Interval Scheduling

Input: a set of jobs, job j start at s_j and finishes at f_j

Two jobs are **compatible** if they don’t overlap.

Goal: find a maximum subset of mutually compatible jobs.
Optimal Greedy Algorithm

Algorithm: *SomeGreedyAlgorithm*(G):

Let \(R \) be the set of all jobs.;

Initialize \(X = \emptyset ; \) // \(X \) will store all scheduled jobs

while \(R \) is not empty **do**

choose \(j \in R \) with the smallest \(f_j \);

add \(j \) to \(X \);

remove from \(R \) all jobs that overlap with \(j \);

return \(X \)

Theorem

The greedy algorithm that picks jobs in the ascending order of their finishing times is optimal.
Proving Optimality

- **Feasibility:** Clearly the algorithm returns a set of jobs that are mutually compatible.

- **Optimality:** Given job set R, let O be an optimal set and let X be the set returned by the greedy algorithm.
 - Can we show $X = O$? Not likely!
 - Instead we will show that $|O| = |X|$
Proof idea: convert an optimal solution O to the greedy solution X while maintaining its cardinality.

Proof.

1. Let x_1, x_2, \ldots, x_k denote set of jobs selected by greedy.

2. Let o_1, o_2, \ldots, o_m denote set of jobs in an optimal solution.

3. For each r from 1 to k:
 - In the optimal solution, replace job o_r with job x_r.
 - job x_r exists and finishes before o_r
 - new solution still feasible and optimal

4. In the end, the optimal solution will coincide with the greedy solution.
More about Interval Scheduling

1. Exercise: shortest interval algorithm always picks at least half the optimum number of jobs.

2. How about when jobs arrives in an online fashion?
 - An active research subject.

3. Weighted Interval Scheduling: each job j also has a weight w_i, want to find a set of compatible jobs whose total weight is maximized.
 - (A) Earliest start time first.
 - (B) Earliest finish time first.
 - (C) Highest weight first.
 - (D) None of the above.
 - (E) IDK
Minimum Spanning Trees (MST)

A weighted graph is a graph in which each edge e is associated with a numerical weight c_e.

Spanning Tree

A spanning tree of an undirected connected graph $G = (V, E)$ is a set of edges $T \subseteq E$ such that

- T forms a tree, and
- (V, T) is connected.

In a weighted graph G, a minimum spanning tree is a spanning tree with the smallest sum of edge weights.

MST

Find a minimum spanning tree of a weighted graph G.

Applications

A basic and fundamental problem in graph theory, often used to measure costs to establish connections between vertices.

1. **Network Design**: designing networks with minimum cost while guaranting connectivity

2. **Approximation Algorithm**: can be used to approximate other hard problems such as Traveling Salesman Problem, Steiner Trees, etc.
Greedy Template

Algorithm: SomeGreedyMSTAlgorithm(G):

- Initialize $T = \emptyset$; // T will store edges of a MST
- while T is not a spanning tree of G do
 - choose $e \in E$ that satisfies condition;
 - add e to T;
- return T

Which edges, and in what order, should be processed and added to the spanning tree?
Kruskal’s Algorithm

Process edges in the order of their costs (in increasing order), and add edges to T as long as they don’t form a cycle.
Prim’s Algorithm

T maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachedment cost to T.
Correctness of MST algorithms

- Many different MST algorithms.
- All of them rely on some basic properties of MSTs.

Assumption

For simplicity, we assume that edge costs are distinct, that is no two edge costs are equal.
Given a graph $G = (V, E)$, a cut is a partition of the vertices into two disjoint subsets. Edges that have one endpoint in each subset of the partition are the edges of the cut, and these edges are said to cross the cut.
Safe Edges

An edge e is a safe edge if there exists a partition of V into S and $V \setminus S$, and e is the unique minimum cost edge crossing this partition.

Safe edge in the cut $(S, V \setminus S)$
Theorem

Given an undirected connected graph G with distinct edge costs, the set of safe edges in G form the unique MST of G.

Proof.

Prove the lemma in two steps:

1. If e is a safe edge, then every MST contains e.
2. The set of safe edges form a connected graph that covers every vertex.
Lemma 1
If e is a safe edge, then every MST contains e.

Proof.
Assume by contradiction that e is not in some MST T.

1. $e = \{u, v\}$ is safe \implies there is an $S \subset V$ such that e is the unique minimum cost edge crossing S.

2. Adding e to T creates a cycle C in $T \cup \{e\}$.

3. There must exist another edge e' in T cross this cut.

4. $T' = (T \setminus \{e'\}) \cup \{e\}$ is a spanning tree of lower cost.
Lemma 2

The set of safe edges from a connected graph that covers every vertex.

Proof.

1. Assume not. Let S be a connected component in the graph induced by safe edges.
2. Let e be the smallest cost edge crossing S \implies e is a safe edge.
Kruskal’s Algorithm

Process edges in the order of their costs (in increasing order), and add edges to T as long as they don’t form a cycle.

Algorithm: Kruskal(G):

1. Initialize $T = \emptyset$; // T will store edges of a MST
2. while T is not a spanning tree of G do
 1. choose $e \in E$ of minimum cost;
 2. remove e from E;
 3. if $T \cup \{e\}$ does not contain cycles then
 1. add e to T;
3. return T
Correctness

Process edges in the order of their costs (in increasing order), and add edges to T as long as they don’t form a cycle.

Only need to show that all edges added are safe.

Proof of Correctness.

- When $e = (u, v)$ is added to the tree, let S and S' be the connected components containing u and v respectively.
- e has minimum cost under all edges forming no cycle, hence e has minimum cost among all edges crossing the cut S (and also S')
- e is a safe edge.
Time Complexity Analysis

Process edges in the order of their costs (in increasing order), and add edges to T as long as they don’t form a cycle.

Algorithm: $\text{Kruskal}(G)$:

- Initialize $T = \emptyset$; // T will store edges of a MST
- while T is not a spanning tree of G do
 - choose $e \in E$ of minimum cost;
 - remove e from E;
 - if $T \cup \{e\}$ does not contain cycles then
 - add e to T;
- return T

- Presort edges by costs. Choosing minimum then takes $O(1)$ time.
- Do DFS on $T \cup \{e\}$. Takes $O(n)$ time.
- Total time $O(m \log m) + O(mn) = O(mn)$.
More Efficient Implementation

Algorithm: **SmarterKruskal(G):**

- Initialize $T = \emptyset$;
- // T will store edges of a MST
- Put each vertex $u \in V$ into a set by itself;
- **foreach** $e = \{u, v\} \in E$ in the order of increasing costs **do**
 - **if** u and v belong to different sets **then**
 - add e to T;
 - merge the two sets containing u and v;
- **return** T

Need a data structure to:
- check if two elements belong to same set
- merge two sets
Data Structure: Union-Find

Union-Find

Store a set of disjoint sets with the following operations:

1. **Make-Set(V)**: generate a set \(\{v\} \) for each vertex \(v \in V \). Name of set \(\{v\} \) is \(v \).

2. **Find(u)**: find the name of the set containing vertex \(u \).

3. **Union(u, v)**: merge the sets named \(u \) and \(v \). Name of the new set is either \(u \) or \(v \).

The running time of Kruskal algorithm will depend on the implementation of the data structure.