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Human gesture recognition (HGR), which uses mathemati-
cal algorithms to interpret human motion, is of value in 
healthcare1,2, human–machine interactions3–5 and the study 

of cognitive neuroscience6. Sensing and recognition methods 
often use algorithms that depend on visual images and/or videos. 
However, the efficiency of these methods is limited by the quality 
of the images, which are affected by environmental interference 
such as blocked objects (known as occlusions) and varying light 
conditions7,8.

One approach to overcome these issues is multimodal fusion, 
which combines visual data with additional sensor information (for 
example, instantaneous orientation, spatial positions or the velocity 
of human gestures) obtained from wearable inertial9–12, force8 and 
optical oscillator13 sensors. Multimodal fusion has been shown to 
improve the recognition accuracy and precision of HGR, but the 
approach is limited by poor-quality sensor data. Wearable sensors, 
in particular, are typically bulky, rigid and do not form an intimate 
contact with the user for high-quality data acquisition14,15. Moreover, 
integrating visual datasets containing images or videos with wear-
able sensor datasets (usually recorded as one-dimensional (1D) 
time-series or discrete data) is challenging due to the mismatch in 
data dimensionality and data density (known as sparseness).

Different machine learning methods have been used to fuse visual 
and sensor data, including the hidden Markov model9, support vec-
tor machine16 and K-nearest-neighbour12,16 classifiers, as well as 
deep convolutional neural networks (CNNs)11,17,18. A CNN is a pow-
erful machine learning method because it can automatically learn 
hierarchical deep spatial features and extract shift-invariant features 
from original images19–21. As a result, CNNs have been applied suc-
cessfully in visual recognition tasks such as image classification22,23  
and playing strategic board games such as Go24,25. However, the  

current application of CNN in multimodal (visual-wearable sensor) 
fusion has been limited to decision-level fusion—that is, the visual 
and sensor data are first classified independently, and the classifica-
tion results are merged later—because mismatched dimensionality 
and sparseness of the datasets remain an issue.

Recent physiological and neuroimaging results based on audiovi-
sual–vocal detection26,27 and enhanced interactions with objects28,29 
show that early interactions of different modalities (visual and 
somatosensory) in the multisensory neurons area in the brain 
(Fig. 1a), including the association area (AA), are beneficial for 
perceptual decision-making. Although the fusion process of these 
early interactions is unclear30,31, the results suggest that converging 
visual and wearable data early in perceptual decision-making could 
potentially improve the accuracy of the recognition tasks. Moreover, 
biological neural systems have demonstrated that the sparse con-
nectivity between neurons leads to complex sensory data processing 
with global efficiency and little power32.

In this Article, we report a bioinspired learning architecture 
that fuses visual images and somatosensory data from skin-like 
electronic devices early in the process for human gesture recogni-
tion tasks. Our bioinspired somatosensory–visual (BSV) associ-
ated architecture consists of three neural networks resembling the 
somatosensory–visual (SV) fusion hierarchy in the brain (Fig. 1b): 
a sectional CNN for early visual processing, a multilayer neural net-
work for early somatosensory information processing and a sparse 
neural network that fuses early visual and somatosensory infor-
mation at a high level. The sectional CNN performs convolution 
operations that resemble the function of the local receptive field in 
biological nervous systems33,34, and thus mimics the initial process-
ing of visual information in the visual primary areas (PA; Fig. 1a). 
The sparse neural network represents the early and energy-efficient 
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interactions of visual and somatosensory information in the multi-
sensory neurons area of the brain. Motivated by the stability theory 
of linear systems, we have developed a pruning strategy based on a 
Frobenius condition number to obtain the sparse neural network. 
To capture somatosensory information, we have built a stretch-
able sensor that is transparent, conformable and adhesive using 
single-walled carbon nanotubes (SWCNTs).

Our BSV architecture can classify hand gestures against complex 
backgrounds with an accuracy of 100% using a custom SV dataset. 
Compared to two unisensory (visual- and somatosensory-based 
recognition) and three common SV fusion approaches 
(weighted-average, weighted-attention and weighted-multiplication 
fusion), our BSV architecture offers superior tolerance to noise and 
over- and under-exposures. We also use the BSV architecture to 
control a quadruped robot with hand gestures, achieving an error of 
1.7% under a normal illuminance of 431 lux and 3.3% under a dark 
illuminance of 10 lux.

Conformable, transparent and adhesive stretchable 
sensors
We fabricated a transparent, adhesive and stretchable strain sensor 
that can conformably attach on human skin to accurately capture 
somatosensory signals from human gestures. The sensor was made 
to be transparent to ensure it is inconspicuous in the visual infor-
mation, and made stretchable to meet the deformation limit (75 % 
strain) of human parts in most activities35. The stretchable sensor is 
a three-layer stacked structure consisting of SWCNTs as the sens-
ing component, a stretchable polydimethylsiloxane (PDMS) layer 
and an adhesive poly (acrylic acid) (PAA) hydrogel layer (Fig. 2a, 
see Methods and Supplementary Fig. 1 for details of fabrication). 
Before thermal polymerization of the PAA precursors, PDMS was 
treated with a mixture of argon and acrylic gas36. This plasma treat-
ment chemically modifies the PDMS surface with an acrylic acid 
layer (Fig. 2b and Supplementary Fig. 2)37, allowing PAA hydrogels 
to bond strongly with PDMS.

To minimize visual interference of the SWCNT layer, we tested 
different amounts of SWCNTs and found that 40 µl of a 0.1 mg ml−1 
solution in a pattern area of 2 × 0.4 cm2 had the best combina-
tion of high transparency and reliable strain sensing performance 

(Supplementary Fig. 3). Vacuum filtration produced SWCNT films 
with an optical transmittance of 89% at a wavelength of 550 nm 
(cyan curve, Fig. 2c). After transferring the SWCNT film onto the 
PDMS substrate, transmittance remained high at 83% at 550 nm 
(orange curve, Fig. 2c). Following PAA polymerization, the resul-
tant conformable and adhesive stretchable strain sensor had an 
optical transmittance above 74% at wavelengths between 400 nm 
and 900 nm (red curve, Fig. 2c), allowing it to remain inconspicu-
ous in the photographs (Fig. 2d and inset to Fig. 2f). Furthermore, 
the polymerized PAA hydrogel layer, which is highly adhesive on 
human skin (1.27 N cm−2 versus 0.07 N cm−2 for PDMS), allowed 
the strain sensor to conformably attach on the finger (Fig. 2e and 
Supplementary Video 1).

The sensors showed stretchability up to 100% (Fig. 2f), which is 
enough for monitoring somatosensory signals from a human hand 
(inset, Fig. 2f). Time-dependent relative change (ΔR/R0) responses 
of five successive loading and unloading cycles at peak strains of 
5%, 25%, 50% and 75% show the sensors are stable and can undergo 
various dynamic loading tests (Fig. 2g). To further verify durability 
and reproducibility, we measured the ΔR/R0 responses of the strain 
sensor at a peak strain of 50% over 1,000 cycles (Fig. 2h). The resis-
tance response of the strain sensor was stable and regular, with an 
almost constant base resistance. These results show that stretchable 
strain sensors can reliably collect somatosensory signals without 
affecting the visual images, making them suitable as somatosensory 
receptors for the BSV fusion architecture.

Data collection and classification performance
To implement a recognition task based on BSV associated learning, 
we built a custom SV dataset containing 3,000 SV samples distrib-
uted into 10 categories of hand gestures (Fig. 3a,b). Each SV sample 
consisted of one image of a hand gesture taken against a complex 
background, and one group of strain data captured from five strain 
sensors patched over the knuckle of each finger on one hand (Fig. 3a).  
The sensors extracted curvature information from the fingers, which 
were relevant to defining hand motions. Figure 3c shows the flow 
diagram for preparing the SV dataset (see Methods). To allow for 
device variation and hysteresis, the raw strain data were first normal-
ized before being used as the nominal somatosensory information for 
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the hand gesture (Supplementary Note 1 and Supplementary Fig. 4).  
A commercial off-the-shelf camera sensor was used to capture the 
hand gesture image as the nominal visual information.

We used t-distributed stochastic neighbour embedding 
(t-SNE)—a dimensionality reduction technique—to visualize the 
group of 3,000 strain data (Fig. 3d)38. Each point on the plot repre-
sents the somatosensory information of one hand gesture projected 
from the 5D strain data into two dimensions. The points of the same 
gesture category (that is, the same colour) are clustered together, 
forming roughly 10 categories of hand gestures (I to X). The slight 
overlap seen in some categories is due to the similarity in bending 
states of the fingers in those gestures, which the strain sensors can-
not easily distinguish. These results nonetheless show that somato-
sensory information from a human hand can provide valuable clues 
for hand gesture recognition.

We used the SV dataset and BSV associated learning architec-
ture for hand gesture recognition. Figure 4a shows the detailed 
framework of the BSV associated learning architecture, including 
an AlexNet CNN39 that was pretrained using the ImageNet data-
set (Supplementary Note 2), and a five-layer sparse neural network  

(sc8–sc12). Briefly, the pretrained AlexNet is used to learn a visual 
representation of a given hand gesture in a cost-effective and 
energy-efficient way. This learned visual output of AlexNet, which 
can be reviewed as transferable semantic features, is then concat-
enated with the learned somatosensory representation—a 5D vector 
of the collected strain data from one hand gesture—to form a new 
53D vector that serves as an input to the five-layer sparse neural net-
work for final learning. The sparse connectivity of the neural net-
work enhances the energy efficiency and generalization ability of the 
BSV architecture for scalable sensory data fusion, which has been 
demonstrated by both biological and computer fields32,40. Motivated 
by the stability theory of linear systems41, we developed a pruning 
strategy that depends on the Frobenius condition number of the 
global weighting matrix to achieve the sparse neural network (Fig. 
4b and Supplementary Note 3). Briefly, the connections in a dense 
neural network are pruned if their removal does not lead to signifi-
cant numerical increase of the Frobenius condition number of the 
weighting matrix. In the fusion procedure, the BSV associated learn-
ing is first trained on a five-layer dense neural network using a back-
propagation algorithm and is then pruned via our sparse strategy  
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based on the neural network toolbox of MATLAB. The training, 
validating and testing samples were randomly selected in a ratio of 
66:14:20 from the 3,000 samples within the SV dataset. The final 
classification performance of the BSV associated learning strategy 
can reach up to 100% for hand gesture recognition. These classifica-
tion results are competitive with those (99.7%) using a dense neural 
network and superior to those (97.8%) based on another pruning 
strategy under the same BSV architecture (Supplementary Table 1), 
indicating that our pruning strategy can learn more general weights 
for making decisions.

As a further comparison, we implemented two unisensory 
recognition approaches for hand gesture recognition, including 
visual-based recognition using only visual images based on a CNN, 
and somatosensory-based recognition using only strain sensor  
data based on a feedforward neural network (Supplementary Fig. 5).  
The receiver operating characteristic (ROC) curves were used 
to illustrate the recognition ability of these approaches as their  

discrimination threshold was varied. For each threshold, we calcu-
lated the sensitivity and specificity, which are defined as

Sensitivity ¼ true positive
positive

Specificity ¼ true negative
negative

where ‘true positive’ is the number of correctly predicted hand ges-
tures for a given class, ‘positive’ is the number of hand gestures of 
the given class, ‘true negative’ is the number of correctly predicted 
hand gestures except the given class and ‘negative’ is the number 
of hand gestures except for the given class. The BSV associated 
learning exhibited the best classification sensitivity and specific-
ity in all 10 categories of hand gestures (Fig. 4c). Compared with 
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visual- and somatosensory-based recognition, the area under 
the ROC curve for BSV associated learning showed the maxi-
mum value (Fig. 4d,e). Furthermore, the confusion matrix maps 
for these approaches showed that, in a testing dataset containing 
600 samples, the least number of testing samples were misrecog-
nized in the BSV associated learning (Supplementary Fig. 7a–c). 
The BSV associated learning achieved the best recognition accu-
racy (100%, compared with visual-based recognition (89.3%) and 
somatosensory-based recognition (84.5%); Fig. 4f). These results 
demonstrate that pattern recognition in computer vision can be 
improved when coupled with somatosensory information obtained 
from skin-like electronic devices.

We further compared BSV associated learning with three other 
known SV fusion architectures—weighted-average fusion (SV-V), 
weighted-attention fusion (SV-T) and weighted-multiplication 
fusion (SV-M)—for hand gesture recognition using the same 
SV dataset, as well as the same training and testing dataset 
(Supplementary Fig. 6). In SV-V, the average of two probabilities 
(P(xvisu) and P(xsoma)) was taken as the final output:

P xVð Þ ¼ 0:5 ´ P xvisuð Þ þ 0:5 ´ P xsomað Þ

where P(xvisu) is the output probability of the last layer of CNN in 
the visual-based recognition strategy, and P(xsoma) is the output 
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probability of the last layer of feedforward neural network in the 
somatosensory-based recognition strategy. In SV-T, a weighted 
integration of these probabilities was used as the final output:

P xTð Þ ¼ m ´P xvisuð Þ þ n ´P xsomað Þ

where m and n are obtained from an addition least-square training 
process. In SV-M, the multiplication of P(xvisu) and P(xsoma) was used 
as the final output:

P xMð Þ ¼ P xvisuð Þ ´ P xsomað Þ

The error rates in the three common SV fusion recognition 
strategies (6.3% for SV-V, 4.2% for SV-T and 3% for SV-M) were 
significantly higher than for BSV associated learning (Fig. 4f and 
Supplementary Fig. 7c–f). Moreover, we compared the BSV asso-
ciated learning with state-of-the-art recognition approaches for 
hand gesture application (Supplementary Table 2) and also evalu-
ated it on a public hand gesture dataset (Supplementary Table 3).  
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The comparison results demonstrate that the BSV associated learn-
ing always maintains the best classification performance (>99%), 
indicating the BSV can make best use of the complementary visual 
and somatosensory information due to its early interactions and 
rational visual preprocessing.

We also assessed the effect of visual noise on the recognition accu-
racies of these trained models (visual, SV-V, SV-T, SV-M and BSV 
based recognition strategies) by adding Gaussian white noise into 
the images in the testing dataset (Supplementary Fig. 8). Increased 
noise level significantly deteriorated the recognition accuracies of 
the visual, SV-V, SV-T and SV-M strategies, while BSV continued to 
maintain high recognition accuracies (Fig. 4g). These results show 
that our BSV associated learning architecture is tolerant of defects 
in the visual information, such as noise and motion blur, and is 
clearly superior to current multimodal recognition approaches due 
to the biological visual–somatosensory interaction.

Precise HGR for human–machine interactions
As a proof-of-concept application for human–machine interac-
tions, we built an auto-recognition and feedback system that 
allows humans to interact with a robot through hand gestures 
using our BSV associated learning architecture. This system con-
sists of a data acquisition unit (DAQ) for capturing the somato-
sensory information of a hand, a built-in camera for capturing the 
images of hand gestures, a computer for implementing the BSV 
associated learning, a wireless data transmission module and a 
quadruped robot (Fig. 5a; a photograph of the system is shown in 
Supplementary Fig. 9). Each of the 10 categories of hand gestures 
was assigned a specific motor command that relates to directional 
movements (Fig. 5b). The different hand gestures were then used 
to guide the quadruped robot through a labyrinth. Hand gesture 
recognition powered by our BSV associated learning architecture 
was able to guide the robot through the labyrinth with zero error, 
compared to six errors with visual-based recognition (Fig. 5c,d and 
Supplementary Video 2).

Importantly, the robotic system based on our BSV fusion also 
worked effectively in the dark (Supplementary Video 3). We tested 
the recognition results of the 10 categories of hand gestures in envi-
ronments with varying illuminances (431, 222 and 10 lux) by adjust-
ing the light condition in a room. The lowest illuminance of ~10 lux 
resembles an open parking lot at night. For each light condition, 60 
trials (six trials per category of hand gesture) were carried out to 
control the motion of the robot. Recognition accuracies for all four 
approaches (visual, SV-V, SV-T, SV-M and BSV recognition) under 
illuminance of 431, 222 and 10 lux are shown in Fig. 5f. When the 
room lights faded, the accuracy of the visual, SV-V, SV-T and SV-M 
approaches decreased dramatically, whereas BSV associated learning  
maintained high accuracy (>96.7%). This trend was consistent 
when testing was done using the same dataset but with the images 
mathematically processed to have varying brightness (Fig. 5e and 
Supplementary Fig. 10). Similar to its tolerance of noise defects, the 
BSV associated learning system is highly accurate and can with-
stand the harsh environments that cause under- or over-exposure in 
images with brightness times ranging from 0.4 to 2.5 (more scenar-
ios with brightness times below 0.4 are provided in Supplementary 
Fig. 11a). A part of the explanation is the complementary effect of 
somatosensory information that is invariant to the light factors. 
However, the more important part is the early visual–somatosen-
sory interaction in the BSV associated learning, which improves the 
precision significantly, even in harsh environments (Supplementary 
Fig. 11), due to the collection of coherent information to reduce per-
ceptual ambiguity28. Such a tolerant learning system with improved 
precision in sensing, perception and feedback is critical for various 
human–machine applications, particularly in healthcare and aug-
mented reality fields.

Conclusions
We have reported a learning architecture that integrates visual 
and somatosensory information to achieve high-precision hand 
gesture recognition. We have fabricated an adhesive stretchable 
strain sensor that can be conformably attached to human skin to 
acquire reliable somatosensory information of hand gestures, and 
used a commercial camera sensor to obtain images. The trans-
parent (89%) strain sensor was inconspicuous in the images. 
Compared to unisensory and common SV fusion architectures, 
our BSV learning, which employs a pruning strategy based on a 
Frobenius condition number, achieved a superior accuracy (100% 
using a custom dataset) for hand gesture recognition against com-
plex backgrounds. The BSV fusion process can tolerate undesir-
able features in the visual information, such as noise and under- or 
over-exposure. As a result, the approach can achieve a high rec-
ognition accuracy (over 96.7%), even in the dark. The learning 
architecture was also implemented for the control and navigation 
of a quadruped robot using hand gestures. Our work illustrates 
that the integration of skin-like electronics with computer vision 
can significantly improve the precision of HGR, even under harsh 
environmental scenarios, and is promising for recognition tasks in 
human–machine interaction applications.

Methods
Fabrication of the stretchable strain sensor device. SWCNTs and PDMS  
were purchased from Carbon Solution and Sigma-Aldrich, respectively.  
Acrylic acid, N,N′-methylenebisacrylamide (BIS, crosslinker), potassium 
persulfate (KPS, thermal initiator) and N,N,N′,N′-tetramethylethylenediamine 
(TEMED, co-initiator) were purchased from Sigma-Aldrich. To fabricate the 
stretchable strain sensor without the PAA hydrogel layer, SWCNTs were first 
dispersed in deionized water by sonication for 2 h, resulting in a solution of 
SWCNTs with concentration of 0.1 mg ml−1. A 120-µl volume of SWCNT 
solution (total usage amount of three strain sensors) was further diluted into 
40 ml of deionized water to form the resultant solution for vacuum filtration. 
The filter membrane was patterned into three rectangular patterns (pattern 
dimensions, 2 × 0.4 cm2). After filtering, the SWCNT layer was transferred 
to a half-cured PDMS film (first curing) to enhance the bonding strength 
between the SWCNT and PDMS layers. This half-cured PDMS was obtained 
by curing PDMS precursors (mixed in a weight ratio of 10:1 and spin-coated 
onto a hydrophobization-treated Si wafer at 800 r.p.m. for 60 s) in an oven at 
60 °C for 40 min. After the transferring step, the wafer was placed in the oven 
at 60 °C for 8 h to further cure the PDMS (second curing). We thus achieved 
a highly transparent stretchable strain sensor with a patterned and uniform 
SWCNT sensing layer. For PAA polymerization on the PDMS substrate, before 
the polymerization, a plasma polymerization procedure was carried out to 
chemically modify the PDMS surface (on the opposite side to the SWCNT) by 
using treatment with argon gas (3 mbar, 1 min), followed by a mixture of argon 
and acrylic acid gas (4 mbar, 4 min). Acrylic acid (1 ml), BIS (2.5 mg), TEMED 
(35 µl) and KPS (175 mg) were subsequently added to 5 ml deionized water. The 
resultant solution was dropped onto the modified PDMS surface for thermal 
polymerization on a hotplate at 70 °C for 20 min. After thermal polymerization, 
a stretchable strain sensor with a PAA hydrogel adhesion layer was obtained for 
use in capturing somatosensory signals.

Characteristics of the stretchable strain sensor. The strain sensing characteristics 
of the stretchable strain sensor devices were measured using electrical measurement 
equipment (Keithley 4200 semiconductor device parameter analyser) and 
mechanical measurement equipment (MTS Criterion Model 42). The measurement 
of optical transmittance was carried out using a UV-2550 instrument.

Dataset preparation. Our SV dataset contained 3,000 SV samples in total. Each 
SV sample consisted of one hand gesture image with a complex background 
(corresponding to visual information) and five strain sensor data (corresponding 
to somatosensory information). The hand gesture images were captured by 
commercial off-the-shelf camera sensors. The corresponding five strain sensor 
data were obtained simultaneously by the fabricated stretchable strain sensors, 
which were patched onto the five fingers of a human hand. To guarantee the 
generalization ability of the dataset, a total of 10 volunteers and 80 strain sensors 
were used to collect somatosensory and visual information, thus taking into 
account individual differences and device variation of the strain sensors.  
The raw images captured by the camera sensors were resized to 160 × 120 pixels. 
The resistance change (ΔR/R0) of the strain sensors was further processed by a 
normalization step. The normalized ∆R/R0 was regarded as the somatosensory 
information.
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Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request. The SV 
datasets used in this study are available at https://github.com/mirwang666-ime/
Somato-visual-SV-dataset.

Code availability
The code that supports the plots within this paper and other findings of this study 
are available at https://github.com/mirwang666-ime/Somato-visual-SV-dataset. 
The code that supports the human–machine interaction experiment is available 
from the corresponding author upon reasonable request.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data collection listed in Methods. All software used in this study for data collection are either commercially available or open source.

Data analysis All software used in this study for data analysis are either commercially available or open source. For example, Matlab R2017a and Origin 
8.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

SV dataset is available. See: https://github.com/mirwang666-ime/Somato-visual-SV-dataset
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Study description The images of right hand gestures and the corresponding strain sensor information were collected from 10 volunteers. Details listed in 
Methods.

Research sample Ten volunteers are male or female adult Asians. Their ages are from 18 years old to 40 years old.

Sampling strategy Normalization process for strain data listed in Supplementary Text 1.

Data collection Data collection listed in Methods. 

Timing The normalized ΔR/R0 at 10 seconds after each hand gesture changed was chose as the somatosensory data. Details list in 
Supplementary Figure 4.

Data exclusions No data were excluded from the analyses.

Non-participation No participants dropped out participation.

Randomization Participants were not allocated into experimental groups.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
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ChIP-seq
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MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Colleagues and students
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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