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Abstract— Tree defect detection is crucial for the struc-
tural health screening of trees. The existing nondestructive
testing (NDT) techniques for tree defect detection require
time-consuming and labor-intensive measurement campaigns.
This discourages their application for the routine structural
health screening of whole populations of managed urban trees.
To address this issue, this study proposes a deep-learning
augmented stand-off radar scheme for contactless scanning of
tree trunks and rapid detection of tree defects. In this scheme,
the antenna is moved along a straight trajectory at a distance
from the tree trunk to obtain the trunk’s B-scan. The obtained
raw B-scan is then processed by a signal-processing framework
specifically developed for revealing the scattering signatures of
defects in B-scan, which achieves a 30 and 22 dB increase in
the signal-to-clutter and noise ratio of the measurement data
of tree trunk samples and living trees, respectively. Finally, the
processed B-scan is input into a multilevel feature fusion neural
network particularly designed for extracting the signature of
the defect in the processed B-scan in real time. The developed
scheme’s applications to the detection of defects in real fresh-cut
tree trunks show that the stand-off radar scheme can detect
tree defects with 96% accuracy. This stand-off radar scheme
is the first contactless NDT technique for tree defect detection
while operated on a straight trajectory and potentially can be
integrated into the routine tree inspection workflow, which is
part of urban tree management.

Index Terms— Deep learning (DL), ground-penetrating radar
(GPR), multilevel feature fusion network (MLFF-Net), signal
processing, stand-off radar, tree defect detection.

I. INTRODUCTION

URBAN trees are “living structures” that provide signif-
icant ecosystem services and benefits, such as shade,

improved air quality, noise control, and beautification of the
environment. These benefits increase as the age and size of
the trees increase. However, as trees get older and larger, they
are more likely to develop defects in the form of wood decay
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or others that potentially increase the risk of whole tree or tree
part failures, which can pose a danger to people and property.
Regular and routine structural health screening of trees is
important to reduce the risk of these failures. Ideally, such
regular structural health screenings should provide accurate
and timely detection of the internal defect (e.g., cavity and
decay) that is often hidden from the routine visual inspec-
tion process [1]. The screening may potentially provide the
required information, such as defect type, severity, and how
far the defect has progressed along the length of the tree part;
this information can be used to assess the degradation in the
strength properties of the investigated tree/tree part to warrant
management intervention [2].

Current nondestructive testing (NDT) or minimally inva-
sive techniques for tree defect detection include sonic
tomography [3] and electrical resistivity tomography [4].
These techniques require a large number of sensors, are
labor-intensive, and necessitate significant time to perform
measurements on each tree. Besides that, microwave tomog-
raphy has been proposed to detect tree defects by imaging the
distribution of dielectric properties of the tree under test [5],
[6]. In particular, the electromagnetic fields scattered along
all directions from the target tree are obtained by either a
circularly moved receiver [7] or an array of receiving anten-
nas [8]. Then, the nonlinear and ill-posed inverse scattering
problem is solved by iterative methods [8], [9]. In general,
such methods are more computationally intensive than the
radar-based approaches and therefore more challenging to be
applied to the real-time or rapid detection of defects required
for routine structural assessments of trees.

Recently, ground-penetrating radar (GPR), which comprises
a single compact sensing module, has become an attractive
candidate for detecting tree defects because of its simplic-
ity [10], [11] and low computational time requirement for
imaging the tree defects [12], [13]. However, when it comes
to defect detection for the entire urban tree population, the
GPR technique becomes impractical in two aspects. First, GPR
requires the contact of the antenna with the tree trunk surface
while moving the antenna along the perimeter plane slowly
to collect consistent data [9], [14]. Such a data collection
process is time-consuming [15], which rules out its application
to the health screening of whole tree populations. Although
augmented positioning systems, such as the binary ruler [16]
and the wheel-measuring device [12], can be used to accelerate
the process, the antenna movement is still to be performed
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Fig. 1. (a) Proposed DL-augmented stand-off radar scheme for tree defect detection. (b) Scanning a tree by moving the antenna on a straight trajectory.

slowly to avoid measurement error induced by surface rough-
ness of the trunk. Additionally, current GPR techniques rely
upon imaging techniques, including modified Kirchhoff migra-
tion [12] and matching pursuit algorithm [17], used to identify
the defect region inside the tree trunk [18]. The accuracy of
these techniques depends on “clean and continuous signatures”
of defects in the measurement, which are not always retained
after necessary signal processing steps [12]. Full-waveform
inversion [19] can image the permittivity distribution of the
investigated region accurately. However, it is computationally
costly as it requires the repeated and iterative execution of the
forward solver and hence lacks of providing quick assessments
of trees. To overcome these shortcomings in current GPR tech-
nology, a novel stand-off radar scheme for rapidly detecting
tree defects is needed for practical routine field application.

In areas other than tree defect detection, such as road
inspection [20], landmine detection [21], and cultural her-
itage [22], GPR systems can be operated in the stand-off
configuration and used to detect the subsurface objects with the
antenna being a few wavelengths away from the medium under
investigation. By mounting the antennas on the wheel-based
platforms along a straight trajectory, the time for screening
target media can be reduced to minutes [23]. To the best of
our knowledge, such a stand-off straight scanning trajectory
has never been used to detect trees’ internal defects. In the
past, a stand-off circular scanning prototype is developed to
measure multiview scattering information of tree trunk sam-
ples with high efficiency [7], [24]. In this approach, by fixing
the transmitting antenna and moving the receiving antenna
in a circular trajectory around the tree trunk sample, the
multiview scattering information is collected in a contactless
way, which is further utilized to image the tree defect by the
computationally costly microwave tomography algorithms [6].
However, such a circular scanning configuration requires more
time to detect defects in living trees compared to a straight
scanning trajectory. The realization of a stand-off radar system
that can work in a contactless straight scanning configuration
requires the design of a new antenna with ultrawide bandwidth,
high gain, compact size, and narrow beamwidth to maximize
the power penetration into the tree trunk [25]. Apart from this
hardware requirement, there also exists software requirements
for processing and interpreting the signals reflected from tree
defects as follows.

1) New signal processing techniques are needed to remove
the undesired clutter due to the reflections from the
air–bark interface, so that signals reflected from defects

can be distinguished in the 2-D radar chart, which is
known as the B-scan. Since the straight trajectory is
not conformal to the side surface of the tree, the signal
reflected from the bark appears as a hyperbolic curve in
the B-scan, which cannot be eliminated by the exist-
ing clutter removal techniques, including background
removal [9] and singular value decomposition (SVD)
[11].

2) A new deep learning (DL) technique for distinguishing
defect signatures in noisy measurement data is required.
While DL techniques have been used for hyperbola
recognition [27], object classification [28], parameter
estimation [29], [30], and subsurface imaging [31],
[32] for a wide range of GPR applications, most of
the training samples are either measurement data of
the objects buried in a homogeneous medium [31] or
B-scans with clear signatures of targets [33], which
are not applicable for tree defect detection. Moreover,
limited studies deploy DL methods to detect tree defects.
Although Dai et al. [34] consider the layered structure
of trees for imaging and classification of tree defects,
the network is only tested with clean synthetic data
and cannot be accurate for noisy measurement data
performed in the field.

In this study, we propose a DL-augmented stand-off radar
scheme for rapid defect detection during the health monitor-
ing of trees. The proposed scheme, described in Fig. 1(a),
consists of three parts. First, measurements are conducted on
a 1-m-long straight trajectory at a distance from the bark [see
Fig. 1(b)]. A developed stepped-frequency continuous-wave
(SFCW) stand-off radar system with a novel antenna [25]
records one reflected signal (A-scan) from the tree trunk with
each 2-cm translation of the antenna and then forms the B-scan
of the tree trunk by spatially stacking A-scans together. With a
specially designed automatic motorized antenna slider, the data
collection of one tree is completed within minutes. Second,
the collected B-scan is denoised through a signal process-
ing framework proposed by leveraging free-space response
removal, a column-connection cluster (C3)-based zero-gating
algorithm, and finite impulse response (FIR) filtering [see
Fig. 1(a)]. The proposed signal processing framework removes
the strong clutter due to reflection from the air–bark inter-
face and makes the defect signature apparent in the B-scan.
By doing so, it can achieve a 30 and a 22 dB increase in the
signal-to-clutter and noise ratio (SCNR) of the measurement
data of tree trunk samples and living trees, respectively.
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Finally, a novel multilevel feature fusion network (MLFF-
Net) is proposed to detect defects in real time [see Fig. 1(a)].
The proposed network extracts and fuses defects’ signatures of
different levels, evaluates the contribution of the fused feature
maps in both channel and spatial dimensions, and classifies
whether the tree trunk has or does not have a defect inside. The
proposed network has achieved 96% classification accuracy for
B-scans of the fresh-cut tree trunks.

The main contributions of this work are as follows.

1) To the best of our knowledge, the proposed stand-off
radar scheme is the first NDT technique, which allows
rapid and contactless detection of trees’ internal defects
while operated on a straight scanning trajectory. The
proposed measurement configuration completes the
scanning of one living tree trunk within minutes without
contacting the tree, which is more practical and less
time-consuming compared to the existing circular scan-
ning configurations.

2) The proposed signal processing framework is unique
for denoising the noisy B-scans of real tree trunks.
It successfully removes the clutter and reflections from
the air–bark interface and reveals the features of tree
defects in the B-scan with frequency weighting.

3) A novel MLFF-Net is specifically developed for detect-
ing tree defects: a) the multilevel features of defects
are extracted and fused by the cascaded residual learn-
ing blocks (ResBlocks) and the feature fusion module,
respectively. The fused feature maps naturally include a
richer representation and better discrimination between
different classes, especially for detecting diverse defects
with various signatures from B-scans; b) a coordinate
attention module (CAM) is employed to evaluate the
contribution of the fused feature maps in both spatial
and channel dimensions, which enables the network to
automatically suppress the redundant information and
emphasize the significant parts of the fused feature maps
when predicting the existence of defects with various
parameters.

Tests with real measurement data show that the developed
MLFF-Net outperforms the existing popular DL-based classi-
fiers for tree defect detection. It should be noted that the earlier
efforts on the development of the radar scheme were explained
in [35], which briefly presented the signal processing frame-
work. Compared to [35], this work presents a comprehensive
study of the developed signal processing framework, which
supplements the details of the methodology, a comparative
study with the existing signal processing techniques, and an
extensive parametric study on the defect’s size and type.
In addition to that, the MLFF-Net is proposed for defect
detection with extensive tests on different defective tree trunk
samples. Last but not least, the work expounds the application
of the proposed scheme to healthy and defective living trees,
validating its capability in real-world scenarios.

The rest of this article is organized as follows. The stand-off
radar system and measurement configuration for scanning tree
trunks are introduced in Section II. The developed signal
processing framework to reveal the signatures of the defects

in B-scans is presented in Section III. The MLFF-Net is
described in Section IV. The applications of the signal pro-
cessing framework on the measurement data of real tree trunk
samples are provided in Section V. The accuracy of the
MLFF-Net on the measurement dataset, along with the abla-
tion study and the comparative study with the existing popular
DL techniques, is expounded in Section VI. The results of the
application of the developed stand-off radar scheme to defect
detection in live trees are given in Section VII. Finally, the
conclusions are drawn in Section VIII.

II. STAND-OFF MEASUREMENT CONFIGURATION AND
SFCW RADAR SYSTEM

In the measurement scenario presented in Fig. 1(b), a
1-m-long straight scanning trajectory is positioned adjacent
to the tree trunk with the middle point 10 cm away from
the bark. Once the measurement starts, the antenna is moved
along the trajectory from one end to the other, while its
aperture always points toward the trunk center. Meanwhile,
the radar system records the frequency response of the target
tree and transforms it to a time-domain A-scan of each trace
with every 2 cm movement of the antenna. By stacking
a total of 51 recorded A-scans together, a raw B-scan is
generated.

SFCW stand-off radar system [see Fig. 2(a)] leverages a
high-gain ultrawideband dual-polarized Vivaldi antenna with
narrow beamwidth [25]. The antenna consists of four elements.
Each two parallel antenna elements are for one polarization
and are connected with the same port of a vector network
analyzer (Keysight VNA P5021A) through a power divider,
which ensures uniform power delivery to each element. The
laptop controls the VNA to record frequency responses from
0.5 to 4 GHz with 701 equally spaced frequency points. The
antenna is positioned on a motorized antenna slider, as shown
in Fig. 2(b). This in-house slider was developed to realize the
automation of the measurement process. Specifically, driven
by the stepped motors inside the antenna support platform,
the wheels under the platform move every 2 cm along the
slider. At each scanning position, the lidar sensor detects the
real-time distance of the tree trunk and calculates the correct
rotation angle for the rotator to ensure that the antenna points
toward the center of the tree trunk. To avoid measurement
errors caused by mechanical vibrations of the platform during
a real measurement [see Fig. 2(c)], the system triggers the
VNA to transmit and receive the signals many times at each
scanning position. Once the received signal trace has less than
1% of the mean square error (MSE) compared to the previous
trace at the same scanning position, the data are recorded,
and the antenna is moved to the next scanning position.
An Arduino control unit manages all the automation processes
of the developed slider. All these components in the design of
the radar system, including the specifically designed high-gain
antenna, the selection of ultrawide low-frequency band, and
keeping the aperture of the antenna facing the center of the tree
trunk, maximize the energy transmitted from the radar system
to the tree trunk and compensate for the power dissipation
encountered during the penetration of the signal, which ensures
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Fig. 2. (a) SFCW stand-off radar system. (b) Motorized antenna slider. (c) Scenario of scanning a tree trunk sample with SFCW system.

Fig. 3. (a) Binary image that contains ROIs. (b) Fitted hyperbola (red) and calculated clutter pixels (green) for all traces. (c) Example of the nth A-scan.

the capability of defect detection in the stand-off scanning
scheme.

III. SIGNAL PROCESSING FRAMEWORK

In the raw B-scan obtained via the stand-off scanning
of the real tree trunk, the signatures due to the defects
cannot be easily isolated from the clutter and noise in
the measurement data, including the antenna’s internal
reflection, the clutter occurring at the air–bark interface, and
environmental noise and clutter that are contained more in
high-frequency components due to their weak penetration into
the tree trunk. To address these issues, a signal processing
framework consisting of three techniques shown in Fig. 1(a)
is developed and applied to increase the SCNR and reveal
the features of tree defects’ reflections in the B-scan. First,
free-space response removal, mentioned as a part of modeling
the antenna–medium interaction mentioned in [36] and [37],
is performed to suppress the antenna’s internal reflections due
to the uneven impedance distribution between the feeding
point and antenna aperture. Such internal reflections are
estimated by holding the antenna toward the free space with
no obstacle and measuring its return losses, which are further
subtracted from each raw A-scan of the target tree to disclose

the scattering information from the tree trunk in the B-scan.
It should be noted that the free-space response removal cannot
suppress the multiple signal reflections that occur between the
antenna and the target when the antenna scans the tree trunk at
a near distance. Then, a C3-based zero-gating algorithm [38]
is introduced to automatically identify and remove strong
hyperbolic clutter due to reflection from the air–bark interface.
The details of the algorithm are provided next.

A. Extractions of Regions of Interest (ROIs)

ROIs that contain high-intensity signals are separated from
the background region. To achieve this, an adaptive threshold
selection strategy mentioned in [38] is utilized to automatically
determine the individual threshold value for each B-scan.
In particular, the Sobel detector [39] is used to extract all
boundaries between ROIs and the background. By averaging
the signal intensities of selected boundaries, a proper thresh-
old value is obtained to filter out the background with less
intensity. The remaining B-scan containing only ROIs is then
converted to a binary image for further clutter identification.
For illustration purposes, an example of the binary image is
shown in Fig. 3(a), where the blocks with colors indicate the
retained ROIs, and each column refers to a single A-scan.
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Fig. 4. Structure of MLFF-Net.

B. Clustering Clutter Regions

Subsequently, the C3 algorithm is implemented and used to
distinguish the target signal that represents the strong surface
clutter (blue) from the high-intensity unwanted clutter (red) in
Fig. 3(a). The fundamental unit in the algorithm is a segment
that refers to a group of consecutive pixels in a column.
Segments with sizes less than a threshold value s are regarded
as unwanted clutter. s is set to be 5 for illustration purposes
in Fig. 3(a), which classifies clutter region 1, clutter region 2,
and the segment in column 3 successfully. Once segments of
signals in each column are obtained, the clustering is processed
from the first column to the last, searching for spatially con-
nected segments in the images, where “connected” means two
segments in adjacent columns have pixels from the same row.
The prior information, such as the target cluster’s hyperbolic
shape due to the straight scanning trajectory, helps filter out
clutter region 3 while preserving the target region, which
indicates the strong reflection from the bark in the B-scan
at the end.

C. Hyperbola Fitting

Due to the straight and linear scanning trajectory, the strong
surface reflection from the bark is naturally a hyperbola in
the B-scan. Despite some segments completing the hyperbolic
shape in the target region [in columns 1, 2, 3, 29, and 30 of
Fig. 3(a)], they are removed after thresholding. To determine
the row indices of the segments that are not clustered by the
target region, a hyperbola fitting is performed by considering
the middle pixels of the segments in the target region as

(n − d)2

a2 +
t2
n

b2 = c (1)

where n is the column index of the middle pixel of the segment
in the target region, and tn is the row index in the nth column.
The parameter set (a, b, c, d) is obtained by minimizing MSE
with the constraint of 10 < d < 20, indicating that the vertex
of the hyperbola is near the middle trace on the scanning
trajectory.

D. Zero Gating

Fig. 3(b) shows the fitted hyperbola (red) and the calculated
clutter pixels (green) in all traces. Since the time location
tclutter
n of the clutter pixel in trace n usually represents the

high-intensity signal around the maximum of the clutter pulse
in Fig. 3(c), a compensation term w that considers the width
of the pulse ensures the complete removal of the clutter
region. The zero-gating reference time tgate

n of trace n is then
calculated by

tgate
n = tclutter

n + w. (2)

Therefore, all the segments before tgate
n are set to zero to

distinguish the strong surface clutter from the late-time signals
that contain weak reflections from the tree’s interior structures
in the processed B-scan.

Finally, an FIR filter generated by the classical Kaiser
window [40] is applied to the zero-gated B-scan to further
improve the SCNR. The classical Kaiser window is preferable
because its window shape can be conveniently controlled with-
out changing the window length. Since environmental clutter
and noise are contained more in high-frequency components
due to their weak penetration into the tree trunk, a Kaiser
window with a central frequency of 1 GHz is applied to the
frequency samples within the band of [0.5, 4] GHz, obtained
after Fourier transforming zero-gated A-scan. Such FIR filter
application suppresses the noise and enhances the potential to
detect defects in the processed B-scan.

IV. MULTILEVEL FEATURE FUSION NEURAL NETWORK

Despite the applications of signal processing techniques,
the signatures of defects with different positions, sizes, and
types are diverse in terms of scales, locations, and shapes in
the processed B-scan, hindering the detection of tree defects.
Inspired by the feature pyramid network [41], which extracts
and fuses multilevel feature maps to identify various objects
with independent scales, an MLFF-Net is developed to detect
the features of various tree defects. Fig. 4 shows the overall
structure of the proposed MLFF-Net consisting of three main
components: a feature extraction module, a multilevel feature
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Fig. 5. Structures of (a) ResBlock without downsampling, (b) ResBlock with
downsampling, and (c) dimension unification block.

fusion module, and a CAM-based classifier, the details of
which are provided as follows.

A. Feature Extraction

The feature extraction module takes the processed B-scans
as the inputs, interprets the diverse characteristics of features
due to various tree defects, and extracts their features into
multiple levels of feature maps. Specifically, the input is
first passed through a preprocessing block, consisting of a
7 × 7 convolution (Conv2D) layer with a stride size of
2 × 2, a batch normalization (BN) layer, the rectified linear
unit (ReLU) activation function, and a 2 × 2 max pooling
layer (Maxpooling). Such a large convolutional layer not only
captures more global information but also reduces the volume
size of the output feature maps to save the computation
cost.

Then, eight successive ResBlocks [42], including blocks
with and without downsampling operations, are applied to
extract various features of tree defects from low level to high
level accordingly. A classical ResBlock is shown in Fig. 5(a),
where the residual learning is achieved by the shortcut con-
nection between the input and the output of the second BN
layer to avoid degradation issues in the learning process. The
downsampling in Fig. 5(b) is realized by adjusting the first
Conv2D layer in the main path and the 1 × 1 Conv2D layer
in the shortcut connection path, the strides of which are set to
be 2 to reduce the dimension of the output feature map. The
channel numbers of eight ResBlocks are set as [64, 64, 128,
128, 256, 256, 512, 512], in which the repetitive setting of
the channel number guarantees thorough learning after each
downsampling operation.

B. Multilevel Feature Fusion

Different from conventional convolutional neural networks
(CNNs), such as ResNet [42], DenseNet [43], and VGG [44],
which utilize the highest level feature map obtained from the
end of the feature extraction module for the classification task,
the MLFF-Net fuses feature maps obtained by the Resblocks
from different levels. The fused feature map naturally retains
more comprehensive information on the diverse features
of defects, which is significant for detecting defects with
various parameters from the B-scan. To realize the fusion of
multilevel feature maps with different sizes, each feature map

is converted to the same size by the dimension unification
block [41], which is shown in Fig. 5(c). Considering the
input and output feature maps are with the sizes of C1 ×

H1 × W1 and C2 × H2 × W2, respectively, a 1 × 1 Conv2D
layer with filter number C2 first revises the channel number
of the feature map in the channel dimension, and then,
an upsampling operation through the “bilinear” interpolation
unifies the size in the spatial dimension. Last, a 3 × 3
Conv2D layer suppresses the redundant information induced
by the interpolation. Once the feature maps of all levels are
unified to the same size with a channel number of 64 in this
study, feature fusion is completed by concatenation in the
channel dimension, resulting in a 256-channel fused feature
map with a rich diversity of features.

C. CAM-Based Classifier

Besides including different levels of representations of var-
ious defect signatures, the fused feature maps contain the
features of interference signals and redundant information
that impair the accuracy of defect detection. As a result,
a CAM [45] is introduced to automatically encode the mul-
tilevel features based on their contributions to the correct
predictions in both spatial and channel dimensions before
feeding them to a classifier. Such contributions are known
as “attention,” which allows the model to “pay attention” to
certain parts of the fused feature maps and to give them more
weight when predicting the existence of defects with diverse
signatures. During the evaluations of the attention of the fused
feature maps, the important features representing the defects
are emphasized, while the features of interference signals are
suppressed, which improves the capability of the following
classifier in detecting various defect signatures. The schematic
of the CAM is presented in Fig. 6, and the encoding process
is described as follows.

Given an input feature map X ∈ RC×H×W (see Fig. 6),
where C, H , and W are the channel number, the height, and
the width, respectively. Two one-dimension average pooling
operations first encode the features of each channel along
the width and height coordinate separately, generating two
corresponding channel descriptors zh and zw (see Fig. 6). The
cth channel of the descriptors at a given height and width is
written as

zh
c (h) =

1
W

∑
0≤i<W

Xc(h, i) (3)

zw
c (w) =

1
H

∑
0≤ j<H

Xc( j, w). (4)

Such transformations allow the CAM to capture long-range
interactions along one direction while preserving accurate
features along the other, which is beneficial for locating the
multilevel characteristics of the defects. Subsequently, the
direction-aware descriptors are concatenated and passed to a
shared Conv2D block L1 yielding an intermediate feature map
IF ∈ RC/r×(W+H)

IF = L1
([

zh, zw
])

(5)
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Fig. 6. Structure of CAM.

where [·, ·] denotes the concatenation operation along the spa-
tial dimension. r is the reduction ratio in the L1 block to save
the computation cost. The attention weight of two directions
is then encoded independently by splitting the IF into two
separate feature map IFh

∈ RC/r×H and IFw
∈ RC/r

×

W . Two additional Conv2D blocks Lh and Lw are deployed
to produce two separate attention weights kh

∈ RC×H and
kw

∈ RC×w expressed as

kh
= Lh

(
IFh) (6)

kw
= Lw(IFw). (7)

The sigmoid function inside the block interprets the values
of attention weights into an interval of [0, 1]. Consequently,
the automatically weighted feature map Y ∈ RC×H×W , which
encodes the interchannel relationship as well as the spatial
dependence along the corresponding direction in the interme-
diate feature maps, is simplified as

Yc(i, j) = Xc(i, j) × kh
c (i) × kw

c ( j) (8)

where c represents the index of the channel dimension.
By employing the CAM, the multilevel fused feature map is
naturally well-weighted, so contributions from different levels
are adaptively adjusted in terms the multilevel fused feature
map is naturally well-weighted, so of sizes, positions, and
types of defects. It should be noted that the complete structure
of the CAM in Fig. 6 is given as a single red block located
at the beginning of the “CAM-based classifier” part in Fig. 4.
Finally, the attention-weighted feature map with the channel
number of 256 is forwarded into a conventional classifier
that consists of four successive Conv2D blocks with the set
of channel numbers to be [64, 128, 256, 512], and one fully
connected layer followed by the sigmoid function to predict
the existence of the defects. Each Conv2D block includes a
Conv2D layer with a stride size of 2 × 2, a BN layer, and the
ReLU activation function.

V. APPLICATION OF SIGNAL PROCESSING FRAMEWORK
TO THE MEASUREMENT DATA OF REAL TREE TRUNKS

In this section, the experimental data of a real tree trunk
sample collected by the measurement setup explained in
Section II is used to test the signal processing framework intro-
duced in Section III. The tree trunk sample with a diameter of
30 cm and a height of 50 cm is a section of a fresh-cut Angsana

(Pterocarpus indicus) trunk sample, a common roadside tree
species found in Singapore.

A. Enhancement of Defect Signature

To study the features of defects in the B-scan, a cylindrical
hole with a diameter of 6 cm is drilled into the trunk sample
[see Fig. 7(a)]. The measurement trajectory is on the top side
of the tree trunk model with the scanning direction from the
left to the right side [see Fig. 7(a)]. Fig. 7(b)–(i) shows the
application of the signal processing framework to the collected
raw B-scan. It should be noted that all the B-scans are time-
referenced to the power divider where we calibrated the radar
system. In Fig. 7(b), the signatures from the tree trunk are
almost hidden by the antenna’s internal reflections. After
free-space response removal, the hyperbola-shaped clutter due
to reflection from the air–bark interface is revealed [see
Fig. 7(c)]. This clutter hinders seeing the signatures of defects
in the B-scan. After applying the edge detection [see Fig. 7(d)]
and the adaptive threshold selection, the binary image that
includes all candidates of pixels for clustering is obtained
as in Fig. 7(e). In addition to the hyperbola-shaped curves
due to reflection from the air–bark interface, some pixels of
unwanted clutter appear above and below the curves in the
B-scan [see Fig. 7(e)]. By setting proper threshold values,
applying clustering rules, and performing hyperbola fitting,
the unwanted clutter is removed, and the strong surface clutter
reflected from the air–bark interface is revealed as in Fig. 7(f).
The zero-gating reference time [red dashed line in Fig. 7(g)]
is set by adding the pulsewidth to the middle position of
the clutter region to completely eliminate the air–bark clutter
as in Fig. 7(h). After applying an FIR filter generated by
a Kaiser window with a central frequency of 1 GHz, the
signature due to the cavity’s reflection, an internal hyperbolic
curve, is distinguished easily from other noise patterns [see
Fig. 7(i)]. Since the cavity is located off-center, the apex of
the corresponding hyperbolic curve shifts to the right side of
the B-scan, as in Fig. 7(i). To quantitively illustrate the effec-
tiveness of the signal processing framework, the SCNR [46]
of the B-scan is calculated at each stage of the framework
(see Table I). It is apparent from Table I that the SCNR is
significantly improved by 17.46 and 11.47 dB after removal
of free-space response and air–bark clutter, respectively. After
1.39-dB SCNR improvement by FIR filtering, the framework
achieves more than 30-dB SCNR improvement overall.
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Fig. 7. (a) Tree trunk sample and (b) raw B-scan. The output of the steps of signal processing framework after (c) applying free-space response removal,
(d) executing edge detection, (e) finding ROIs, (f) determining clutter via C3 algorithm, (g) applying zero-gating time index, (h) removing the clutter from
B-scan, and (i) applying FIR filtering.

TABLE I
SCNR OF B-SCANS AT DIFFERENT PROCESSING STAGES

B. Comparative Study With the Existing Clutter Removal
Techniques

The effectiveness of the C3-based zero-gating algorithm is
demonstrated by comparing its performance with conventional
clutter removal techniques, including background removal [9]
and SVD [11]. For a fair comparison, different numbers of
dominant singular values and vectors are removed when the
B-scan is processed by SVD. All these techniques are applied
to the same B-scan after removing the antenna’s internal
reflection [see Fig. 7(c)], and the results are shown in Fig. 8.
Although removing an increasing number of singular values
through SVD weakens the intensity of the strong surface
clutter [see Fig. 8(a)–(c)], the hyperbolic defect is distorted
as well, resulting in indistinguishable patterns of the defect
in the processed B-scan. Moreover, the surface clutter is not
affected by the background removal in Fig. 8(d) because
the clutter is not time constant response due to the straight
scanning trajectory. Compared to the other two techniques,
the developed C3-based zero-gating algorithm removes the
strong surface clutter entirely while retaining the integrity of
the defect signatures in the processed B-scan [see Fig. 8(e)],
making the patterns of defects easily distinguishable.

C. Study on Signatures of Defects With Different Types

The proposed signal processing framework is applied to
the raw B-scans of the tree trunks with different defects
(cavity and decay) and without any defects to investigate the
signatures of defects. To this end, the B-scan of the tree
trunk with the cavity considered in the previous part is used.
In addition, the B-scan of the tree without any defect is
obtained before drilling the cavity inside the same trunk in
Fig. 9(a). The B-scan of the trunk with decay is simulated by
filling the cavity of the same tree trunk in Fig. 7(a) with paper
mâché. This decay replicate is soaked into the water before

Fig. 8. Processed B-scan by: SVD with (a) two, (b) four, and (c) six singular
values and vectors being removed, (d) background removal, and (e) C3-based
zero-gating algorithm.

Fig. 9. Processed B-scan of tree trunk (a) without any defect, (b) with cavity,
and (c) with decay.

measurement to mimic the high-water contents of real wood
decay.

The B-scans processed by the signal processing framework
are shown in Fig. 9. Despite some noise patterns induced due
to inhomogeneous wood material, the dominant features in
the B-scan of the tree trunk without any defect [see Fig. 9(a)]
are quite regular: two hyperbolic curves are parallel to the
near-end zero-gating boundary while their left wings start at
12 and 14 ns (at 0-m scanning distance), respectively [see
Fig. 9(a)]. The first hyperbolic curve is due to the internal
reflection from the concentric layer of the tree trunk, while the
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Fig. 10. Processed B-scan with the diameter of the cavity to be (a) 0, (b) 2,
(c) 4, and (d) 6 cm.

second hyperbola corresponds to the reflection from the far-
end surface. Such a regular pattern is significantly distorted by
introducing the cavity, which changes the overall structure of
the tree trunk, resulting in an abnormal pattern [see Fig. 9(b)].
Since the cavity is located at the trunk’s upper half and
near the scanning trajectory, the cavity signature is closer to
the reflection from the air–bark interface. Due to the high
permittivity and conductivity of the wet tissue, the intensity
of the signal that represents the decay signature in Fig. 9(c)
is much stronger, especially at scanning distances larger than
0.5 m. Moreover, the apex of the hyperbolic signature shifts
more to the right side because of the off-centered position of
the decay. Although the signatures of defects are visible in
both Fig. 9(b) and (c), their patterns vary with respect to their
sizes, locations, and types, therefore challenging the tree defect
detection from a noisy pattern of the processed B-scan, which
again emphasizes the necessity of the proposed MLFF-Net.

D. Study on Signatures of Defects With Different Sizes

To study the variation of the signatures of defects with
different sizes in the processed B-scans, a set of measurements
are conducted on the Angsana tree trunk sample, in which
cylindrical holes with increasing diameters are drilled into the
same position. The drilled tree trunk samples and correspond-
ing processed B-scans are shown in Fig. 10. The scanning
trajectory is on the top side of the tree trunk sample with
the direction from left to right. For convenient comparison,
Fig. 10(a) and (d) shows the same as Fig. 9(a) and (b),
respectively.

Based on the analysis in Section V-C, the signature of late
arrival signals after the clutter due to air–bark surface reflec-
tion is overall regular in the B-scan of tree trunk without defect
[see Fig. 10(a)]. The influence of the diameter of the hole on
the processed B-scan can be investigated in three cases. First,
when the diameter of the hole is as small as 2 cm, the con-
tinuous pattern of the internal reflection in the measurement
of the healthy sample is distorted at the scanning distance of
less than 0.5 m. Meanwhile, an additional continuous response
appears in the marked region of Fig. 10(b), which implies the

Fig. 11. Tree trunk samples in the dataset.

presence of discontinuity inside the tree trunk sample. Besides
that, the position of the signatures also indicates that the cavity
should appear in the top-right region of the sample. The second
case is an intermediate stage with the diameter of the cavity
being 4 cm [see Fig. 10(c)]. The signal reflected from the
cavity captured at the scanning distance larger than 0.5 m
becomes much stronger due to the closer distance between
the cavity and the near-end surface. Moreover, the signature
of the cavity captured at a scanning distance of less than 0.5 m
appears to be visible in the marked region on the left. In the
third case, when the diameter of the cavity is extended to
6 cm, the signature induced by the cavity is totally visible and
distinguishable from the processed B-scan in Fig. 10(d). The
blurred signature in the left-marked box [see Fig. 10(c)] is
now totally connected, indicating that the reflections received
at the first 50 cm of the scanning trajectory are strong enough
to be visible. Moreover, the signatures in both marked regions
[see Fig. 10(c)] are completely merged, forming a continuous
hyperbolic signature induced by the cavity. To conclude,
reflections from defects with small sizes can distort the pattern
of internal reflection and generate abnormal signatures in
the processed B-scan. As the defects become larger, the
magnitudes of the corresponding reflection signals are large
enough to be visible and distinguishable from the background
pattern, while only a partial of the signatures are observed
when the size of the defect is at the intermediate stage.

VI. APPLICATION OF MLFF-NET WITH MEASUREMENT
DATASET

A. Dataset Preparation

The proposed MLFF-Net is trained and tested with B-scans
of real tree trunk samples collected via the proposed stand-off
radar system. The dataset consists of two classes, including
the B-scans of the trunks without defects, labeled as “healthy,”
and B-scans of the trunks with defects, labeled as “defective,”
respectively. To generate the dataset, 20 tree trunk samples (see
Fig. 11) with convex shapes are obtained from live Angsana
trees, including ten healthy tree trunks and ten defective
tree trunks. The diameters and heights of these tree trunks
vary within [20, 45] cm and [35, 120] cm, respectively. The
defective samples contain tree trunks with drilled defects and
naturally grown internal defects. The closest distance between
defects and barks in the dataset is 4 cm. The geometrical
properties of the collected samples could cover most of the
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Fig. 12. (a) Processed B-scan, (b) reshaped B-scan, and (c) additional B-scans
with various values of the compensation term.

Angsana trees in Singapore. To avoid the large reduction of
the moisture content of the freshly cut tree trunk samples in the
laboratory environment, the samples are scanned shortly after
collection. Since the characteristics of defects in the B-scan
vary with respect to the locations of defects, such diversity is
included in the dataset by conducting measurements on each
sample from various rotation angles from 0◦ to 350◦ with a
stepping angle of 10◦. To consider the influence of different
scanning directions on the signatures in the B-scan, two
sets of measurements, including scanning starting from both
ends of the straight trajectory, are conducted at each rotation
angle of the tree trunks. In total, 1440 measured B-scans are
collected, and each category contains 720 measured B-scans.

After obtaining a processed B-scan shown in Fig. 12(a),
three additional adjustments are applied to generate diverse
input for the MLFF-Net. First, the hyperbolic zero-gating
curve determined by the C3 algorithm is straightened and
regarded as the zero-time in each trace, so that the redun-
dant space before the first reflection from the bark is fully
eliminated. Second, the time duration in the processed B-scan
image is limited to 5 ns by considering the size and equivalent
permittivity of the measured samples, which helps to isolate
the defect features if they are present. The cropped B-scan
image is resized to the resolution of 128 × 128 shown in
Fig. 12(b). Third, since the normalized magnitudes of the
signals reflected from the defects are sensitive to the zero-
gating indices, which influence the range of the signal intensity
in the B-scan, the slight variation of the zero-gating compen-
sation term w in (2) can generate visually different features of
defects. To address this issue, an additional compensation term
wn = 0.03n ns for n ∈ Z , 1 ≤ n ≤ 9, is added to expression
in (2) to generate nine additional B-scans [see Fig. 12(c)]
with different zero-gating indices. The generated B-scans
are stacked with the original B-scan with w0 = 0 ns [see
Fig. 12(b)] and inputted into the network from 10 channels to
ensure consistent predictions.

B. Implementation Details of MLFF-Net

After obtaining the dataset, fivefold cross-validation is
applied to avoid bias in the performance metrics due to
the limited dataset size. To be specific, 20 tree samples are
randomly divided into five folds, each fold contains four tree
samples, including two healthy tree samples and two tree

Fig. 13. Confusion matrix.

samples with defects, resulting in a total number of 288 B-
scans. Alternatively, the model is fitted by using four of the
five folds as the training dataset while being validated by
the remaining fold, resulting in five well-trained models with
different combinations of training and testing data. During
the training of the proposed MLFF-Net, the cross-entropy
loss is used, and the network’s parameters are optimized by
the Adam optimizer. The network is trained on an NVIDIA
RTX 6000 GPU for 100 epochs with a learning rate of
0.0005 and a batch size of 64, during which the model with
the highest testing accuracy is saved. Apart from the testing
accuracy, additional metrics, including the precision, recall,
and F1 score, are computed to quantitatively evaluate the
performance of the MLFF-Net. Considered a classification
problem with N categories, the precision and recall for the
i th class Pri and Rei are calculated by

Pri = TPi
/
(TPi + FPi ) (9)

Rei = TPi
/
(TPi + FNi ) (10)

where TPi , FPi , and FNi represent the numbers of true posi-
tive, false positive, and false negative for Class i , respectively.
The F1 score of Class i, F1i , is expressed as

F1i = 2×Pri × Rei
/
(Pri + Rei ). (11)

After computing all these metrics for all classes, their macro
averages are computed. For example, the macro average F1
score, F1, is computed via F1 = (1/N )

∑N
i=1 F1i , where the

importance of each class is regarded as the same.

C. Performance of MLFF-Net

The best MLFF-Net model achieves an accuracy of 96.88%,
a precision of 97.06%, a recall of 96.88%, and an F1 score
of 96.87% with the measurement data of the real tree trunk
samples. When fivefold cross-validation is applied, the aver-
age accuracy, precision, recall, and F1 score of all trained
five models are obtained as 91.38%, 92.73%, 91.38%, and
91.15%, respectively. The confusion matrix obtained by the
best MLFF-Net model is provided in Fig. 13. The model
predicts defect class with 100% accuracy while misclassifying
6% of the samples in healthy class as in defective class.
Given that the network is trained with a very limited dataset
(1152 B-scans), it can be foreseen that the performance
of the model could be enhanced by increasing the size of
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TABLE II
ABLATION STUDY

the training dataset. In general, all these high-performance
metrics indicate the robustness of the proposed MLFF-Net in
accurately detecting the defects from provided B-scans.

D. Ablation Study

An ablation study refers to an experiment in which certain
modules of a DL model are systematically removed to analyze
their particular contributions to the model’s performance.
To demonstrate the necessity of two main components of the
MLFF-Net, including the feature fusion module and CAM,
two ablated models are retrained accordingly with all com-
ponents, except for the ablated part, being kept the same.
To avoid selection bias due to the limited size of the dataset,
fivefold cross-validation is again applied for reliable evaluation
of the models in this and Section VI-E. Moreover, the reported
results are averages of the performance metrics of five trained
networks.

Table II lists the performance of the ablated models on the
same dataset where the proposed MLFF-Net is denoted as
Model C. In Model A, the multilevel feature fusion module
(see Fig. 4) is removed and the features extracted from the last
ResBlock are directly imported to the CAM-based classifier.
As presented in Table II, nearly all metrics of Model A are
around 4% lower than those of the proposed Model C, indi-
cating the substantial enhancement of the detection capability
by embedding multilevel feature fusion in the MLFF-Net.
In Model B, the CAM (see Fig. 4) is removed from the clas-
sifier to evaluate the contribution of the attention mechanism
to the MLFF-Net. The comparison between the performance
metrics of Models B and C verifies the significance of the
contribution of weighting fused features before inputting to
the classifier. To further investigate the effectiveness of the
CAM in the MLFF-Net, other well-recognized attention mod-
ules, including the squeeze and excitation module (SEM)
[47] and the convolutional block attention module (CBAM)
[48], are embedded into the network by replacing CAM.
Their performances are compared with those of CAM (see
Table III). Compared to the structure of the CAM, the SEM
only considers the channel dimensional dependency, whereas
the CBAM encodes the spatial features into a solo value, which
ignores the spatial correlations along both spatial dimensions
of a feature map. Therefore, it is not surprising that CAM
outperforms all other attention modules and the deployment of
the CAM in MLFF-Net yields the best performance metrics.
Overall, the implementation of all main components of the
designed MLFF-Net contributes to the highest performance,
demonstrating the significance of fusing multilevel feature

TABLE III
COMPARISON OF PERFORMANCE OF MLFF-NET WITH DIFFERENT

ATTENTION MODULES

maps and evaluating the corresponding attention for detecting
diverse defect signatures in the measurement data.

E. Comparative Study With the Existing DL Techniques

The effectiveness of the proposed MLFF-Net is proved
by comparing its performance with those of CNN-based DL
techniques, including the VGG [44], the ResNet [42], and the
DenseNet [43], and also a transformer-based method, ViT [49].
Furthermore, the CNN-MLP model [34], validated on the
synthetic dataset, is also used for comparison. To have a fair
comparison, the number of the input channels of all models is
revised to 10 for using the same dataset. Training and testing
settings in all networks are kept the same.

Table IV compares the performances of the proposed
MLFF-Net and the existing DL methods in terms of accuracy
and memory requirements. It is clear in Table IV that ViT-
16 performs the worst due to the large dataset requirement
of transformer-based techniques. Among CNN-based clas-
sifiers, VGG-16 performs the worst while it requires the
largest memory. Just like VGG-16, CNN-MLP exhibits a
poor performance compared to other CNN-based classifiers.
In contrast, DenseNet achieves high accuracy with a relatively
low memory requirement, while the ResNet-18 is the most
accurate one with a lower memory requirement compared to
DenseNet. Such a comparison indicates that capturing features
by completely cascading the convolutional layers in the VGG-
16 (or in CNN-MLP) is not effective for the measurement
data of real tree trunk samples. Instead, alternative ways
of transmitting features, such as the shortcut connections in
the ResNet-18 and the bypass connections in the DenseNet,
largely increase the diversity of the feature, therefore alle-
viating the degradation of the model with a small dataset.
Although the proposed MLFF-Net utilizes the same feature
extraction block as that in ResNet-18, its accuracy is even
better due to the contribution of the feature fusion module as
well as the CAM.

VII. APPLICATION OF THE PROPOSED STAND-OFF RADAR
SCHEME TO THE DETECTION OF THE DEFECT IN LIVE

TREES

A. Tests on Living Tree With Defect

The performance of the proposed stand-off radar scheme is
examined via its application to the detection of a cavity inside
a live tree [see Fig. 14(a)]. A live Araucaria cunninghamii
with a diameter of 46 cm is selected for the measurement as
it has an internal cavity at 1 m height, determined by another
testing technique. Using the same measurement configuration
(explained in Section II), four raw B-scans are obtained, while
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TABLE IV
COMPARISON OF THE PERFORMANCES OF THE PROPOSED MLFF-NET AND OTHER DL TECHNIQUES

Fig. 14. (a) On-field measurement setup. (b) Photograph of the cross-section
of the scanned portion of the defective tree trunk (obtained after being cut).

TABLE V
SCNR ENHANCEMENT AND PREDICTION BY THE PROPOSED SYSTEM

the midpoint of the slider is positioned near the four different
sides of the tree [see Fig. 14(a)]. The scanning is performed
from right to left while the antenna is facing toward the tree.
After the measurements, the tree is cut down and the cross
section of the scanned portion is photographed [see Fig. 14(b)],
where a cavity with an irregular shape is observed.

The proposed signal processing framework is used to pro-
cess four raw B-scans and reveal the signatures of defects.
In Fig. 15(a) and (b), the pulses reflected from the cavity
are hyperbolas with 180◦ of phase-shifted, which reverses the
pulse reflected from the bark due to the difference in the
refractive indices of the two media. The relatively smooth
outer shapes of the cavity seen from the scans from Positions
1 and 2 produce regular and continuous hyperbolic features of
defects in the B-scan. Although such characteristics of defects
are degraded in the B-scans at Positions 3 and 4 because of the
corresponding tortuous outlines of the cavity, the existence of
defects could be verified by visible abnormal defect signatures
in Fig. 15(c) and (d). Moreover, as indicated in Table V,
the signal processing framework improves the SCNR of the
B-scans of the live tree around 22–25 dB.

The processed B-scans are then imported to the well-
trained MLFF-Net for the rapid defect detection and health
diagnosis of the target tree. As can be seen in Table V, the

Fig. 15. Processed B-scan of measurements conducted at (a) Position 1,
(b) Position 2, (c) Position 3, and (d) Position 4.

network recognizes the diverse signature of the internal cavity
from three of the four processed B-scans successfully within
seconds, achieving an accuracy of 75%.

B. Tests of False Alarm Rate on Healthy Living Trees

False alarm rate is significant to avoid the incorrect identifi-
cation of healthy living trees as trees with defects. To evaluate
the false alarm rate of the proposed scheme, four healthy living
trees with diameters ranging from 25 to 45 cm are selected
by the arborist (see Fig. 16). Then, the scanning of each tree
trunk is conducted from four different sides by the developed
stand-off radar system, resulting in a total amount of 16 B-
scans. After the measurements, all trees are further verified
to contain no defects at the scanning height by the invasive
but reliable drilling resistance method. The collected data
are processed by the developed signal processing framework
accordingly. For illustration purposes, one selected processed
B-scan from each tree dataset is presented in Fig. 16. It can be
observed that the signatures of the late arrival signals after the
surface clutter are relatively regular in the processed B-scans
of healthy living trees.

Subsequently, all processed B-scans are fed into a well-
trained MLFF-Net for defect detection and the predicted health
conditions are shown in Table VI. Except for Tree 4, all
predictions of Trees 1–3 are correct even though the scans
are conducted from different sides of the tree trunk. The
consistent prediction of the same tree is attributed to including
the scans from different sides of the tree trunk when preparing
the training dataset. The total false alarm is 18.75%, which is
satisfactory but slightly higher than the performance reported
on the testing dataset measured in the laboratory.
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Fig. 16. Measurement scenarios and processed B-scans of (a) Tree 1,
(b) Tree 2, (c) Tree 3, and (d) Tree 4.

TABLE VI
PREDICTIONS OF FOUR HEALTHY LIVING TREES BY THE PROPOSED

SCHEME

C. Discussions of Results

The degraded performance of the well-trained MLFF-Net
on measurement data of living trees is expected and attributed
to two reasons. First, the total amount of scans conducted
on living trees is limited due to the difficulties of finding
target trees, especially trees with internal defects. As a result,
the evaluated accuracy may not be able to reflect the true
performance of the model. Second, the MLFF-Net is trained
with measurement data of tree trunk samples. Although the
tree trunk samples were scanned shortly after being obtained,
the variation of the moisture content during the storage could
result in different distributions of dielectric properties com-
pared to the living trees, influencing the penetration of the
transmitted signal. Additionally, the diversity of trees in terms
of the various shapes and individual characteristics of the
internal wood structures is not completely included in the
current dataset. All of these differences between the tree trunk
samples in the dataset and the living trees could lower the
model’s accuracy when applying it to defect detection in living
trees. To address such an issue, transfer learning could be

employed to fine-tune the well-trained MLFF-Net with another
small set of measurement data of the living trees, in which case
the weights of the parameters in the model are adjusted to fit
the signatures of defects inside the living trees. It should be
noted that the proposed DL-augmented radar scheme is a data-
driven approach, the performance of which could be enhanced
by enlarging the dataset size.

The performed on-field test validates the accuracy and effec-
tiveness of the proposed system for defect detection, which
can automatically perform the data collection, processing, and
prediction within minutes. With adequate training by datasets
of live trees that contain diverse defects in the future, the
proposed system is capable of rapid and accurate detection
of defects inside trees with differing species.

VIII. CONCLUSION

This work proposed a DL-augmented stand-off radar
scheme for real-time detection of the defects inside real tree
trunks. First, the proposed scheme performs the measurement
on the tree trunks in a contactless manner while its antenna is
moved on a straight trajectory (on a motorized slider). Then,
the measured B-scan is processed by a proposed signal pro-
cessing framework, consisting of free-space response removal,
C3-based zero-gating algorithm, and FIR filtering. The frame-
work automatically removes the clutter due to the antenna’s
internal reflection, and the reflection from the air–bark inter-
face, and suppresses the high-frequency components due to
their weak penetration into the tree trunks. By doing so, the
proposed signal processing framework improves the SCNR
of measurement data of tree trunk samples and living trees
by more than 30 and 22 dB, respectively, making the defect
features more visible in the B-scan. Finally, the processed
B-scan is inputted to MLFF-Net, particularly designed for
detecting defects of various sizes, positions, and types inside
the fresh-cut tree trunk samples with over 96% accuracy.
Besides the multilevel feature extraction and fusion, the atten-
tion mechanism is included through CAM, which emphasizes
the contributions of effective features along both channel and
spatial dimensions and significantly enhances the network’s
performance. The robustness of the proposed network has been
validated through the ablation study and the comparative study
with the existing DL techniques. The on-field tests of the
proposed radar scheme demonstrated its accuracy and potential
for incorporation into the workflow for routine structural health
screening of whole tree populations.

It is worth noting that the proposed scheme is validated on
the tree species with regularly convex shapes. Applying such a
scheme to more tree species with irregular nonconvex shapes
requires further developments in both air–bark clutter removal
and the design of more robust neural networks. Moreover, the
MLFF-Net is trained by the measurement dataset of tree trunk
samples, the permittivity and conductivity of which are lower
compared to that of the living trees due to the relatively low
water content. Such a variation could degrade the performance
when applying the well-trained model directly to the measure-
ment data of the living tree. Thus, fine-tuning the model with
another dataset of living trees is necessary to ensure a satisfied
performance. Last but not least, the detection capability of the
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proposed scheme might not be valid for tree species with much
higher relative permittivity and conductivity compared to the
Angsana tree, which is attributed to the degraded penetration
of the transmitted signal into the tree trunks. Studies, including
the design of an antenna with a higher gain that transmits the
signal with higher intensity, might mitigate this limitation. Our
ongoing work will further investigate new and novel network
architectures for the parameter estimation of defects. At the
same time, this work will be supplemented with the concurrent
development of techniques for imaging the tree interiors using
the proposed stand-off radar scheme.
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