Algorithms and Theory of Computation

Lecture 6: Minimum Spanning Tree (2)

Xiaohui Bei

MAS 714

August 28, 2018
More Efficient Implementation

Algorithm: SmarterKruskal(G):

Initialize $T = \emptyset$; // T will store edges of a MST
Put each vertex $u \in V$ into a set by itself;

foreach $e = \{u, v\} \in E$ in the order of increasing costs do
 if u and v belong to different sets then
 add e to T;
 merge the two sets containing u and v;
return T

Need a data structure to:

- check if two elements belong to same set
- merge two sets
Data Structure: Union-Find

Union-Find

Store a set of disjoint sets with the following operations:

1. **Make-Set**(V): generate a set {v} for each vertex $v \in V$. Name of set {v} is v.
2. **Find**(u): find the name of the set containing vertex u.
3. **Union**(u, v): merge the sets named u and v. Name of the new set is either u or v.

The running time of Kruskal algorithm will depend on the implementation of the data structure.
Union-Find: Implementation

Sets are represented as trees, by pointers towards the roots. All elements in one tree belong to a set with root’s name.

- Find\((u)\): Traverse from \(u\) to the root
- Union\((u, v)\): Make root of \(u\) (smaller set) point to root of \(v\). Takes \(O(1)\) time.

Each vertex \(u\) has a pointer \(\text{parent}(u)\) to its ancestor.

![Figure](image.png)

Figure: Union(Find\((v)\), Find\((u)\))
Algorithm: \textbf{Make-Set}(G):

\begin{verbatim}
foreach \(u \in V \) do
 parent(u) = u;
\end{verbatim}

Algorithm: \textbf{Find}(u):

\begin{verbatim}
while parent(u) \neq u do
 u = parent(u);
return u
\end{verbatim}

Algorithm: \textbf{Union}(u, v):

\begin{verbatim}
(* parent(u) = u & parent(v) = v *)
if \(|\text{component}(u)| \leq |\text{component}(v)|\) then
 parent(u) = v
else
 parent(v) = u
set new component size to \(|\text{component}(u) + \text{component}(v)|\).
\end{verbatim}
Analysis

- Make-Set: $O(n)$ time.
- Union: $O(1)$ time.
- Find: $O(\text{depth of the tree})$ time.

Proposition

The maximum depth of trees in union-find is $O(\log n)$.

Proof.

- Depth of tree(u) increases by at most 1 only when the set containing u changes its name.
- If depth of tree u increases then the size of the set containing u (at least) doubles.
- Maximum set size is n; so the depth of any tree is at most $O(\log n)$.
Speed up!

- When calling $\text{Find}(u)$, we traverse the path from u to the root.
- Consecutive calls of $\text{find}(u)$ traverse the same path.

Idea: Path Compression
Make all vertices on the path in $\text{Find}(u)$ point to root directly.
Path Compression: Example

Algorithm: Find(u):

```
if parent(u) \neq u then
    parent(u) = Find(parent(u));
return parent(u)
```

![Figure](image1.png)

![Figure: After Find(u)](image2.png)
Path Compression

Question
Does Path Compression help?

Yes!

Theorem
With Path Compression, the amortized running time of \textbf{Find} operations is $O(\alpha(n))$, where $\alpha(n)$ is the inverse of the \textbf{Ackermann function} $A(n, n)$.
Ackermann and Inverse Ackermann Functions

Ackermann function $A(m, n)$ defined for $m, n \geq 0$:

$$A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}$$

- $A(3, n) = 2^{n+3} - 3$
- $A(4, 3) = 2^{2^{65536}} - 3$

$\alpha(n)$ is the inverse of $A(n, n)$

For all practical purposes, $\alpha(n) \leq 5$.
Running time of Kruskal’s Algorithm

Using Union-Find data structure, Kruskal’s Algorithm takes
- \(O(m) \) \textit{Find} operations (two for each edge)
- \(O(n) \) \textit{Union} operations (one for each edge added to \(T \))
- 1 sorting operation

Total time = \(O(m\alpha(n) + n + m \log m) = O(m \log m) \)
Prim’s Algorithm

T maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachedment cost to T.

Algorithm: Prim(u):

1. Initialize $T = \emptyset$; // T will store edges of a MST
2. Initialize $S = \{1\}$;
3. while T is not a spanning tree of G do
 1. choose $e = (u, v) \in E$ of minimum cost such that $u \in S$ and $v \in V - S$;
 2. $T = T \cup \{e\}$;
 3. $S = S \cup \{v\}$;
4. return T
Correctness

T maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachedment cost to T.

Proof of correctness.

1. If e is added to the tree, then e is safe
 - Let S be the vertices connected by edges in T when e is added.
 - e is the minimum cost edge crossing cut $(S, V\setminus S)$.

2. S is connected in each iteration and eventually $S = V$.
Time Complexity Analysis

T maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachedment cost to T.

Algorithm: $\text{Prim}(u)$:

- Initialize $T = \emptyset$; // T will store edges of a MST
- Initialize $S = \{1\}$;
- \hspace{1cm} while T is not a spanning tree of G do
- \hspace{2cm} choose $e = (u, v) \in E$ of minimum cost
- \hspace{2cm} such that $u \in S$ and $v \in V - S$;
- \hspace{2cm} $T = T \cup \{e\}$;
- \hspace{2cm} $S = S \cup \{v\}$;
- \hspace{1cm} return T

- $O(n)$ iterations
- $O(m)$ time to pick edge e in each iteration
- Total running time $= O(mn)$
Algorithm: SmarterPrim(u):

Initialize $T = \emptyset$; \quad // T will store edges of a MST
Initialize $S = \{1\}$;
for $u \notin S$, $a(u) = \arg \min_{e=(u,v), v \in S} c_e$;
while T is not a spanning tree of G do
\quad pick minimum $a(u) = (u, v)$;
\quad $T = T \cup \{a(u)\}$;
\quad $S = S \cup \{u\}$;
\quad update array a;
return T

Maintain vertices in $V \setminus S$ in a priority queue.
Priority Queue

Priority Queues

Store a set S of n elements, where each element $v \in S$ has an associated real/integer key $k(v)$, with the following operations:

1. **Make-Queue**: create an empty queue
2. **Find-Min**: find the minimum key in S
3. **Extract-Min**: remove $v \in S$ with the smallest key and return it
4. **Decrease-Key** $(v, k'(v))$: decrease key of v from $k(v)$ to $k'(v)$
5. **Add** $(v, k(v))$: add new element v with key $k(v)$ to S

Very useful data structure, will discuss in detail in later lectures.

Prim requires $O(n)$ Extract-Min and $O(m)$ Decrease-Key operations.

- Using standard Heaps, total time $= O((m + n) \log n)$.
- Using Fibonacci Heaps, total time $= O(n \log n + m)$.
More about MST

- There is an algorithm that runs in $O(n + m\alpha(n))$ time.
- There is a randomized algorithm that runs in $O(m + n)$ expected time.
- There is an algorithm using bit operations in RAM model that runs in $O(m + n)$ time.
- Still open: Is there an $O(m + n)$ time deterministic algorithm in the comparison model?