SINGAPORE – Local scientists have developed a new method of removing phosphorus from waste water using bacteria.

This paves the way to preventing deadly algae blooms caused by the mineral, particularly in the warm waters of tropical countries such as Singapore.

It is important to remove phosphorus from waste water as algae blooms deplete the oxygen levels in water and can release high levels of toxins that kill fish and other aquatic animals. Algae blooms in fresh water could also affect Singapore’s drinking water supply.

Nanyang Technological University’s (NTU) Professor Stefan Wuertz, who is the deputy centre director of the Singapore Centre for Environmental Life Sciences Engineering (SCELSE), said on Wednesday (July 13) that algae blooms are caused by changing environmental conditions such as warmer waters and changing rainfall patterns which may cause nutrients like phosphorus – typically found in fertilisers – to leach into freshwater ponds.

The phosphorus, a nutrient that supports algae growth, is devoured by the algae, which duplicates drastically. The Straits Times understands that phosphorus removal from waste water treatment is not widely practised here.

This is because excess treated waste water from water reclamation plants is discharged into the sea and thus has no ecological impact. The treated waste water cannot be released into freshwater bodies as the discharge must be of drinking water quality.
Mr Yong Wei Hin, director of PUB’s Water Reclamation (Plants) Department, said that current research and methods on phosphorus removal are more focused on temperate regions and are not known to be suitable for warmer tropical waters.

Phosphorus removal methods typically involve chemicals that produce a lot of sludge that has to be treated or disposed afterwards.

PUB, however, noticed at its waste water treatment plants that some naturally occurring biological activity at temperatures of 28 deg C and above had unexpectedly resulted in some degree of phosphorus removal.

To better understand this mechanism, PUB worked with researchers from NTU and SCLESE to identify the bacteria and figure out their role in phosphorus removal.

Dr Rohan Williams, head of SCLESE’s Integrative Analysis Unit, said that as the waste water treatment plants have a diverse microbial community of over 5,500 types of microbes, the team used DNA sequencing to zero in on the type of bacteria responsible for this removal.

Known as the Candidatus accumulibacter, the bacteria are not harmful to humans or the environment and can remove and absorb phosphate from waste water at temperatures ranging from 30 deg C to 35 deg C, said Prof Wuertz.

“This would ensure that our technique remains effective even when Singapore and other countries experience warmer waters due to climate change,” he added.