MA2009 Tutorial 1

Circuits Fundamentals

Assistant Professor: Zhou Yufeng

N3.2-01-25, 6790-4482, yfzhou@ntu.edu.sg
• http://www3.ntu.edu.sg/home/yfzhou/courses.html

• http://ma2009-ntu.blogspot.sg
Kirchhoff’s Law

\[\sum_{\text{node}} i_n = 0 \]

\[\sum_{\text{loop}} v_n = 0 \]
T1.1: Kirchhoff’s Law

- Apply KVL to find the voltages V_1 and V_2

Kirchhoff’s Voltage Law:

$$\sum v_n = 0$$

1. **Loop 1**

$$\sum v_n = -5 + 3 + v_2 = 0 \quad \Rightarrow \quad v_2 = 2V$$

2. **Loop 2**

$$\sum v_n = -5 + 3 - 10 + v_1 = 0 \quad \Rightarrow \quad v_1 = 12V$$
T1.2: Kirchhoff’s Law

- Identify all nodes in the circuit below
- Using KCL, determine the current through R_3 know that

\[V_S = 12V \]

\[R_S = 1k\Omega, R_1 = 2k\Omega \]

\[R_2 = 4k\Omega, R_3 = 6k\Omega \]

Kirchhoff ‘s Current Law: \[I_1 = I_2 + I_3 \]

Since R_2 and R_3 are in parallel:

\[R_2I_2 = R_3I_3 \]

Kirchhoff ‘s Voltage Law:

\[V_S = (R_S + R_1)I_1 + R_3I_3 \]

\[\therefore I_3 = \frac{V_S}{(R_S + R_1)(R_3 / R_2 + 1) + R_3} = 0.8mA \]
T1.3: Ohm’s Law

- Use Ohm’s law and KCL to determine the current in the circuit.

Applying KCL, we have

\[I_1 + I_2 = 10 \text{A} \]

Denoting \(V \) the voltage across the resistors and applying Ohm’s law, we have

\[I_1 = \frac{V}{15 \Omega}, \quad I_2 = \frac{V}{30 \Omega} \]

which, substituted in the first equation, leads to

\[\frac{V}{15 \Omega} + \frac{V}{30 \Omega} = 10 \text{A} \quad \therefore V = 100 \text{V} \]

Then, use Ohm’s law to determine the currents

\[I_1 = 6.66 \text{A}, \quad I_2 = 3.33 \text{A} \]
T1.4: Kirchhoff’s and Ohm’s Law

a) Use KCL and Ohm’s law to determine the voltage V across the source

\[I_s = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2} \]

\[\therefore V = \frac{R_1 R_2}{R_1 + R_2} I_s \]

b) Use KVL and Ohm’s law to determine the current I through the source

\[V_s = V_1 + V_2 \]

\[I = \frac{V_s}{R_1 + R_2} \]

\[V_1 = R_1 I = \frac{R_1}{R_1 + R_2} V_s \]

\[V_2 = R_2 I = \frac{R_2}{R_1 + R_2} V_s \]