testing correction. Only significant associations were reported.
bDHR: daytime heart rate between 2 PM and 4 PM.
ccv: coefficient of variation.
dNHR: nighttime heart rate in a specified 2-hour time interval; 2 AM-4 AM (0204), 4 AM-6 AM (0406), and 12 AM-2 AM (0002).
esd: standard deviation.
fIS: interdaily stability.
gst: steps based.
hwd: weekdays based.
ihr: heart rate based.
jAC: autocorrelation.
km: minutes; 15-minute, 30-minute, or 60-minute time interval in which raw data were aggregated.
lICV: interdaily coefficient of variation.
macro: acrophase.

Further linear regression analysis showed that 11 digital
biomarkers—seven nonparametric measures of weekday
circadian rhythm regularity, based on steps and heart rate, and
four metrics of heart rate variation at nighttime intervals—were
significantly associated with severity of depressive symptoms
independent of sociodemographic confounders, including age,
gender, ethnicity, marital status, education, and income levels
(see Table S2 in Multimedia Appendix 1). Only three digital
biomarkers—weekday steps–based IS, autocorrelation (based
on 15-minute intervals), and CV of heart rate between 4 AM
and 6 AM—were consistently associated with symptom severity
independent of all confounders, which additionally included
alcohol consumption, smoking, self-rated health, loneliness,
and subjective sleep characteristics (Table 4). Weekday

steps–based IS and autocorrelation were negatively associated
with PHQ-9 scores (for IS in the fully adjusted model: β=−0.30
per 10% change, 95% CI −0.51 to −0.08, P=.01; for
autocorrelation: β=−0.38 per 10% change, 95% CI −0.75 to
−0.01, P=.04), so participants with lower stability of circadian
activity rhythms had more severe symptoms. Heart rate variation
between 4 AM and 6 AM was positively associated with PHQ-9
scores (β=0.90 per 10% change, 95% CI 0.04-1.78, P=.04),
where a greater magnitude of heart rate variation indicated
higher PHQ-9 scores. This digital biomarker correlated to
depressive symptoms independent of sleep offset time, which
might cause greater variation (Table S3 in Multimedia Appendix
1).
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Table 4. Coefficients of multiple regression analysis for digital biomarkers and 9-item Patient Health Questionnaire (PHQ-9) scores. Fully adjusted
models.

P valueβa (95% CI)Predictor

Model 1

.009–2.974 (–5.202 to –0.747)Digital biomarker: IS.st.wdb

<.001–0.114 (–0.163 to –0.064)Age

.62–0.165 (–0.811 to 0.481)Gender (male)

.59–0.297 (–1.393 to 0.798)Ethnic group (Indian)

.96–0.036 (–1.629 to 1.556)Ethnic group (Malay)

.061.012 (–0.021 to 2.045)Ethnic group (others)

.08–0.633 (–1.341 to 0.076)Marital status (single)

.06–1.023 (–2.079 to 0.034)Education level (university degree)

.430.283 (–0.422 to 0.988)Monthly income level (SGD 4000c and above)

.53–0.201 (–0.834 to 0.433)Alcohol consumption (yes)

.25–0.768 (–2.075 to 0.54)Smoking status (nonsmoker)

.071.528 (–0.103 to 3.159)Self-rated health (fair)

.340.597 (–0.631 to 1.824)Self-rated health (good)

.97–0.026 (–1.246 to 1.194)Self-rated health (very good)

<.0010.094 (0.062 to 0.127)UCLA (University of California, Los Angeles) Loneliness Scale score

.0080.082 (0.022 to 0.143)Sleep Hygiene Index (SHI) score

<.0010.362 (0.227 to 0.496)Pittsburgh Sleep Quality Index (PSQI) score

.110.06 (–0.014 to 0.134)Epworth Sleepiness Scale (ESS) score

.063.407 (–0.167 to 6.98)Intercept

Model 2

.04–3.843 (–7.567 to –0.119)Digital biomarker: AC.st.15m.wdd

<.001–0.113 (–0.163 to –0.063)Age

.85–0.063 (–0.712 to 0.586)Gender (male)

.73–0.19 (–1.285 to 0.904)Ethnic group (Indian)

.96–0.038 (–1.64 to 1.563)Ethnic group (Malay)

.031.126 (0.09 to 2.162)Ethnic group (others)

.08–0.635 (–1.348 to 0.077)Marital status (single)

.051–1.056 (–2.12 to 0.007)Education level (university degree)

.390.309 (–0.402 to 1.02)Monthly income level (SGD 4000 and above)

.48–0.229 (–0.87 to 0.413)Alcohol consumption (yes)

.27–0.741 (–2.056 to 0.573)Smoking status (nonsmoker)

.061.574 (–0.066 to 3.213)Self-rated health (fair)

.340.604 (–0.631 to 1.838)Self-rated health (good)

.96–0.031 (–1.259 to 1.196)Self-rated health (very good)

<.0010.092 (0.059 to 0.124)UCLA Loneliness Scale score

.0030.091 (0.031 to 0.151)SHI score

<.0010.351 (0.216 to 0.486)PSQI score

.110.062 (–0.013 to 0.136)ESS score

.152.526 (–0.921 to 5.973)Intercept
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P valueβa (95% CI)Predictor

Model 3

.049.096 (0.333 to 17.859)Digital biomarker: NHR.0406.cve

<.001–0.114 (–0.164 to –0.064)Age

.47–0.246 (–0.909 to 0.416)Gender (male)

.74–0.188 (–1.282 to 0.907)Ethnic group (Indian)

.81–0.193 (–1.802 to 1.415)Ethnic group (Malay)

.060.985 (–0.058 to 2.028)Ethnic group (others)

.07–0.661 (–1.373 to 0.051)Marital status (single)

.13–0.837 (–1.913 to 0.238)Education level (university degree)

.400.301 (–0.409 to 1.011)Monthly income level (SGD 4000 and above)

.76–0.1 (–0.736 to 0.536)Alcohol consumption (yes)

.28–0.72 (–2.035 to 0.595)Smoking status (nonsmoker)

.031.811 (0.166 to 3.456)Self-rated health (fair)

.230.763 (–0.479 to 2.005)Self-rated health (good)

.730.215 (–1.026 to 1.457)Self-rated health (very good)

<.0010.091 (0.059 to 0.124)UCLA score

.0010.103 (0.043 to 0.163)SHI score

<.0010.332 (0.195 to 0.47)PSQI score

.110.061 (–0.013 to 0.135)ESS score

.740.598 (–2.891 to 4.088)Intercept

aUnstandardized coefficients (β) with their 95% CIs and exact P values of digital biomarkers are reported as predictors of PHQ-9 scores in multiple
regression models.
bIS.st.wd: steps-based interdaily stability on weekdays.
cA currency exchange rate of SGD 1=US $0.75 is applicable.
dAC.st.15m.wd: steps-based autocorrelation with weekday data aggregated into 15-minute intervals.
eNHR.0406.cv: coefficient of variation of nighttime heart rate between 4 AM and 6 AM.

Depression Screening Using Digital Biomarkers and
Machine Learning
The performance of the symptom severity prediction models
was evaluated using the whole data set of 267 participants. The
range of mean correlations between actual and predicted PHQ-9

scores across trained models was 0.14 to 0.27 (R2=0.03-0.08),
the range of mean RMSE was 3.10 to 3.20, and the range of
average MAE in holdout samples was 2.54 to 2.63 (Table 5,

models A1-C1). Adding sociodemographic characteristics did
not substantially improve performance (Table 5, models A2-C2).
However, applying more conservative feature selection criteria,
including digital biomarkers most correlated to the outcome,
showed relatively better results compared to the less
conservative criteria and including digital biomarkers less
correlated to the outcome. The selected digital biomarkers are
presented in Table 3 and listed in Table S4 in Multimedia
Appendix 1.
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Table 5. Performance of symptom-severity prediction model.

Mean absolute error, mean (SD)Root mean square error, mean (SD)Pearson correlation, mean (SD)R2, mean (SD)Model (feature set)

2.57 (0.15)3.12 (0.22)0.23 (0.09)0.06 (0.04)A1a

2.58 (0.15)3.14 (0.22)0.22 (0.09)0.06 (0.04)B1b

2.63 (0.14)3.20 (0.21)0.14 (0.08)0.03 (0.03)C1c

2.54 (0.16)3.10 (0.22)0.27 (0.09)0.08 (0.05)A2d

2.57 (0.15)3.12 (0.22)0.24 (0.09)0.06 (0.04)B2d

2.60 (0.13)3.16 (0.20)0.18 (0.08)0.04 (0.03)C2d

aModel A1 includes digital biomarkers selected at a significance level of <.01.
bModel B1 includes digital biomarkers selected at a significance level of <.05.
cModel C1 includes digital biomarkers selected at a significance level of <.05 and ≥.01.
dModels A2, B2, and C2 additionally include sociodemographic characteristics: age, gender, ethnic group, and marital status.

Next, we trained models for classification of the outcome of
depression screening using different PHQ-9 score cutoff points
to determining which participants were depressed or healthy.
For the default cutoff point (ie, either baseline or follow-up
PHQ-9 score of ≥10), the accuracy of the models in holdout
folds was 86% (equal to the no information rate 86%), the
sensitivity range was 3% to 13%, the specificity range was 98%
to 100%, and the AUC range was 0.51 to 0.66 (Table 6, models
A1-C1). Adding sociodemographic characteristics did not
improve classification accuracy (Table 6, models A2-C2).
However, applying more conservative feature selection criteria,
including digital biomarkers most correlated to the outcome,
showed relatively better results compared to the less
conservative criteria and including digital biomarkers less
correlated to the outcome.

For the second cutoff point option (ie, both baseline and
follow-up PHQ-9 scores of ≥8), the accuracy of the models in

holdout folds was 92% (no information ratio 92%), the
sensitivity range was 0% to 5%, the specificity was 100%, and
the AUC range was 0.54 to 0.67 (Table 6). Finally, for the third
cutoff point option (ie, average PHQ-9 score of ≥8), the accuracy
range of the models in holdout folds was 85% to 87% (no
information ratio 84%), the sensitivity range was 2% to 24%,
the specificity range was 97% to 100%, and the AUC range was
0.62 to 0.74 (Table 6). Thus, the performance of models
classifying the outcome of depression screening was relatively
better when the third cutoff point was applied.

In general, the accuracy of models predicting severity of
depressive symptoms and depression screening status based on
digital biomarkers in the whole sample was poor, probably
indicating a significant heterogeneity of data within groups of
depressed and healthy participants.
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Table 6. Performance of the prediction models of depression screening status for different cutoff points and varying sets of selected digital biomarkers.

AUCcκNPVbPPVaSpecificitySensitivityAccuracyNo information rateOutcome cutoff point and model (feature set)

PHQ-9d score of ≥10 at assessment 1 or 2 (n=38 in depressed group)

0.660.070.860.500.990.050.860.86A1e

0.630.040.860.501.000.030.860.86B1f

0.510.040.861.001.000.030.860.86C1g

0.640.040.860.501.000.030.860.86A2h

0.640.170.870.560.980.130.860.86B2h

0.610.080.860.671.000.050.860.86C2h

PHQ-9 score of ≥8 at assessment 1 or 2 (n=22 in depressed group)

0.640.080.921.001.000.050.920.92A1

0.540.000.92N/Ai1.000.000.920.92B1

0.560.080.921.001.000.050.920.92C1

0.670.080.921.001.000.050.920.92A2

0.580.000.92N/A1.000.000.920.92B2

0.620.080.921.001.000.050.920.92C2

PHQ-9 average score of ≥8 (n=42 in depressed group)

0.700.160.860.630.990.120.850.84A1

0.670.230.870.570.970.190.850.84B1

0.620.040.851.001.000.020.850.84C1

0.740.310.870.770.990.240.870.84A2

0.700.210.860.640.980.170.850.84B2

0.620.120.851.001.000.070.850.84C2

aPPV: positive predictive value.
bNPV: negative predictive value.
cAUC: area under the curve.
dPHQ-9: 9-item Patient Health Questionnaire.
eModel A1 includes digital biomarkers selected at a significance level of <.01.
fModel B1 includes digital biomarkers selected at a significance level of <.05.
gModel C1 includes digital biomarkers selected at a significance level of <.05 and ≥.01.
hModels A2, B2, and C2 additionally include sociodemographic characteristics: age, gender, ethnic group, and marital status.
iN/A: not applicable, due to division by zero.

Detecting Individuals at High Risk of Depression
Against Those With No Risk
We retrained models using random downsampling of healthy
participants from the lowest range of PHQ-9 scores (0-4) to
address the class imbalance in our data and to increase the
contrast between compared groups, similar to Sano et al [39].
We believe that excluding participants with midrange (ie,
borderline) PHQ-9 scores results in the larger difference between
groups and, therefore, increases the discriminatory power of
digital biomarkers. We excluded participants with zero scores
(n=24) due to concerns in honesty of their responses to minimize
the bias in self-reported outcome. We used three contrasted
subsamples varying by the PHQ-9 cutoff points determining
the depressed group similar to the classification in the whole

sample; additionally, we used the contrasted subsample
comprised of the top 20% and the bottom 20% of participants
by average PHQ-9 scores. For the default cutoff point (ie, either
baseline or follow-up PHQ-9 score of ≥10), the contrasted
sample included 78 participants (38 depressed and 40 healthy);
for the second cutoff point (ie, both baseline and follow-up
PHQ-9 scores of ≥8), the contrasted sample included 44
participants (22 depressed and 22 healthy); and for the third
cutoff point (ie, average PHQ-9 scores of ≥8), the contrasted
sample included 84 participants (42 depressed and 42 healthy).
Finally, the fourth subsample included 96 participants (48
depressed and 48 healthy), where the range of PHQ-9 scores
for the healthy group was 0.5 to 1.5 and for the depressed group
was 7.5 to 14. Subsamples mainly did not differ from the whole
sample in terms of sociodemographic characteristics, with two
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exceptions: the second subsample had a slightly younger age,
and the fourth subsample did not have a gender bias (see Tables
S5 to S8 in Multimedia Appendix 1).

Importantly, feature selection for these models was done using
the entire sample (ie, selected digital biomarkers were based on
statistical associations found in the entire sample, not in
subsamples, and remained the same for all models). Otherwise,
if feature selection is done each time for a new subsample with
a different cutoff point, sets of digital biomarkers would be
arbitrary and would vary depending on a particular sample
composition. This allows us to mitigate overgeneralization that
is possible in skewed samples, because models were trained
with digital biomarkers inferred from the entire sample. For
performance evaluation of these models, we used stratified
repeated cross-validation with 4 folds and 25 repeats.

Similar to the previous step of modeling, using more
conservative feature selection criteria consistently resulted in
better performance compared to the less conservative criteria.
The best model was based on the contrasted subsample with
default cutoff point (ie, either baseline or follow-up PHQ-9
score of ≥10) and has correctly predicted the depression
screening status in 80% of participants from holdout folds, with

a sensitivity of 82% and a specificity of 78% (Table 7 and Figure
3, A and B). Alternatively, the model based on the subsample
comprised of the top 20% and bottom 20% of participants by
average PHQ-9 score achieved the highest AUC of 0.8, and had
accuracy, sensitivity, and specificity values of 77% each (Table
7 and Figure 3, C and D). Additionally, using the contrasted
subsample with the top 20% and bottom 20% of participants,
we trained models without statistical feature selection but with
different feature subsets varying by categories (ie, activity
metrics, nonparametric circadian rhythm metrics, cosinor-based
metrics, heart rate metrics, and sleep metrics). Among these
models, the model with heart rate metrics had the best accuracy,
sensitivity, and AUC—70%, 71%, and 72%, respectively—and
the model with nonparametric circadian rhythm metrics had the
best specificity of 76% (see Table S9 in Multimedia Appendix
1); however, models with correlation-based feature selection
outperformed all of these models.

Relative importance of digital biomarkers was extracted and
averaged from the best models (model A from Table 7) for each
of four contrasted subsamples (Figure 4). The scatterplots in
Figure 5 illustrate how different combinations of digital
biomarkers can discriminate between provisionally depressed
and healthy participants in the contrasted sample.

Table 7. Performance of the prediction of depression screening status in contrasted subsamples.

AUCcκNPVbPPVaSpecificitySensitivityAccuracyNo information rateContrasted subsample and model (feature set)

PHQ-9d score of ≥10 at assessment 1 or 2 (n=78)

0.750.590.820.780.780.820.800.51Ae

0.740.540.790.750.750.790.770.51Bf

0.700.410.730.680.680.740.710.51Cg

PHQ-9 score of ≥8 at assessment 1 or 2 (n=44)

0.710.410.710.700.680.730.710.50A

0.680.410.740.680.640.770.710.50B

0.640.410.710.700.680.730.710.50C

PHQ-9 average score of ≥8 (n=84)

0.760.550.780.770.760.790.770.50A

0.710.430.710.710.710.710.710.50B

0.570.210.620.600.570.640.610.50C

Top 20% and bottom 20% by average PHQ-9 score (n=96)

0.800.540.770.770.770.770.770.50A

0.760.480.740.750.750.730.740.50B

0.620.290.640.650.670.630.650.50C

aPPV: positive predictive value.
bNPV: negative predictive value.
cAUC: area under the curve.
dPHQ-9: 9-item Patient Health Questionnaire.
eModel A includes digital biomarkers selected at a significance level of <.01.
fModel B includes digital biomarkers selected at a significance level of <.05.
gModel C includes digital biomarkers selected at a significance level of <.05 and ≥.01.
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Figure 3. A and B. Performance evaluation of model A based on the contrasted subsample with default cutoff point (ie, either baseline or follow-up
PHQ-9 score of ≥10). A. Confusion matrix of predicted and observed outcomes. B. Area under the curve (AUC) with 95% CI. C and D. Performance
evaluation of model A based on the contrasted subsample comprised of the top 20% and bottom 20% of participants by average PHQ-9 score. C.
Confusion matrix of predicted and observed outcomes. D. AUC with 95% CI. PHQ-9: 9-item Patient Health Questionnaire.

Figure 4. Relative importance of digital biomarkers averaged from four models. 15m, 30m, and 60m: 15- , 30-, and 60-minute time interval in which
raw data were aggregated; AC: autocorrelation; cv: coefficient of variation; hr: heart rate based; ICV: interdaily coefficient of variation; IS: interdaily
stability; NHR: nighttime heart rate in a specified 2-hour time interval (0204: 2 AM-4 AM; 0406: 4 AM-6 AM); sd: standard deviation; st: steps based;
wd: weekdays based.
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Figure 5. Digital biomarkers of depressed and healthy participants. All scatterplots show the contrasted subsample with the default cutoff point. Red
dots represent depressed participants and blue dots represent healthy participants; the background coloring represents a decision boundary of linear
discriminant analysis. A. IS.st.wd: weekday steps–based interdaily stability; NHR.0406.cv: variation of heart rate between 4 AM and 6 AM. B. peaks.st:
daily steps–based peaks; NHR.0406.cv: variation of heart rate between 4 AM and 6 AM. C. ICV.hr.wd: interdaily coefficient of variation of heart rate
on weekdays; AC.st.15m.wd: autocorrelation of weekday steps–based rhythm (steps aggregated in 15-minute intervals). D. ICV.hr.wd/peaks.st: interdaily
coefficient of variation of heart rate on weekdays divided by daily steps–based peaks; IS.st.wd/NHR.0406.cv: weekday steps–based interdaily stability
divided by variation of heart rate between 4 AM and 6AM.

Discussion

Principal Findings
In this study, using statistical analysis and machine learning,
we demonstrated that some known and novel digital biomarkers
based on behavioral and physiological data from consumer
wearables could indicate increased risk of depression in a
multiethnic working population. We found that greater severity
of depressive symptoms was robustly associated with greater
variation of nighttime heart rate between 4 AM and 6 AM; it
was also associated with lower regularity of weekday circadian
activity rhythms based on steps and measured with
nonparametric measures of IS and autocorrelation. Effects of
these digital biomarkers on symptom severity were stable and
independent of all confounders including strong predictors of
depression, such as sleep quality and loneliness. Additionally,
we found that lower regularity of heart rate circadian rhythm,
fewer steps-based daily peaks, greater steepness of the heart
rate rhythm curve, later sleep midpoint, and greater variation
of sleep offset time were associated with a greater severity of
depressive symptoms, yet these associations were less reliable
and became nonsignificant in regression models with covariates.
Despite several reliable associations, our evidence showed
limited ability of digital biomarkers to detect depression in the
whole sample of working adults. However, in balanced and

contrasted subsamples comprised of provisionally depressed
participants and healthy participants with no risk of depression,
the model achieved an accuracy of 80%, a sensitivity of 82%,
and a specificity of 78% in detecting subjects at high risk of
depression. Similar performance has been achieved across all
models trained using alternative contrasted subsamples. Thus,
predictive models based on a combination of these digital
biomarkers could quite accurately discriminate individuals with
a high risk of depression from individuals with no risk.

Comparison With Previous Research
We compared our study to research investigating relationships
between specific actigraphy metrics and depressive disorder.
Firstly, regarding circadian rhythm metrics, we found that a
lower steps-based weekday IS—a nonparametric measure of
rhythm regularity—was robustly associated with a greater
severity of depressive symptoms independent of confounders,
supporting and extending existing evidence [31,60], including
one large-sample study [34]. However, there are several studies
that did not find IS to be related to depressive symptoms or
other mental disorders [27,35,36]. In support of this association,
we also found steps-based autocorrelation during weekdays—a
complementary and alternative nonparametric measure of
rhythm regularity—to be robustly correlated to symptom
severity independent of all confounders. Rhythm stability
metrics based on heart rate were also correlated to severity of
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depressive symptoms, yet these associations became
nonsignificant in fully adjusted regression models. Likewise,
among cosinor-based metrics, our data indicated lower pseudo-F
statistic values and later acrophase, both based on steps and
heart rate, in participants with more severe symptoms, which
is consistent with existing evidence [22,23,25,26,29,30], yet
these correlations became nonsignificant after the FDR
correction and in multiple regression analysis. Perhaps this
supports the advantage of nonparametric indicators over
cosinor-based metrics, where the former appear more robust
and sensitive to indicate depressive symptomatology in
nonclinical samples. In general, results of our study together
with previous evidence demonstrated that people with more
severe depressive symptoms tended to have less stable circadian
activity rhythms.

There are several key novel approaches regarding circadian
rhythm analysis in our study. First, we used step counts and
heart rate data from consumer wearables instead of “activity
counts”—a measure of total linear acceleration—from
research-grade devices commonly used in other studies. There
are few studies that used alternative source data for circadian
rhythm analysis; for example, heart rate [32] or skin temperature
[36]. Second, we analyzed weekday circadian rhythms separately
that were found to be stronger predictors rather than rhythms
based on all days. Although weekday rhythm is mainly
determined by work routine, the ability to adherently follow
this routine better discriminates between depressed and healthy
individuals, where healthy people demonstrated a greater
regularity. Third, we showed the value of novel rhythm stability
metrics—autocorrelation and ICV—as risk markers of
depression. Finally, we first showed that a greater severity of
depressive symptoms was associated with a fewer steps-based
daily peaks, which perhaps reflects fewer distinct activities
happening over a day, indicating a diagnostic symptom of
anhedonia (ie, loss of interest in activities).

Secondly, our findings suggest that a greater variation of
nighttime heart rate between 2 AM and 4 AM and between 4
AM and 6 AM indicates greater severity of depressive
symptoms, which is aligned with previous electrocardiogram
research that showed that changes in heart rate during sleep may
be a valid physiological marker of depression [56,61]. However,
study participants were recruited from a sleep disorder clinic
and had sleep complaints apart from diagnosed depressive
disorder [56].

Thirdly, in contrast to some previous findings
[15-17,19,28,33,62], our data did not show reduced levels of
locomotor activity in depressed participants in terms of less
time spent in moderate to vigorous physical activity, fewer daily
steps, or more sedentary time. This might be due to the
overestimation of the time spent in high-intensity activities by
consumer wearables [42] and due to the overall high level of
physical activity in the Singapore population [63], where low
physical activity may be a rare depression risk marker. In
addition, our data did not show a relationship with cosinor-based
metrics estimating the level of activity, including mesor and
rhythm amplitude [24,25], or with nonparametric measures,
including M10, L5, and RA.

Finally, the analysis of sleep data showed that later sleep
midpoint and offset time were associated with more severe
depressive symptoms, which is consistent with the existing
evidence [16,20,22,23]; however, we did not find that shortened
sleep duration, increased SOL, lower SE, and longer WASO
were related to more severe symptoms, contributing to the mixed
results from previous actigraphy studies [16,22-24,34]. This
discrepancy may be explained by the lack of participants with
clinical depression in our sample or by the limited accuracy of
Fitbit wearables in measuring sleep compared to PSG [45,46].

The results of our study are also comparable to a few previous
studies that used machine learning with wearable sensor data
for depression detection. Jacobson et al achieved a high accuracy
in detecting depressed individuals, but their approach has some
limitations [37]. First, although their model classified clinically
diagnosed patients and healthy controls, 5 out of 23 depressed
patients in their sample were hospitalized, which significantly
limits generalizability of their actigraphy data–based model.
Second, they extracted and explored thousands of features
which, without correction for multiple comparisons, by chance
might correlate to the outcome variable in the given sample but
may not in other samples; therefore, it is highly likely that
significant digital biomarkers will be inconsistent across
different samples. Third, the number of spectral analysis–based
features depended on the minimum duration of actigraphy data
available across participants; therefore, some features are not
universal and would be unavailable for a shorter observation
period. Finally, most features were extracted mechanically
without relying on domain knowledge or previous findings and
remained uninterpreted. For example, interpretation of spectral
density features, which were the only important predictors in
their model, remained unclear. Contrary to this study, our
approach relies on interpretable digital biomarkers and
meaningful behavioral and physiological phenomena underlying
these markers.

In another study, Tazawa at al achieved an accuracy of 76% in
detection of depressed individuals based on 236 assessments
of 85 participants, which is very similar to the performance of
our models trained with contrasted subsamples [33]. Although
our best model had 9% higher sensitivity (82% vs 73%), which
is more important than higher specificity if using these models
for passive screening to address underdiagnosis of depression,
the direct comparison between studies is problematic due to the
specific downsampling used in our models. In addition, there
are important differences between studies in both available
sensor data and outcome measurement. First, Tazawa and
colleagues used the Hamilton Depression Rating Scale for
symptom assessment, and their sample included patients with
clinical depression. Second, they had more types of sensor data,
including skin temperature, which were the most indicative of
depression. Finally, they mainly used distribution characteristics
of the per-hour data and correlations between different data
types as digital biomarkers but did not use circadian rhythm
metrics.

It is worth mentioning the study by Sano et al, whose model
based on wearable sensor data achieved a comparable
classification accuracy of 87% [39]. The important
methodological similarity between the studies is that Sano et al
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similarly used a contrasted subsample for training of the models,
yet theirs was comprised of an even smaller fraction and number
of participants (ie, top 12% and bottom 12% of participants;
n=47). Despite methodological similarities, the studies are
different in terms of population, outcome measurement, and
extraction of digital biomarkers. They studied college students
and used the mental component summary score from the 12-item
Short Form Health Survey for mental well-being assessment,
which was not intended to screen for depression, unlike the
PHQ-9 used in our study. Furthermore, they collected skin
conductivity and skin temperature data in addition to
accelerometer data and used data distribution characteristics
(eg, mean and median) at different times of day as digital
biomarkers, but they did not analyze and harness circadian
rhythm metrics. Overall, the key novel approach in our study,
as compared to existing efforts, was the use of data from
widespread consumer wearables and the use of circadian rhythm
metrics as digital biomarkers in predictive modeling with
machine learning.

Possible Mechanisms
Regularity of circadian rhythm and variation of nighttime heart
rate were the most robust digital biomarkers; below, we outline
possible psychosocial and neurobiological mechanisms linking
them to depressive disorder. The relationships between
depression and circadian rhythms in behavior and physiology
are probably bidirectional, but underlying neurobiological
mechanisms remain unknown [64,65]. Existing evidence shows
that disturbed rest-activity rhythms, as, for example, in shift
workers, lead to desynchronization of internal molecular clocks,
thereby disturbing circadian biochemical processes, secretion
of hormones, metabolic functions, and physiological parameters
[66-68]. In turn, disturbed master clocks at the molecular level
could lead to neurobiological dysfunction that may generate
depressive mood [69]. It has been documented that patients with
major depression have elevated nocturnal body temperature,
increased cortisol, lower melatonin, and lower norepinephrine
levels [70,71]. On the other hand, mood disorders affect
circadian activity rhythms through psycho-cognitive pathways:
a depressed individual can experience increased apathy,
impaired deliberative cognitive control, greater impulsivity, and
other affects, which may result in inconsistent behavior,
disturbed routine, and disturbed circadian rhythms. We may
speculate that observed associations either support the social
rhythm hypothesis or probably capture nuanced behavioral
manifestations of depressive symptomatology [72-74].
Regarding the variation of heart rate in nighttime intervals, this
digital biomarker could indicate depressive disorder because
an increased arousal of autonomic nervous system that is
possible with depression is likely to affect heart rate dynamics
during sleep [56].

Strengths and Limitations
Strengths of our study include a relatively long period of
continuous sensing and activity tracking in free-living settings,
a relatively large workplace-based sample, use of correction for

multiple testing in statistical analysis, use of a wide range of
covariates for model adjustments in regression analysis, and
use of cross-validation with multiple resampling in machine
learning modeling. Moreover, as digital biomarkers, we used
only metrics that meaningfully characterize everyday behavior
and human physiology relevant to depressive disorder, avoiding
extraction of a multitude uninterpretable features and black box
approaches.

This study also has several limitations. First, we studied working
adults who represent the generally healthy population and had
not been diagnosed with depression. The absence of participants
with clinical depression might cause a lack of contrast in
behavioral and physiological data between depressed and healthy
participants, which impedes discovery of reliable digital
biomarkers. In addition, we used the PHQ-9 for depression
screening, which is a self-reported scale with limited accuracy.
Second, our participants were mostly highly educated university
employees with sedentary jobs who might have specific
psycho-behavioral characteristics. Third, the cross-sectional
design of the study does not allow causal inferences. Fourth,
the poor predictability of depressive symptomatology in the
whole sample highlights a possible limitation, in principle, of
using this set of digital biomarkers alone for depression
screening universally due to prominent interindividual
differences and heterogeneity that appear in naturalistic settings
[36]. Finally, predictive models were retrained using balanced
and contrasted subsamples equally comprised of depressed
participants and healthy participants with no risk of depression;
therefore, they probably suffer from overfitting and would
perform worse on new samples. However, the set of selected
digital biomarkers used in these models remained the same as
in models with the full data set.

Conclusions and Future Research
Further discovery of digital biomarkers from wearable sensors
has the potential to facilitate early, unobtrusive, continuous,
and cost-effective detection of depression in the general
population. This study showed that some known and novel
digital biomarkers based on data from consumer wearables
could indicate increased risk of depression in the working
population. The predictive model based on a combination of
these digital biomarkers could discriminate individuals with
high risk of depression from individuals with no risk. Further
research should examine and validate digital biomarkers with
longitudinal design, because dynamic changes and deviations
from a baseline are more likely to indicate risk of depression
rather than one-time snapshots. Second, although the idea of
inferring universal digital biomarkers is very tempting, the
development of semipersonalized models adjusted for
differential baseline characteristics can bring more accurate and
clinically relevant predictions. Third, wearable sensor data can
be enriched with smartphone data, which will enable more
comprehensive digital phenotyping for depression detection
[39,75].
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