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The mammalian olfactory system can 
accurately discriminate trillions of scents 
despite having only hundreds of olfac-
tory receptors.[1] These receptors have an 
affinity for a range of scent molecules. 
One scent molecule may bind to different 
receptors with varying affinities and acti-
vate several receptors at once, forming a 
complex scent fingerprint[2,3] that is car-
ried to the central nervous system (CNS) 
for analysis (Figure  1a).[4–6] It is this inte-
gration of olfactory receptor combinatorics 
with CNS pattern recognition that allows 
the olfactory system to discriminate scents 
so efficiently.

Mimicking the olfactory system for 
accurate, portable and real-time artificial 
scent screening requires two crucial and 
inseparable components: cross-reactive 
sensing and fingerprint pattern recogni-
tion.[7–9] Inspired by nature, artificial scent 
screening systems resembling the mam-
malian system (known as E-noses, opto-

noses for olfactory, and E-tongue for taste) have been developed 
for disease diagnosis[10] and detection of environmental con-
taminants,[11,12] explosives,[13] food, and drugs.[14–17] Cross-reac-
tive sensing in these artificial systems is achieved using cross-
reactive metal oxide[18,19] or colorimetric sensor arrays[20–23] that 
interact differentially with target molecules to generate a finger-
print pattern. Traditional statistical methods such as linear dis-
criminant analysis (LDA), principal component analysis (PCA) 
and hierarchical cluster analysis (HCA) are typically used to 
analyze the fingerprints.[8,24]

While e-noses have been extensively researched, few have 
been commercialized because they suffer from either sensing 
or pattern-recognition issues. For example, metal oxide-based 
E-noses generally require high temperatures to function and 
depend on cumbersome power supply and wiring.[25] Fur-
thermore, these sensors are sensitive to humidity and cannot 
distinguish closely similar compounds.[24] While colorimetric 
sensors (or opto-noses) are highly cross-reactive and perform 
well at room temperature, they produce 3n (where 3 represents 
red, green, blue (RGB) and n is number of sensors) non-linear, 
multidimensional datasets that cannot be accurately extracted 
and analyzed using statistical methods such as PCA, LDA, or 
HCA.[24,26] To commercialize E-noses, we need a system that 

Artificial scent screening systems (known as electronic noses, E-noses) have 
been researched extensively. A portable, automatic, and accurate, real-time 
E-nose requires both robust cross-reactive sensing and fingerprint pattern 
recognition. Few E-noses have been commercialized because they suffer 
from either sensing or pattern-recognition issues. Here, cross-reactive 
colorimetric barcode combinatorics and deep convolutional neural networks 
(DCNNs) are combined to form a system for monitoring meat freshness 
that concurrently provides scent fingerprint and fingerprint recognition. 
The barcodes—comprising 20 different types of porous nanocomposites 
of chitosan, dye, and cellulose acetate—form scent fingerprints that are 
identifiable by DCNN. A fully supervised DCNN trained using 3475 labeled 
barcode images predicts meat freshness with an overall accuracy of 98.5%. 
Incorporating DCNN into a smartphone application forms a simple plat-
form for rapid barcode scanning and identification of food freshness in 
real time. The system is fast, accurate, and non-destructive, enabling 
consumers and all stakeholders in the food supply chain to monitor food  
freshness.
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has both a robust cross-reactive sensor array and a data analysis 
method that can extract information from non-linear datasets 
and accurately predict fingerprint patterns.

Here, we integrated colorimetric barcode combinatorics 
with deep convolutional neural networks (DCNNs) to form a 
system that concurrently provides scent fingerprint and intel-
ligent fingerprint recognition (Figure 1b). We used the system, 
which we call deep colorimetric olfactory-barcoding, to auto-
matically screen the freshness of different types of meats. 
The colorimetric barcode is made up of 20 different types of 
porous nanocomposite comprised of dye-loaded chitosan nano-
particles (CNP-dye) embedded on cellulose acetate (CA). The 
halochromic dyes in the barcode cross-react according to the 
type and concentration of gases to form a scent fingerprint (in 
the form of a colorful barcode) that is identified using DCNN. 
Using fully supervised training techniques and 3475 labeled 
barcode images as the training source, we obtained a DCNN 
that predicted meat freshness with an overall accuracy of 98.5%. 
Incorporating DCNN into the smartphone software enables a 
user to identify the freshness of meats within 30 s by simply 
scanning the barcode. Our system is fast, automated, accurate 
and non-destructive. Because our system uses common biode-
gradable and biocompatible materials, and was studied under 
typical food packaging conditions, it is applicable everywhere 
along the food supply chain for real-time monitoring of food 
freshness.

To make the colorimetric strips, we patterned the gas sen-
sitive barcodes on poly(dimethylsiloxane) (PDMS)—a chemi-
cally inert, moisture-resistant and transparent substrate. The 
barcode is made of porous nanocomposites comprising of 
dye-containing chitosan nanoparticles (CNP-Dye) embedded 
in a CA matrix (CNP-Dye/CA) (Figure 2a). The CNP-Dye were 

prepared according to the ionic gelation method using sodium 
tripolyphosphate as the cross-linker.[27] Both chitosan and CA 
are biodegradable and non-toxic, making them biocompatible 
and environmentally friendly options for screening food fresh-
ness.[28,29] To realize cross-reactivity between the bars of the bar-
code in the same way human olfactory receptors cross-react, we 
created 20 different CNP-Dye/CA solutions, one for each bar 
of the barcode. Each CNP-Dye/CA solution contained a dif-
ferent type of halochromic dye whose chromophore changes 
color according to the surrounding pH (Table S1, Supporting 
Information).[30] Each of the 20 different dyes responds within 
a different pH range, covering the detection range of gases 
emitted from rotting meats. With the spoilage of meat, the con-
centration of bioamines in the sealed package increases due to 
microorganism-induced protein degradation and gas accumula-
tion effect. Take bromothymol blue (BPB, the first strip) as an 
example, the basic bioamines leads to a splitting of the hydroxyl 
group of acid BPB (Figure S1, Supporting Information), which 
results in a visible color change from yellow (protonated form) 
to blue (deprotonated form). When exposed to different gases 
with varying concentrations, each bar of the barcode will dis-
play a different color or range of coloration. This colorful bar-
code forms the gas fingerprint.

To deposit the gas sensitive barcodes on PDMS, we created 
hydrophilic barcode patterns on PDMS with thickness of 2 mm 
using a shadow mask and oxygen plasma processing (30%,  
2 min) (Figure 2b). Drop-casting each of the twenty CNP-Dye/
CA solutions onto each successive bar within 10 min forms the 
colorimetric barcode. Each bar is 1 mm long and 0.6 mm wide; 
the gap between the neighboring bar is 1 mm.

Gas transfer and sensing stability depend on the microstruc-
ture of the nanocomposites and their ability to preserve the 

Figure 1. Working principle of the human olfactory system and our system based on colorimetric barcode combinatorics and DCNN. a) In the human 
olfactory system, volatile amines from meat activate several odor-binding proteins of the olfactory cell (left) and trigger electrochemical potentials that 
travel to the brain center via olfactory nerve fibers (middle). Tapping on prior knowledge, the brain analyses the action potential patterns and identifies 
them as different levels of meat freshness (right). b) In our system, volatile amines from meat interact with sensors in the barcode and trigger a color 
change according to the principle of halochromism. Colorimetric barcode image showing barcode combinatorics is captured and wirelessly uploaded 
to the cloud via a smartphone APP. Using a trained DCNN, meat freshness can be displayed on the smartphone within 30 s.
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dye. Scanning electron microscopy imaging showed that while 
CNP-Dye themselves formed aggregates (Figure S2, Supporting 
Information), they were well distributed on the interweaved 
fibers that form the porous 3D structure of the CNP-Dye/CA 
(Figure  2c). Such a porous 3D structure is expected to pro-
vide abundant gas sensing sites. We performed a dye leakage 
experiment by immersing films of CNP-Dye and CNP-Dye/
CA in water and characterizing the absorbance of the superna-
tant. Tetraiodophenolsulfonephthalein (TET) with characteristic 
absorbance at 435  nm was used as a model dye. For films of 
TET-containing chitosan nanoparticles (CNP-TET) and CNP-
TET embedded in CA (CNP-TET/CA), the supernatant had neg-
ligible absorbance at 435 nm and no visible color (Figure 2d,e). 
In contrast, the supernatant for a film of TET embedded in CA 

(CA/TET) was yellow; when immersion time increased from 
0 to 84 h at room temperature, the peak intensity at 435  nm 
increased gradually from 0 to 1.51. These results show that 
strong intramolecular forces between negatively charged depro-
tonated hydroxyl groups (O−) of TET and positively charged 
protonated amine groups (NH3

+) of chitosan prevented TET 
from leaking out of the porous composite (inset in Figure 2a). 
Weak Van der Waals forces between CA and TET in the  
CA/TET film led to large dye leakage. The strong interaction 
in CNP-TET/CA that avoids dye leakage ensures the safety of 
barcode in food packaging.

To test and optimize the sensing performance of our col-
orimetric barcode, we exposed the strip to methylamine (MA) 
gas. Increasing concentrations of MA gas turned the barcode 

Figure 2. Fabrication and characterization of colorimetric barcode strips. a) Schematic showing the fabrication of CNP-Dye/CA. Dyes (orange stars) are 
cross-linked with chitosan (blue lines) using sodium tripolyphosphate (TPP, green star) according to the ionic gelation method. CNP-Dye is embedded 
on cellulose acetate (CA) matrix to form CNP-Dye/CA. Inset: chemical structure of one example CNP-Dye. The dye is tetraiodophenolsulfonephthalein 
(TET). Strong intramolecular forces between positively charged protonated amine groups ( NH3

+, blue) of chitosan and negatively charged depro-
tonated hydroxyl groups (O−, red) in the dye prevent dye leakage. b) Schematic of barcode patterning on PDMS. Oxygen plasma processing (30%, 
2 min) using a shadow mask forms hydrophilic patterns on PDMS. Drop-casting of CNP-Dye/CA solution (1 µL) on the plasma-treated patterns forms 
the 20-bar colorimetric barcode. Each bar received a different CNP-Dye/CA solution. Barcode size is 1  × 0.6 mm and gap between neighboring bar is 
1 mm. c) Scanning electron microscopy image of CNP-Dye/CA showing the composite is highly porous. The inset shows CNP were immobilized on 
the surface of CA fibers. d) Dye leakage test for different films show CNP-TET and CNP-TET/CA films had negligible dye leakage. Films were soaked in 
water for different durations and absorbance of the supernatant were measured at 435 nm. Data are representative of three independent experiments. 
The error bars are the standard deviation from three independent experiments. e) Photographs of CA/TET and CNP-TET/CA (1:4) films soaked in water 
for 84 h. Dye leaked from CA/TET but not CNP-TET/CA film. f) Sensing performance of different colorimetric strips exposed to 20 ppm methylamine 
(MA) gas. Strip response is described by measuring Euclidean distance (ED) of RGB values of the barcode before and after exposure to MA. Curve 
linking the ED values of different strips is for guiding the eye. Optimal sensing materials of CNP-dye/CA (1:4) was selected for barcode preparation. 
The error bars are the standard deviation of three independent experiments.
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on the strip from yellow to deep blue (Figure S3, Supporting 
Information). We quantitatively described the barcode response 
by measuring the Euclidean distance (ED) of the RGB values 
of the barcode before and after exposure to MA. Exposure to 
higher concentrations of MA increased the ED value, indicating 
that MA activated the chromophore and the barcode functioned 
as a scent sensor (Figure S4, Supporting Information). All 
the CNP-TET/CA barcodes (formed with different mass ratio 
of CNP-TET:CA) showed a higher response than both CNPs-
TET and CA-TET. We attribute this enhanced performance to 
the 3D porous structure of CNPs-TET/CA, which facilitates gas 
transfer and provides more sensing sites. Based on the perfor-
mance of the different barcodes shown in Figure 2f, we chose 
the optimal mass ratio of 1:4 for all subsequent experiments.

Proteins in rotting meats are microbially decomposed into 
peptides and amino acids. Over time, these components are 
further broken down into low-grade amines and ammonia 
(NH3),[31,32] which are useful freshness indicators. To assess 
whether our colorimetric barcode strip can be used to monitor 
meat freshness, we tested the response of the strip to multiple 
gases typically detected from rotting meats, including ammonia 
(NH3), MA, trimethylamine (TMA), putrescine (PUT) and 
cadaverine (CAD). Like mammalian olfactory receptors where 
one scent molecule can bind to different receptors and each 
receptor responds to a range of scents to form a complex scent 
fingerprint, one type of gas can trigger several bars of our bar-
code and each bar responds to several gases to form a colorful 

combination of bars that represent the fingerprint for these  
5 amine gases. Figure 3a shows the colorimetric barcode obtained 
using a scanner (Canon, LBP7010C, 600 dpi) after exposure to 
different concentrations of individual amine gases (Figure S5, 
Supporting Information for RGB images).

We processed the data using traditional ED value, PCA, and 
HCA methods. EDs of R, G, and B values for each bar of the 
barcode before and after exposure to the amine gases were cal-
culated. The estimated limit of detection (LOD) for NH3, MA, 
TMA, PUT and CAD were below 50 ppb at signal to noise 
ratio of 3 (Table S2, Supporting Information). Corresponding 
to color changes seen in the barcode, higher concentrations of 
amine gases displayed higher ED values. ED values of our col-
orimetric barcode quantitatively describe the concentration of 
the gases. In Figure 3b, ED values have overlaps under 20 ppm, 
and separate from each other above 20 ppm. Thus, we investi-
gated the ED value for different gases before and after exposure 
to 20 ppm of the gas. Each gas displayed a distinctive ED value 
(n = 8, *p < 0.001), demonstrating that NH3, MA, TMA, PUT, 
and CAD have specific gas fingerprints at 20 ppm (Figure 3c). 
The reason is that different chemical environments and the 
number of amino (NH2) groups in these five amine gases 
would induce different color combinations in the barcode.

We further used PCA and HCA—two widely used classifi-
cation methods[24]—to evaluate a 50 × 60 (5 amine gases × 10 
concentration × 60 RGB values) dimensional matrix acquired 
from the colorimetric barcode. The gas concentrations 

Figure 3. Discrimination of five types of amines gases using colorimetric barcode and traditional statistical methods. a) Scanned images (Canon scanner, 
LBP7010C, 600 dpi) of barcode exposed to NH3, MA, TMA, CAD and PUT show different gases display different bar combinatorics. Barcode color changes 
as gas concentration increased from 0.20 to 100.0 ppm. b) Euclidean distance of R, G, and B values in the different barcodes increase after exposure to 
higher concentrations of amine gas. The error bars are the standard deviation from eight independent experiments. c) Boxplot of the distribution of ED 
values for NH3, MA, TMA, CAD, and PUT at 20 ppm (n = 8) shows these five amine gases can be clearly distinguished at 20 ppm. *** represents p < 0.001 
(t-test). d) Cluster tree produced by hierarchical cluster analysis show the five amine gases can be distinguished between 20 and 100 ppm.

Adv. Mater. 2020, 2004805



© 2020 Wiley-VCH GmbH2004805 (5 of 8)

www.advmat.dewww.advancedsciencenews.com

examined were between 20 and 100 ppm. PCA creates several 
independent PCs that maximally represent the whole matrix. 
From the PCA scree plot, we can see that 6 PCs are required 
to account for 90% of the total variance, 8 PCs for 95%, and 
10 PCs for 99% (Figure S6, Supporting Information). The 3D 
score plot of PCA using the first three PCs (76.9% of the total 
variance) shows that clusters of 5 amine gases are clearly sepa-
rated (Figure S7, Supporting Information).

With HCA, Ward’s minimum variance method was used to 
determine gas-induced variations of the 60 dimensional RGB 
colorimetric barcode. The generated cluster-tree showed the  
5 amine gases formed clearly separate clusters between 20 ppm 
and 100 ppm (Figure 3d). The PCA score plot and HCA cluster 
tree both intuitively reveal that our barcode can effectively dis-
criminate NH3, MA, TMA, CAD, and PUT based on a combi-
nation of cross-reactive colorimetric sensors. Together, these 
results demonstrate that it is possible to use our colorimetric 
barcode to monitor meat freshness and other microbial meta-
bolic processes in fermented foods such as wine, vinegar and 
cheese that are known to release CAD and PUT.[31]

As a proof-of-concept, we used our colorimetric barcode to 
monitor the freshness of three types of meat—chicken, fish, 
and beef. To predict meat freshness accurately, we used DCNN 
to process and recognize the complex multi-dimensional scent 
fingerprint data. DCNN architecture, which is an end-to-end 
network with several nonlinear activation functions,[33–35] is 
suitable for non-linear multidimension data analysis.[36–39]

The colorimetric barcodes were glued on and faced toward 
widely used transparent poly(vinyl chloride) (PVC) meat packaging 
films without touching meat samples (Figure S8, Supporting 
Information). Because the barcode is flexible and transparent, 
it integrates easily with existing polystyrene and PVC packaging 
materials. The meat packages were stored at 25 °C, and images 
of the barcode were taken at different time intervals using a 
smartphone camera without opening the package (Figure S9, 
Supporting Information). To classify the barcodes into different 
categories of freshness, we measured the total volatile basic 
nitrogen (TVB-N) value of the meats using the Conway dish 
method[40] an international standard for determining meat 
freshness (Figure S10, Supporting Information). Here, in order 
not to inference with the barcode image collection we prepare 
other packages of meat with the same procedures for TVB-N 
testing. Meat with TVB-N value ≤15  mg/100  g is considered 
fresh, 15–20  mg/100  g is cooking edible but less fresh, and 
≥20  mg/100  g indicates inedible and spoiled.[41–43] Then these 
images were classified according to these three standard catego-
ries of freshness—fresh, less fresh, and spoiled. As there are 
variations of TVB-N threshold for meat with different types and 
sources, a detailed investigation of TVB-N values of a specific 
meat is suggested to ensure the accurate classification.

A total of 4161 images of meat and barcode for the three 
kinds of meat were obtained, forming the dataset for DCNN 
evaluation of meat freshness. The 4161 images were randomly 
divided into 3475 images for model training and 686 images 
for testing (Figure 4a). We designed a three-class image classi-
fication network using the ResNet 101 backbone[44] comprising 
of input, multiple convolution (conv.), full connection (FC), 
and output layers. This trained convolutional neural network 
extracts features of the barcode from the images and classifies 

the barcodes into one of the three categories of freshness. As 
epochs (number of passes the algorithm completes through 
the entire dataset) increase, the loss that represents the differ-
ence between predicted and actual result approaches 0 and the 
training accuracy improves (Figure 4b).

After training, we used the 686 test images from the dataset 
to evaluate how accurately DCNN classifies the barcode images. 
When a barcode image is input into the classification network, 
the freshness category that the meat most likely belongs to is 
given (red circles in Figure  4a). For the three kinds of meat, 
the images were classified with 100% accuracy for the spoiled 
category; in chicken, accuracy was 99.0% for fresh, 96.3% for 
less fresh; in fish, accuracy was 98.1% for fresh, 98.8% for less 
fresh; in beef, accuracy was 95.9% for fresh, 98.8% for less 
fresh (Figure  4c and Table S3, Supporting Information). The 
confusion matrix for the 686 images (Figure 4d) and subconfu-
sion matrices for chicken, fish and beef (Figure S11, Supporting 
Information) whose diagonal show the number of correctly 
classified samples further illustrate the classification accuracy. 
DCNN classification reached an overall accuracy of 98.5%.

For comparison, we used ED values to predict meat fresh-
ness. To obtain a reference curve, we measured the TVB-N 
values and calculated the ED values of eight samples for 
each type of meat stored at different time intervals (0 to 48 h) 
(Figure S12, Supporting Information). Before calculating the 
ED values, we corrected for light effects in the images using 
the center of the colorimetric barcode as a reference point for 
white balance—the process of removing unrealistic color casts 
in images. Both TVB-N values of the samples and ED values of 
the colorimetric barcodes increased when meat storage inter-
vals increased (Figure S12, Supporting Information). Based on 
the TVB-N values, the meat samples were categorized as fresh, 
less fresh, and spoiled. The range of ED values corresponding 
to each category of freshness was accordingly, which was used 
for prediction of the freshness of an unknown meat sample.

We randomly selected twenty colorimetric barcode images 
for each freshness category to assess the prediction accuracy 
of ED. In chicken, ED values achieved prediction accuracy of 
35.0% for fresh, 55.0% for less fresh, and 100.0% for spoiled; in 
fish, it achieved 90.0% for fresh, 30.0% for less fresh, 90.0% for 
spoiled, and in beef it was 40.0% for fresh, 35.0% for less fresh, 
100.0% for spoiled (Figure  4c). ED analysis showed an overall 
accuracy rate of 61.7%, which is far lower than DCNN classifica-
tion (98.5%); fresh and less fresh groups had the poorest accu-
racy rates. We also found that ED values between fresh and less 
fresh groups for chicken, fish, and beef samples were all not 
significantly different (p  >  0.05, Figure S13, Supporting Infor-
mation), indicating that it is difficult to distinguish fresh from 
less fresh using ED values. This low prediction accuracy and 
discrimination efficiency are because ED values are affected by 
photo shooting conditions such as angle, zoom and lighting. In 
contrast, the model training processes in DCNN exclude most 
of these effects. Furthermore, because the RGB values of the 
barcode do not change linearly with the concentration of the 
target analyte, using the non-linear DCNN method for data pro-
cessing is more suitable in this case. To automate the overall 
screening procedure, we incorporated DCNN in a smartphone 
application (APP), NTUFoodCheck. The APP provides a  
user-friendly interface for image collection, image uploading, 
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and real-time display of the results (Figure  4e). Users simply 
need to capture the colorimetric barcode image within the APP 
and meat freshness computed by DCNN will be displayed on 
the screen within 30 s (Movies S1–S3, Supporting Information). 
For further validate the applicability of our system in practical 
refrigeration situations, we integrated our colorimetric barcode 
in fish package that were stored at 4 °C. 112 images (eight sen-
sors ×  two  photos for each sensor ×  seven time points) were 
collected at storage interval from 0 to 5 days and then uploaded 
in the system for freshness prediction (Figure S14, Supporting 
Information). Based on TVB-N values as the true freshness 

indicator (Figure S15, Supporting Information), we obtained 
the overall prediction accuracy of 92.0%.

The designed APP can be downloadable onto any smart-
phone or portable devices; thus our system can be used by both 
consumers and food suppliers to screen and/or monitor meat 
freshness in real-time. The issue regarding barcode image dif-
ference caused by camera setting could be solved by embedding 
domain adaptation in the pipeline of deep learning. In case 
of no cameras available, human can also roughly distinguish 
different freshness stage based on reference pictures (Figure S9, 
Supporting Information).

Figure 4. Colorimetric barcode integrated with DCNN as a simple, portable platform for accurate real time monitoring of meat freshness. a) DCNN 
for barcode recognition. The dataset contained 3475 images for DCNN training and 686 images for model testing (left). DCNN based on the ResNet 
101 backbone was used for food freshness classification (right). The DCNN architecture has input, multiple convolution (conv.), full connection (FC) 
(blue circles), and output layers. When the barcode image is input into the network, the predicted freshness category (red circles) for the test sample 
is given. b) Training accuracy of DCNN increases as epochs (number of passes the algorithm completes through the entire dataset) increase. Training 
loss represents the difference between predicted and actual result. c) Comparison of detection accuracy rate for chicken, fish, and beef freshness based 
on Euclidean distance calculations and DCNN training. DCNN had an overall higher accuracy rate (98.5%) than ED (61.7%). d) Confusion matrix for 
the 686 test images showing DCNN accurately classified the images into the three freshness categories. Only ten images were wrongly classified.  
e) Photographs showing smartphone interfaces displaying the state of the meat as either fresh (right panel), less fresh (middle panel), or spoiled (right 
panel) after scanning the barcode.
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Compared with previous food monitoring researches,[14,45–53] 
the barcode system shows good compatibility with food supply 
chains (details given in Table S4, Supporting Information). On 
the one hand, our colorimetric barcode with flexibility and edit-
able size could be fully integrated with many packaging mate-
rials and techniques. On the other hand, colorimetric barcode 
recognition can be conducted in a short time (30 s) without 
bulky wiring, which is compatible with fast food supply chains. 
Moreover, our system was tested in real application scenarios 
by using meat packages in commercial PVC film rather than 
only bioamine sensing in tube. Satisfactory accuracy (98.5%) by 
using DCNN technique indicates the feasibility of the system 
integration with food supply chains. Furthermore, by utilizing 
materials with different gas responsive ability, our system can 
recognize other volatile flavor components such as ethylene, 
aldehydes, polyphenols and sulfides, which could provide a 
platform for food quality control or species identification.

In summary, we combined cross-reactive colorimetric bar-
codes with DCNN to build a simple platform for rapid, non-
destructive monitoring of meat freshness in real time via a 
smartphone APP interface. Like the mammalian olfactory 
system, our cross-reactive colorimetric barcode detected gases 
released by rotting meats and formed a scent fingerprint. We 
used DCNN to identify this fingerprint, allowing the meats 
to be rapidly categorized as either fresh, less fresh, or spoiled 
with an overall prediction accuracy of 98.5%. This accuracy 
is much higher than the commonly used ED analysis (61.7% 
overall accuracy). Unlike TVB-N measurements (the current 
gold standard for measuring meat freshness), our technology is 
non-destructive, automated and enables real-time monitoring. 
Because the colorimetric barcode can be easily mass-produced 
and the components are biodegradable and non-toxic, we 
expect this system to be widely used in the food industry and 
by the public. It offers consumers and all stakeholders in the 
food supply chain a way to monitor and/or screen food fresh-
ness and establish public confidence.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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