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A B S T R A C T   

Cardiovascular diseases (CVDs) are main causes of death globally with coronary artery disease (CAD) being the 
most important. Timely diagnosis and treatment of CAD is crucial to reduce the incidence of CAD complications 
like myocardial infarction (MI) and ischemia-induced congestive heart failure (CHF). Electrocardiogram (ECG) 
signals are most commonly employed as the diagnostic screening tool to detect CAD. In this study, an automated 
system (AS) was developed for the automated categorization of electrocardiogram signals into normal, CAD, 
myocardial infarction (MI) and congestive heart failure (CHF) classes using convolutional neural network (CNN) 
and unique GaborCNN models. Weight balancing was used to balance the imbalanced dataset. High classification 
accuracies of more than 98.5% were obtained by the CNN and GaborCNN models respectively, for the 4-class 
classification of normal, coronary artery disease, myocardial infarction and congestive heart failure classes. 
GaborCNN is a more preferred model due to its good performance and reduced computational complexity as 
compared to the CNN model. To the best of our knowledge, this is the first study to propose GaborCNN model 
for automated categorizing of normal, coronary artery disease, myocardial infarction and congestive heart failure 
classes using ECG signals. Our proposed system is equipped to be validated with bigger database and has the 
potential to aid the clinicians to screen for CVDs using ECG signals.   

1. Introduction 

The heart pumps blood through the circulatory system [1], and any 
abnormality in the cardiovascular system can give rise to cardiovascular 
disease (CVD) [2]. Although death rates from CVDs are abating, CVDs 
continue to be the main cause of death in the United States. About 9.2 
million or 44% of adults in the United States are projected to have at 
least one type of CVD by 2030. Globally, CVDs are the main causes of 
death, exacting an annual death toll of 17.9 million according to the 
World Health Organization [3]. 

1.1. Etiology of CAD 

Coronary artery disease (CAD) is the most common type of CVD. CAD 

occurs when at least one of the left anterior descending (LAD), left 
circumflex (LCX) and right coronary (RCA) arteries is stenotic. In CAD, 
extracellular matrix in the inner lining of the coronary arterial wall 
combine with lipoproteins, exposing them for more lipoprotein modi-
fication and inflammation, resulting in the formation of vulnerable 
atherosclerotic plaques [4]. As inflammation progresses, there is cell 
death and accumulation of extracellular lipid in the artery wall of the 
lesion as well as calcium deposition [5]. The atherosclerotic plaque 
thickens, causing stenosis of the coronary lumen [6], which results in 
restriction of blood flow and delivery of oxygenated blood to the heart 
muscles, causing ischemia. 
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1.2. Etiology of MI 

Atherosclerotic lesions with thick fibrous caps and calcification but 
with relatively smaller lipid cores can slowly induce ischemia due to 
progressive plaque volume increase that encroaches the coronary lumen 
diameter. In contrast, some atherosclerotic lesions with larger lipid cores 
and thinner fibrous caps are vulnerable to rupture, in which the contents 
are suddenly spilled into the coronary lumen, triggering the thrombus 
formation which can occlude the lumen and completely disrupt 
myocardial blood flow [5]. This leads to acute myocardial infarction 
(MI) [7,8] in which heart muscles die due to a lack of oxygen for an 
extended time duration. 

1.3. Etiology of CHF 

There are many causes for congestive heart failure (CHF), the most 
common being CAD-induced ischemia or MI. Heart muscle damage from 
chronic repeated episodes of ischemia or after MI can induce adverse 
remodelling of the heart chamber and impair contractility of the heart 
muscle. In addition, mechanical complications of MI such as mitral 
regurgitation from papillary muscle dysfunction or rupture and, ven-
tricular septal rupture can aggravate cardiac embarrassment leading to 
heart failure [9]. Timely diagnosis of CAD and MI is important for the 
early treatment and to avert the possible development of CHF. 

1.4. Electrocardiography for diagnosis 

The current diagnostic methods of CVDs such as blood tests or car-
diac catheterization are invasive. Additionally, other noninvasive car-
diac testing methods have other disadvantages ranging from 
uncertainties on the suitable choice, order and frequency of cardiac 
imaging tests to perform in varying medical situations [10]. Further-
more, other tests such as cardiac magnetic resonance imaging (MRI) or 
echocardiography are expensive and require expert professionals to 
screen the ultrasound and MRI images [11]. Machine learning tech-
niques have been employed more successfully for the classification of 
CVDs in recent years [12–16]. Hence in this study, the authors propose 
to develop a cost-effective, non-invasive and user-friendly tool for the 
automatic diagnosis of CVDs using electrocardiograms. 

The ECG is the electrical activity of the heart which gets altered due 
to CAD, MI and CHF [17]. These diagnostic ECG alterations are often 
small amplitudes and for short durations. Hence visual interpretation by 
medical experts is subjective and prone to intra and/or inter-observer 
variabilities [18]. Automated systems incorporating machine learning 
algorithms can be used to improve the diagnostic sensitivities [19] and 
can be deployed to assist the clinicians in ECG screening to find CVDs in 
at-risk populations. In this study, an automated system based on a novel 
deep learning algorithm has been developed to classify ECG signals into 
normal (N), CAD, MI and CHF classes. 

2. Deep learning versus conventional machine learning 

In machine learning, models are trained with subsets of data to solve 
specific tasks [20]. The models employ a range of statistical, probabi-
listic and optimization methods to learn from previous experience and 
identify useful patterns from big, unstructured and intricate datasets 
[21]. In supervised learning, the data is split into training, testing and 
validation. As the model is being trained for classification tasks, it uses 
patterns in the training data to represent features to the target such that 
it is able to forecast based on future data [22]. The training and vali-
dation data are used to update the model about the link between features 
and target, whereas the test dataset is used to gauge the performance of 
the model in making predictions on unseen data [20]. Conventional 
classifiers commonly used for disease classification include support 
vector machines, random forest, naïve Bayes, decision tree and k-nearest 
neighbor [23]. 

Advanced classifiers such as artificial neural networks (ANN) are 
built using synthetic neurons to emulate biological neurons [22]. An 
ANN typically comprises an input data layer and an output data layer, 
with some hidden data layers (0–3) in between, whereas in a deep neural 
network, the number of hidden layers are in the ranges of ten to hun-
dreds [24]. As input data goes through each layer in sequence, they are 
successively modified at each layer such that at the last layer, they differ 
substantially from the original state. This transformation is triggered by 
rectified linear activation functions in deep models [24]. A single node 
in the last layer with sigmoidal activation relates to binary classification; 
and multiple nodes, to the predicted number of classes for multi-class 
classification [20]. Examples of deep models commonly used for dis-
ease classification include convolutional neural network (CNN) [25,26], 
long short-term memory network (LSTM) [27], recurrent neural 
network (RNN) [28] and autoencoders [29]. 

Deep learning models are generally preferred for disease classifica-
tion due to several advantages over traditional machine learning 
methods. In the latter, feature extraction and selection are not auto-
mated and need to be handcrafted. In deep learning, these processes are 
fully automated [15]. Furthermore, deep models can be trained by very 
large data, unlike machine learning models which perform well with 
smaller datasets [30]. Recently, Shakib et al. [31] used Gabor filters with 
CNN model to train the model with lesser time complexity. They re-
ported that Gabor filters were able to reduce a significant amount of time 
during the back-propagation training of the model, hence achieving a 
substantial reduction in training time of the model. Additionally, in 
another study, Alekseev et al. [32] reported that CNN models with 
Gabor layers showed improved performance on several datasets (6% 
improvement in accuracy), as compared to the conventional CNN 
model. Hence, from the two studies, it is clear that CNN model with 
Gabor filters performs well, yielding good accuracy and reduces 
computational complexity at the same time. Thus, the Gabor filter is 
used in this study to classify N, CAD, MI and CHF classes using ECG 
signals. 

Table 1 and Table 2 summarise studies that employed machine 
learning for binary and multi-class classification into N/abnormal and 
N/CAD/MI/CHF classes, respectively. 

From Table 1, it is observable that most authors developed deep CNN 
models [35,37,40,41,43,46,47,57,59,61] for the automated classifica-
tion of MI/CAD/CHF and normal classes while few authors developed 
hybrid deep models using CNN [18,39,42,45,51,53]. Fewer authors 
employed other deep models such as the deep belief model [48], 
autoencoders [49], deep multilayer perceptron [52], deep ensemble 
models [56], deep neural network [60] and long-short term memory 
model (LSTM) [54] and conventional machine learning classifiers such 
as artificial neural networks [33,34,36,39,58] for the classification. 
High classification accuracies of about 95% were achieved when inte-
gral features were extracted using neural networks in Ref. [33] and from 
CNN models [35,47]. 

Higher classification accuracies (more than 95%) were obtained in 
the following studies; the bat algorithm was employed with neural 
network in Ref. [34], feature fusion technique was explored with neural 
network in Ref. [44], Hilbert transform technique was employed with 
deep belief network in Ref. [48], extraction of multiscale features from 
the CNN model in Ref. [40], extraction of features from hybrid CNN 
models in Refs. [42,45,51,53], extraction of features from CNN models 
in Refs. [35,40,46,47,57,59,61], and extraction of features from LSTM 
model in Refs. [54,62], and from deep ensemble model in Ref. [56]. 
Additionally, the highest accuracy of 100% was obtained in Ref. [58] 
wherein autoregressive burg features were extracted from the random 
forest classifier. In Table 2, the CNN-LSTM hybrid model obtained a 
relatively high classification accuracy of 98.5% for the categorization of 
CAD, MI, CHF and normal classes. 
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Table 1 
a: Summary of studies that employed machine learning techniques for automated detection of normal and MI classes using ECG signals.  

Year Method Participant 
information 

Findings/Results (%) 

[33], 2014  • Artificial neural network  
• T-wave and total integral features  
• Classifiers 

MI: 290 
patients 

Naïve Bayes: 
AC: 94.74 

[34], 2015  • Enhanced Bat algorithm  
• Classifiers  
• Neural networks 

N: 52 subjects 
MI: 148 
patients 

Bat algorithm þ Levenberg-Marquardt Neural Network: 
AC: 98.90 

[35], 2017  • 1D CNN model  
• K-fold (k = 10) validation 

N: 52 subjects 
MI: 148 
patients 

AC: 95.22 

[36], 2017  • Classifier + Recursive Feature Eliminator + Artificial neural network  
• K-fold (k = 10) validation 

N: 52 subjects 
MI: 148 
patients 

AC: 80.60 
SN: 86.58 
SP: 64.71 

[37], 2018  • CNN model  
• Separability index 

N: 52 subjects 
MI: 148 
patients 

AC: 84.54 
SN: 85.33 
SP: 84.09 

[38], 2018  • Optimal biorthogonal filter bank  
• Nonlinear features  
• 10-fold validation 

N: 52 subjects 
MI: 148 
patients 

KNN classifier: 
AC: 99.74% 

[39], 2018  • CNN-LSTM model  
• K-fold (k = 10) validation technique  
• Sample shuffling 

PhysioNet: 
MI: 148 
patients 
N: 52 subjects 
Others: 90 
patients 
Noisy signals: 
278 records 

SN: 92.4 
SP: 97.7 
Ppv: 97.2 
F1 score: 94.6 

[40], 2018  • Multi-lead CNN model  
• Multiscale features 

N + MI +
other CVDs: 
290 
participants 
(549 records) 

AC: 96.0 
SN: 95.40 
SP: 97.37 

[41], 2019  • CNN model  
• K-fold (k = 10) validation technique 

N: 52 subjects 
MI: 127 
patients 

SN: 93.0 
SP: 89.7 

[42], 2019  • CNN + LSTM model  
• Oversampling 

N: 52 subjects 
MI: 148 
patients 

AC: 95.54 
SN: 98.2 
SP: 86.5 
F1 score: 96.8 

[43], 2019  • CNN model built from 12 leads ECG data N: 52 subjects 
MI: 148 
patients 

AC: 99.78 

[44], 2019  • Neural network  
• Feature fusion technique  
• K-fold (k = 5) validation technique 

N: 52 subjects 
MI: 112 
patients 

AC: 99.92 
F1 score: 99.94 

[45], 2019  • CNN + BLSTM hybrid model  
• Class-based five-fold validation technique 

N: 52 subjects 
MI: 148 
patients 

Class-based: 
AC: 99.9 

[46], 2019  • CNN model  
• End-to-end structure 

N: 125 652 
beats 
MI: 485 752 
beats (10 
types of MI 
data) 

AC: 99.78 

Table 1b: Summary of studies that employed machine learning techniques for automated detection of normal and CAD classes using ECG signals. 
Year Method Participant 

information 
Findings/Results(%) 

[47], 2017  • CNN model with 11 layers  
• K-fold (k = 10) validation 

N: 40 subjects 
CAD: 7 patients 

AC: 95.11 
SN: 91.13 
SP: 95.88 

[48], 2017  • Deep Belief model  
• Hilbert transform  
• K-fold (k = 10) validation 

N: 25 subjects 
CAD: 60 
patients 

AC: 98.05 
SN: 98.88 
SP: 96.02 

[49], 2017  • 2 deep autoencoder models and SoftMax classifier  
• 4 varying datasets  
• K-fold (k = 10) validation 

CAD: 303 
patients 

Switzerland data: 
AC: 92.20 

[50], 2017  • Higher order spectra features  
• Principal component analysis  
• Traditional classifiers 

N: 40 subjects 
CAD: 7 patients 

Decision tree classifier: 
AC: 98.99% 

[51], 2018  • LSTM + CNN model  
• Blindfold validation 

N: 40 subjects 
CAD: 7 patients 

AC: 99.85 

[52], 2018  • Deep neural network (multilayer perceptron)  
• Accuracy of diagnosis computed 

CAD: 303 
patients 

AC: 83.67 
SN: 93.51 
SP: 72.86 

(continued on next page) 
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3. Method 

3.1. Information on data 

In this work, we have acquired Lead II ECG signals from 92 healthy 
controls, 7 CAD, 148 MI and 15 CHF patients. The details of four data-
bases used to develop the CNN and GaborCNN models are given in 
Table 1. Signals obtained from Fantasia and St. Petersburg databases 
were upsampled to measure up to the sampling frequency (1000 Hz) of 
all signals and the segmentation of each signal resulted in a window 
length of 2 s (2000 samples). In all, 150,268 segments were used in the 
study. The number of segments belonging to each class is shown in 
Table 3. Fig. 1 shows the sample ECG signal belonging to N, CAD, MI and 
CHF class (extracted signals may not show the typical patterns). 

3.2. GaborCNN architecture 

3.2.1. CNN model 
In typical CNN models, filters undergo training to extract distinct 

features from input data and represent their position on the feature map. 
Deep CNN models then use the feature map as input to the subsequent 
layers, which use new filters to create another new feature map [64]. 
This process continues in the successive layers where the extracted 
features become more complex and competent for making predictions. 
The output feature map then classifies the signals based on the extracted 
features [24,64]. The CNN model is trained using backpropagation al-
gorithm [65] where the gradient values for the weight coefficients on 
various layers are collected repeatedly. Different variants of stochastic 
gradient descend techniques are then used to update the weights [32]. 
Fig. 2a depicts the typical architecture CNN model used in this work. 

Table 1 (continued ) 

Year Method Participant 
information 

Findings/Results (%) 

[53], 2018  • CNN-LSTM model  
• K-fold (k = 10) validation 

47 subjects 
(arrhythmia) 

AC: 98.10 
SN: 97.50 
SP: 98.70 

[54], 2019  • LSTM with focal loss, LSTM model 93371 ECG 
beats 
(arrhythmia) 

AC: 99.26 

[55], 2019  • Features from deep coding  
• Convolutional auto-encoder deep model 

100 022 signals 
(5 beat types) 

AC: more than 99 

[56], 2019  • Deep ensemble models  
• Spectral power density 
K-fold (k = 10) validation 

744 segments 
(29 subjects) 

AC: 99.37 
SN: 94.62 
SP: 99.66 

[57], 2020  • CNN model  
• K-fold (k = 10) cross validation 

PhysioNet: 
N, atrial 
premature beat, 
premature 
ventricular 
contraction: 48 
recordings 

AC: 98.33 
SN: 98.33 
SP: 98.35 

Table 1c: Summary of studies that employed machine learning techniques for automated detection of normal and CHF classes using ECG signals. 
Year Method Participant 

information 
Findings/Results(%) 

[58], 2016  • Traditional classifiers  
• Artificial neural network  
• Autoregressive (AR) Burg features 

N: 13 subjects 
CHF: 15 
patients 

Random forest classifier: 
AC: 100 

[59], 2019  • CNN model with 11 layers  
• 4 datasets  
• K-fold (k = 10) validation technique 

Dataset B 
N: 110 000 
signals 
CHF: 30 000 
signals 

AC: 98.97 

[60], 2019  • Deep neural network  
• Traditional classifiers 

N: 19 836 
subjects 
CHF: 1391 
HFrEF, 1538 
HFmrEF 
patients 

Area under the receiver operating characteristic of DEHF: 0.843 

[61], 2019  • CNN model  
• Traditional classifiers  
• K-fold (k = 10) validation technique 

CHF: 10 801 
patients 

SVM: 
AC: 84 
CNN: 
AC for Heart failure severity: 88.30 

[62], 2020  • LSTM model  
• Pre-processing of signals 

N: 10 
recordings 
CHF: 

AC: 99.86 
SN: 99.85 
SP: 99.85 

Abbreviations used: AC-Accuracy, SN-Sensitivity, SP-Specificity, Ppv-Positive Predicitive Value. 
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3.2.2. Gabor filters 
Gabor filters [66] are defined by a sinusoidal plane wave with spe-

cific frequencies and various orientations are used to extract spatial 
frequency structures from images [67]. 1-dimensional (D) Gabor func-
tion is ruled by the following equation [68],  

G σ, u (r) = g σ (r) . exp [j2πur], r = 0, 1, 2, … … W/2                                     (1) 

where. 
G σ (r) ¼ 1̅̅ ̅̅̅

2π
√ . exp [ -12 (

r
σ )

2 ]. 
The expression g σ (r) denotes the 1D Gaussian function with scale 

parameter σ. The intricate exp comprises a spatial frequency u. Hence, 1D 
Gabor filter parameters are specified by the frequency u and scale σ [68]. 
These filters are commonly used in computer vision, texture represen-
tation and face detection domains [32,69]. Gabor filters can be used to 
generate Gabor features which can be fed to the CNN model [70]. The 

first or subsequent layers can be set as a stable Gabor filter bank to 
reduce the trainable parameters in the network [71]. Also, convolu-
tional layers can be fine-tuned with learnable parameters by 
non-learnable convolutional Gabor filter bank [72]. Finally, the Gabor 
layer can be integrated into a CNN model by using it to substitute a 
convolutional layer in the deep model [32]. 

3.2.3. Gabor CNN deep model 
A CNN model was developed, for the automated categorization of N, 

CAD, MI and CHF classes (Fig. 2a). Inspired by Alekseev et al. [31], we 
used a Gabor filter with learnable parameters to substitute the first 
convolutional layer of the developed CNN model. First, an 8-layered 
(excluding the first layer) CNN model was developed using the 
following hyper-parameters: batch size 50, 60 epochs, learning rate 
0.001 and Adam optimization parameters (betas 0.9, 0.999) [73] 
(Fig. 2b). The weight map [74] from weighted loss function was used to 
counter the imbalanced dataset. Weight balancing helps to balance the 
data by changing the weight of training data, as the loss is computed. 
Hence weight balancing ensures that all the classes used in this study, 
contribute equally to the loss. Using weighted loss function is also less 
computationally intensive and hence used to tackle the imbalance in the 
dataset. Hence in this study, the weight of each class was computed 
using the equation n_classes * np.bincount(y) for optimal weights. The 
acquired signals were used to train the CNN model where the most 
discriminatory features were extracted and classified. K-fold cross - 
validation (k = 10) [75] was used to estimate the model’s performance 
wherein 80% of the data was used for training, while 20% was used for 
validation. Using the same specifications, a GaborCNN model was con-
structed (Fig. 2b). The only difference was that eight Gabor filters were 
used to replace the convolutional layer in the CNN model. The signals 
were fed to GaborCNN model and classified thereafter, similar to the 
CNN model. Tables 4 and 5 present the parameter details of each layer 
used to develop the CNN and GaborCNN models, respectively. Fig. 3 
shows the Gabor filter that was used for the learning of data in each 
class. This filter was applied to the input signals of each class. Fig. 4a–d 
illustrate the output from each class using 8 filters, respectively. 

4. Results 

Tables 5a and b show the results of the developed CNN and 
GaborCNN models, respectively. High accuracy, specificity and sensi-
tivity values of 99.55%, 99.67% and 99.27% were achieved respec-
tively, with the CNN model, for the categorization of normal, CAD, MI 
and CHF classes. The GaborCNN model attained good performance as 
well, with high accuracy, specificity and sensitivity values of 98.74%, 
99.46% and 98.74% respectively, for the same classification type. 

5. Discussion 

It can be noted from Table 1 that, CNN models [35,37,40,41,43,46, 
47,57,59,61] and CNN hybrid models [18,39,42,45,51,53], have been 
explored for the detection of CAD/MI/CHF classes using ECG signals. In 
Ref. [58], conventional classifiers and ANN were used for the classifi-
cation, and random forest classifier achieved an accuracy of 100% using 
a small dataset. The studies in Refs. [38,43–46,51,58,62] had achieved 
higher classification results than our study. However, these studies re-
ported on two- class (binary) classification problems, different from our 
study. Baloglu et al. [46] studied ECG signals from normal subjects and 
10 different types of MI. Their CNN-LSTM model obtained the highest 
accuracy of 99.78%. However, this study is different from ours as the 
authors did not perform a 4-class classification. 

Table 3 
Number of segments in each class.  

Type of signal Segment information 

Healthy 4703(PTB) & 80 000(Fantasia) 
Myocardial infarction 20 265 
Coronary artery disease 15 300 
Congestive heart failure 30 000  

Table 2 
Summary of studies that employed machine learning techniques for automated 

detection of N,CAD,MI, CHF classes using ECG signals.  

Authors Method Participant data Findings/ 
Results (%) 

[18], 
2020  

• CNN-LSTM 
model  

• K-fold (k = 10) 
validation 

MI: 148 patients 
CAD: 7 patients 
N: 92 subjects 
CHF: 15 patients 

AC: 98.5 
SN: 99.30 
SP: 97.89 
Ppv: 97.33 

[63], 
2017  

• Continuous 
wavelet 
transform  

• Contourlet and 
Shearlet 
transforms  

• Entropies and 
statistical 
features  

• Binary Particle 
Swarm 
Optimization 

MI: 148 patients 
CAD: 7 patients 
N: 92 subjects 
CHF: 15 patients 

Contourlet 
transform: 
AC: 99.55% 

This 
study  

• GaborCNN  
• CNN  
• K-fold (k = 10) 

validation 

Databases: PTB Diagnostic 
ECG + Fantasia Databases, 
St. Petersburg Institute of 
Cardiological Technics 12- 
lead Arrhythmia Database, 
PTB Diagnostic ECG 
Database, BIDMC 
Congestive Heart Failure 
Databa 
GaborCNN model: 
MI: 148 patients 
CAD: 7 patients 
N: 92 subjects 
CHF: 15 patients 
CNN model: 
MI: 148 patients 
CAD: 7 patients 
N: 92 subjects 
CHF: 15 patients 

CNN model: 
AC: 99.55 
SN: 99.27 
SP: 99.67 
Ppv: 98.69 
GaborCNN 
model: 
AC: 98.74 
SN: 98.74 
SP: 99.46 
Ppv: 97.50 

Abbreviations used: AC-Accuracy, SN-Sensitivity, SP-Specificity, Ppv-Positive 
Predicitve Value. 
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Fig. 2. Proposed model:(a) CNN and (b) GaborCNN.  

Fig. 1. Typical ECG signals of N, MI, CAD and MI classes.  
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Acharya et al. [63] had performed a similar 4-class classification and 
obtained the same accuracy of 99.55% as our study. However, the au-
thors had employed conventional machine learning methods which 
require features to be extracted and selected manually. This is more 
time-consuming as compared to features being extracted automatically 
from the deep models, in our study. Similar to us, Lui et al. [39] and Lih 
et al. [18] (Table 2) developed hybrid CNN-LSTM models for the 
detection of normal, MI and other CVDs and for the detection of normal, 
CAD, MI and CHF classes, respectively. Lui et al. [39] employed the 
sample shuffling technique but did not report the classification accuracy 
while Lih et al. [18] obtained an accuracy of 98.5%, which is less than 
our study. In fact, both our developed CNN and GaborCNN models ob-
tained higher classification accuracies than Lih et al. [18] for the same 
type of classification. While both models are competent, comparing 
Table 4 and 5, it is evident that lesser parameters were used for the first 

Table 4 
Parameter details in each layer of the develop CNN architecture.  

Layers Layer type Number of neurons (output 
layer) 

Number of 
parameters 

1 1d- 
convolution 

1991 × 8 88 

2 max pooling 995 × 8 0 
3 1d- 

convolution 
986 × 16 1296 

4 max pooling 693 × 16 0 
5 1d- 

convolution 
484 × 16 2576 

6 max pooling 242 × 16 0 
7 linear 32 123 936 
8 dropout 32 0 
9 linear 16 528 
10 linear 4 68  

Fig. 3. Learned Gabor filters.  

Fig. 4a. Gabor transformed normal signals (output).  

Fig. 4b. Gabor transformed CAD signals (output).  
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layer in the GaborCNN model as compared to the CNN model, hence the 
GaborCNN model is less computationally intensive than the CNN model. 
Thus, compared with the aforementioned, it is apparent that both our 
models exhibit good performance and our GaborCNN is a preferred 
model for the 4-class classification due to its reduced computational 
complexity. Additionally, to the best of our knowledge this is the first 

study to use GaborCNN model for the classification of normal, CAD, MI 
and CHF classes using ECG signals. 

Figs. 5 and 6 depict the confusion matrices obtained for CNN and 
GaborCNN models, respectively. Confusion matrices are used to describe 
the performance of the model wherein the average number of correct 
and incorrect predictions of a model are provided for each class. It can be 
seen that the CNN model has obtained high accuracy due to smaller 

Fig. 4c. Gabor transformed MI signals (output).  

Fig. 4d. Gabor transformed CHF signals (output).  

Table 5a 
Parameter details in each layer used of the develop GaborCNN architecture.  

Layers Layer type Number of neurons (output 
layer) 

Number of 
parameters 

1 Gabor 1d- 
convolution 

1991 × 8 24 

2 max pooling 995 × 8 0 
3 1d-convolution 986 × 16 1296 
4 max pooling 493 × 16 0 
5 1d-convolution 484 × 16 2576 
6 max pooling 242 × 16 0 
7 linear 32 123 936 
8 dropout 32 0 
9 linear 16 528 
10 linear 4 68  

Table 5b 
Classification results of model: (a) CNN and (b)GaborCNN.  

Classes Average 
SN (%) 

Average 
SP (%) 

Average 
PPV (%) 

Average 
AC (%) 

Average 
success rate 
(%) 

(a)  
N 98.85 99.49 99.60 99.13 99.55 
MI 99.95 99.95 99.58 99.95 
CAD 98.67 99.35 95.96 99.26 
CHF 99.64 99.90 99.62 99.85 

(b)  

N 97.95 99.39 99.52 98.58 98.74 
MI 99.13 99.75 97.82 99.68 
CAD 98.56 98.92 93.47 98.87 
CHF 99.30 99.79 99.19 99.69  
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misclassification values of 0.01%, 0%, 0.01% and 0% for normal, CAD, 
MI and CHF groups, respectively. Similarly, smaller misclassification 
values of 0.02%, 0.01%, 0.01% and 0.01%, are obtained for normal, 
CAD, MI and CHF groups, respectively contributing to the high 

classification accuracy using Gabor CNN model. Figs. 7 and 8 show the 
plots of accuracy versus number of epochs obtained for CNN and 
GaborCNN models, respectively. Both models learned the data well over 
the epochs during training and validation, attesting the robustness of 
both models. However, the GaborCNN model diverges less (less gap 
between training and validation accuracy curves) compared to the CNN 
model, implying less overfitting and better performance. Additionally, 
the GaborCNN model used lesser training weights and is computation-
ally less intensive compared to the CNN model. This indicates that our 
proposed GaborCNN model is fast and accurate for the classification of 
ECG classes. 

Advantages and limitations of this study are listed below: 

5.1. Advantages  

1. This is the first study to have integrated Gabor filter in the CNN 
model to automatically classify normal, CAD, MI and CHF classes 
using ECG signals.  

2. Obtained high classification accuracies of 99.55% and 98.74% by 
CNN and GaborCNN models respectively for the detection of normal, 
CAD, MI and CHF classes.  

3. Employed ten-fold validation and the model is robust.  
4. Generated GaborCNN model used less weights and hence can be 

trained faster.  
5. GaborCNN model has the potential to classify other ECG classes with 

highest classification performance. 

5.2. Limitations  

1. Used few subjects for CAD and CHF groups in our proposed study.  
2. Larger dataset is necessary to train and test the GaborCNN model. 

In our future work, we hope to gather more data to train the 
GaborCNN model and improve the classification accuracy of CAD ECG 
signals, so that the onset of CAD could be detected early to prevent it 
from progressing to MI or CHF. 

6. Conclusion 

CVDs are the primary cause of death globally, costing about 17.9 
million lives yearly. Thus, early diagnosis of CAD is crucial to provide 
timely treatment and avert the progression of CAD to MI or CHF. This 
study aims to compare the performance of two deep models for the 
automated categorization of normal, CAD, MI and CHF classes using 
ECG signals. The ECG data used in this work data used were imbalanced. 
Hence, weight balancing was used to balance the dataset. Both the CNN 
and GaborCNN models yielded high classification accuracies of more 
than 98.5%, for the 4-class classification of normal, coronary artery 
disease, myocardial infarction and congestive heart failure classes. This 
is the first study to use Gabor filter in the CNN model to develop a 
GaborCNN model for the detection of normal, CAD, MI and CHF classes. 
Furthermore, our proposed GaborCNN model is more effective than the 
CNN model for the diagnosis of four classes, as it can be trained faster 
with lesser weights and achieving high accuracy performance. Hence, 
the developed model is preferred for the classification and can be 
potentially used as an assistive tool for clinical experts to confirm their 
diagnostic decisions quickly. 

Fig. 6. Confusion matrix of GaborCNN model.  

Fig. 5. Confusion matrix of CNN model.  
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