

MSN (US)

13 Dec 2025

Routine brain scans may hide an early Alzheimer's warning

Routine brain scans may hide an early Alzheimer's warning

Morning Overview

Story by Cassian Holt

Routine brain scans are starting to reveal something that was invisible to doctors a decade ago: subtle structural changes that may foreshadow Alzheimer's disease long before memory tests fail. Instead of waiting for confusion, lost keys, or missed appointments, researchers are learning to read early warning signs etched into the brain's plumbing and architecture.

Those clues are turning up in the same MRI and PET images already used to rule out strokes, tumors, or injuries, suggesting that the first hints of Alzheimer's risk may be hiding in plain sight. As scientists refine how they interpret these scans, they are also racing to connect imaging with blood tests, eye exams, and careful clinical evaluations so that a diagnosis no longer arrives only after years of silent damage.

The hidden drainage problem inside “normal” MRIs

One of the most striking new insights is that the brain's waste disposal system can be seen clogging up on routine MRI long before a person is diagnosed with dementia. Researchers in Singapore reported that tiny fluid-filled channels, which act like natural drains, appear “clogged” in some older adults, and that this pattern is visible on standard MRI scans that many hospitals already perform. These drainage spaces sit alongside blood vessels and help clear harmful proteins from the brain, including the amyloid and tau that accumulate in Alzheimer's disease.

Related video: The Roots of Dementia Trace Back All the Way to Childhood, Experts Find (ScienceAlert)

In people at higher risk of Alzheimer, those drainage spaces look different: more dilated, more irregular, and in some cases more obstructed, a pattern the Singapore team described as [clogged brain “drains”](#). They found that when these natural “drains” are impaired, waste products linger, potentially seeding the very plaques and tangles that define Alzheimer’s pathology. The unsettling implication is that a scan ordered for headaches or dizziness might already contain a quiet warning about future cognitive decline, even if the radiology report calls it “unremarkable.”

A new generation of MRI techniques

Standard MRI has long been used to rule out structural problems, but newer techniques are being tuned to pick up the earliest biological shifts linked to dementia. In one study, scientists used a specialized MRI technique to measure subtle changes in brain tissue and blood flow, then followed people over time to see who developed memory problems. The researchers reported that their [MRI technique](#) could predict Alzheimer’s risk years before symptoms developed, although they stressed that larger and more diverse studies are still needed.

These advanced scans do not replace traditional images, they build on them. Radiologists can still look for strokes or tumors, but they can also quantify how certain brain regions are shrinking, how networks are reorganizing, and how blood moves through critical memory circuits. When combined with the drainage patterns seen in Dec reports of [clogged spaces](#), these MRI advances suggest that the earliest stages of Alzheimer’s may be detectable not as a single dramatic lesion, but as a mosaic of small, quantifiable changes.

Brain reshaping as a geometric warning sign

Alongside drainage and tissue changes, researchers are also studying how the brain’s overall shape shifts years before dementia is diagnosed. One group has developed a geometric approach that analyzes how folds, curves, and surface areas evolve over time, treating the brain almost like a 3D landscape that can be mathematically mapped.

Their work suggests that this [geometric approach](#) could eventually provide new markers for identifying dementia risk, potentially years before symptoms appear.

Instead of focusing only on whether a structure like the hippocampus is smaller, the method looks at how entire regions are reshaping, which may capture the complex way Alzheimer's affects networks rather than single spots. The researchers argue that this kind of modeling is especially important for a complex disease like Alzheimer's, where damage accumulates slowly and unevenly. If validated, geometric signatures could be layered on top of routine MRI, turning what now looks like a normal scan into a more nuanced risk profile that clinicians can track over time.

How PET scans and other imaging fit into the picture

Magnetic resonance imaging is only one part of the imaging story. Positron Emission Tomography, better known as PET, has already transformed how doctors detect and classify dementia, particularly when they are trying to distinguish Alzheimer's from other conditions. Hospitals now use [PET scans \(short for Positron Emission Tomography\)](#) to visualize how glucose is used in different brain regions and, with specialized tracers, to see amyloid and tau deposits directly.

These newer brain scans are helping doctors detect and treat different types of dementia earlier, guiding decisions about medications, clinical trials, and supportive care. When a patient or family is worried about memory loss, clinicians may combine MRI to look at structure with PET to assess function and protein buildup, then refer them to a dedicated memory clinic for more detailed evaluation. In some centers, those referrals lead to programs like [Sarasota Memorial's Memory Disorder Clinic](#), where imaging is interpreted alongside neuropsychological testing and family history to build a more complete picture of risk.

Blood tests, eye exams, and the race for simpler diagnostics

Even as imaging grows more sophisticated, researchers are pushing hard for tests that are easier to deploy at scale. One major step has been the development of blood tests that detect Alzheimer's-related proteins in the bloodstream, including forms of amyloid and tau that correlate with brain changes. A commercial version of one such blood test is already available to doctors in the [United States and Europe](#), and researchers say it could accelerate both diagnosis and the development of new treatments.

At the same time, scientists are exploring the eye as a window into the brain. One group has reported that a new eye test may detect Alzheimer's disease decades before its onset by looking for characteristic changes in the retina and optic nerve. They note that [Currently Alzheimer](#) is detected through spinal taps or PET scans, which are invasive, expensive, and not always readily available, and argue that a noninvasive eye

exam could reveal disease 15 to 20 years before clinical diagnosis. If that promise holds, ophthalmology visits could someday join routine brain imaging as another place where early warnings quietly surface.

Why earlier detection matters for patients and families

For decades, receiving an Alzheimer's diagnosis often meant undergoing expensive and invasive procedures, then hearing the news only after memory loss was obvious. New tools are beginning to change that trajectory. Experts now emphasize that earlier detection can give patients and families more time to plan, enroll in clinical trials, and consider medications that target amyloid or tau. As one overview of emerging diagnostics notes in its [Key Takeaways For](#) many years, receiving an Alzheimer's diagnosis meant relying on spinal taps and PET scans, but newer blood and imaging tests are starting to detect misfolded proteins associated with the disease in less invasive ways.

These shifts are not just technical. They change the emotional and practical timeline for families who might otherwise wait years for clarity. If clogged drainage spaces on MRI, geometric reshaping of the cortex, or a positive blood test can flag risk earlier, clinicians can start conversations about driving, finances, and caregiving while the person is still able to participate fully. That does not eliminate the fear that comes with a potential Alzheimer's diagnosis, but it replaces some of the uncertainty with information that can guide decisions rather than simply confirm a decline already underway.

From scan to diagnosis: how doctors actually evaluate memory loss

Despite the excitement around imaging and blood tests, diagnosis still begins with a conversation. When someone notices persistent forgetfulness, confusion, or changes in judgment, specialists stress the importance of preparing for a visit and speaking openly. Guidance from dementia organizations highlights that [Effective](#) communication with your doctor is important, and that patients and families should Ask questions and be as honest as possible about symptoms, medications, and daily functioning.

After that initial visit, doctors may order cognitive tests, blood work, and imaging, then decide whether a referral is needed. If concerns persist, individuals may be referred to a memory clinic or cognitive specialist for more comprehensive assessment, including detailed neuropsychological testing and repeat scans to track changes in behaviour or cognitive abilities over time. One description of this pathway notes that [If concerns persist](#), that referral step is crucial, because it brings together imaging, lab results, and clinical impressions rather than relying on any single test.

Listening to memory complaints as a biological signal

One of the most important lessons from recent research is that subjective memory complaints should not be brushed aside, even when standard tests look normal. A study from a major hospital system found that when a patient or family member notices signs of persistent memory loss, it is often a sign that biological changes are already underway in the brain. The investigators reported that such complaints can predict the presence of amyloid plaques and tau tangles, the protein abnormalities that are a hallmark of Alzheimer's disease, reinforcing that [memory complaints can predict biological changes](#) even before a formal diagnosis is made.

For clinicians, that means a person who says "something feels off" deserves more than reassurance. It may prompt closer monitoring, follow-up imaging, or referral to a specialist, especially if there is a family history of dementia. For patients, it underscores the value of speaking up early rather than waiting until problems are undeniable. When combined with subtle MRI findings like clogged drainage spaces or geometric reshaping, those early complaints can tip the balance toward more proactive evaluation instead of a watch-and-wait approach.

The limits of routine scans and the road ahead

As powerful as these tools are becoming, routine brain scans are not crystal balls. Many people with drainage changes or mild atrophy on MRI will never develop dementia, and some individuals with Alzheimer's pathology have surprisingly normal-looking images. Researchers studying clogged drainage spaces in Dec reports from Singapore and geometric reshaping in Oct imaging work are careful to describe their findings as potential markers, not definitive diagnoses. They emphasize that imaging must be interpreted in context, alongside age, genetics, symptoms, and other tests.

Still, the trajectory is clear. What used to be a static snapshot of the brain is turning into a dynamic risk report, one that can be updated as new techniques emerge and as blood and eye tests mature. As more clinics adopt advanced MRI protocols, expand access to PET, and integrate blood and retinal biomarkers, the odds increase that an early warning will be spotted while there is still time to act. For patients and families, the message is straightforward: do not ignore persistent memory concerns, and do not assume a "normal" scan tells the whole story. The next generation of Alzheimer's care will depend on reading those images more deeply, and on pairing them with the voices of people who notice that something in their thinking has quietly changed.

<https://www.msn.com/en-us/health/other/routine-brain-scans-may-hide-an-early-alzheimer-s-warning/ar-AA1SeWjZ>