Connectivity

In a undirected graph \(G = (V, E) \)

- A **path** is a sequence \(P \) of vertices \(v_1, v_2, \ldots, v_k \in V \) such that \(\{v_i, v_{i+1}\} \in E \) for any \(1 \leq i < k \).
- A **cycle** is a path \(v_1, v_2, \ldots, v_k \) with \(k \geq 2 \) and \(v_1 = v_k \).
- Graph \(G \) is **connected** if for every pair of vertices \(u \) and \(v \), there is a path from \(u \) to \(v \).
- A **connected component** containing \(u \) is the set of all vertices connected to \(u \).

All carry over naturally to directed graphs, except connectivity.

- A directed graph is **strongly connected** if, for every two vertices \(u \) and \(v \), there is a path from \(u \) to \(v \) and a path from \(v \) to \(u \).
An undirected graph \(G \) is a **tree** if it is connected and does not contain a cycle.

Proposition

Every tree has exactly \(n - 1 \) edges.
Graph Traversal

s \rightarrow t Connectivity Problem

Given a graph \(G = (V, E) \) and two particular vertices \(u \) and \(v \). Is there a path from \(u \) to \(v \)?

Traversal Problem

Given a graph \(G = (V, E) \) and a vertex \(v \). Find all vertices that can be reached from \(v \).
Basic Graph Search Algorithm

Algorithm: \texttt{Explore}(u):

- Initialize $R = \{u\}$;
- while there is an edge (x, y) with $x \in R$ and $y \notin R$ do
 - Add y to R;
- return R.

Proposition

\texttt{Explore}(u) returns the connected component that contains u.

- Naive search: $O(m)$ time for each scan, $O(mn)$ time in total.
Algorithm: \textbf{SmartExplore}(u):

- Initialize \(R = \{u\} \);
- Mark all vertices as unvisited;
- Mark \(u \) as visited;
- \textbf{while} \(R \) \textit{is not empty} \textbf{do}
 - Pick one vertex \(x \) in \(R \), remove \(x \) from \(R \);
 - \textbf{foreach} vertex \(y \in \text{Adj}(x) \) \textbf{do}
 - \textbf{if} \(y \) \textit{is not visited} \textbf{then}
 - Mark \(y \) as visited and add \(y \) to \(R \);
 - \textbf{return} the set of all visited vertices.

- Runs in \(O(m + n) \) time!
- How to determine which vertex to pick in \(R \)?
The Data Structure

Alternative 1: **Queue**
- First in first out (FIFO)
- **Breadth First Search (BFS)**
- Exploring distances

Alternative 2: **Stack**
- Last in first out (LIFO)
- **Depth First Search (DFS)**
- Exploring graph structure
A **queue** is a linked list with two operations:

- **Enqueue**\((Q, x)\): insert an element \(x\) at the rear of the queue \(Q\).
- **Dequeue**\((Q)\): remove the front element of the queue.

Implementation:

- linked list with two pointers
- array with two pointers
Breadth First Search

Algorithm: \textbf{BFS}(u):
\begin{itemize}
 \item Initialize queue \(Q \) to be empty;
 \item Mark all vertices as unvisited;
 \item Initialize search tree \(T \) to be empty;
 \item Mark \(u \) as visited and enqueue \((Q, u)\);
 \item while \(Q \) is not empty do
 \begin{itemize}
 \item \(x = \text{dequeue}(Q) \);
 \item \textbf{foreach vertex} \(y \in \text{Adj}(x) \) \textbf{do}
 \begin{itemize}
 \item \textbf{if} \(y \) \textit{is not visited} \textbf{then}
 \begin{itemize}
 \item add edge \((x, y)\) to \(T \);
 \item Mark \(y \) as visited and enqueue \((Q, y)\);
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}

Proposition \(\text{BFS}(u) \) runs in \(O(m + n) \) time.
BFS: An Example

- **BFS tree** is the set of black edges.
Breadth First Search with Distances

Algorithm: \textbf{BFS}(u):

- Initialize queue \(Q \) to be empty;
- Mark all vertices as unvisited; set \(\text{dist}(v) = \infty \) for each \(v \);
- Initialize search tree \(T \) to be empty;
- Mark \(u \) as visited and \text{enqueue}(Q, u); \text{dist}(u) = 0;

\textbf{while} \(Q \) \text{ is not empty} \textbf{ do}

\(x = \text{dequeue}(Q); \)

\textbf{foreach} vertex \(y \in \text{Adj}(x) \) \textbf{ do}

\textbf{if} \(y \) \text{ is not visited} \textbf{ then}

- add edge \((x, y)\) to \(T \);
- Mark \(y \) as visited and \text{enqueue}(Q, y);
- \(\text{dist}(y) = \text{dist}(x) + 1; \)

Shortest Distance

Properties

1. If $\text{dist}(u) < \text{dist}(v)$, then u is visited before v.
2. If $e = (u, v)$ is an edge of G, then $|\text{dist}(u) - \text{dist}(v)| \leq 1$.

The **shortest distance** $\delta(u, v)$ between two vertices u and v in an *unweighted* graph G is the length of a shortest path (in terms of the number of edges) from u to v.

- no path between u and v means $\delta(u, v) = \infty$
Shortest Distance

Proposition

Upon termination of $\text{BFS}(u)$, for every vertex v, $\text{dist}(v) = \delta(u, v)$.

Proof.

Induction over the number of steps

- $\text{dist}(v) \geq \delta(u, v)$:
 - true for v when we enqueue(v) \implies also true for v's neighbors

- $\text{dist}(v) \leq \delta(u, v)$:
 - trivially true in the beginning
 - assume true for all v with $\delta(u, v) \leq k$
 - pick any vertex v with $\delta(u, v) = k + 1$
 - let v' be the predecessor of v on a shortest path u to v
 $\implies \delta(u, v) = \delta(u, v') + 1$
 - $\text{dist}(v') \leq \delta(u, v')$, $|\text{dist}(v) - \text{dist}(v')| \leq 1$ $\implies \text{dist}(v) \leq \delta(u, v)$
BFS Intuition

- start with vertex u
- list all its neighbors (distance 1)
- list all their neighbors (distance 2)
- etc.
BFS Summary

- Runs in time $O(m + n)$ on adjacency lists.

- Visit every vertex reachable from u.

- Can be used to compute shortest paths from u to all other vertices in unweighted graphs.
Depth First Search

- A versatile graph exploration strategy.
- Power of DFS to understand the structure of the graph is demonstrated by Hopcroft and Tarjan.
- Can be used to solve many nontrivial problems in linear time ($O(m + n)$).
 - Finding cut-edges and cut-vertices of undirected graphs.
 - Finding strong connected components of directed graphs.
 - Testing whether a graph is planar.
- Basic Graph Search Algorithm with a stack.
A stack is a linked list with two operations

- **Push**\((S, x) \): insert an element at the front of the stack.
- **Pop**\((S) \): remove the front element of the stack.

- Elements are processed in a **last-in first-out (LIFO)** order, different from the **first-in first-out (FIFO)** order for queues.
- Implementation: need to maintain only the pointer of the front of the stack.
- Useful to also have **Peek**\((S) \): retrieve
Algorithm: DFS(u):

1. Initialize stack S to be empty;
2. Mark all vertices as unvisited; set $\text{Time} = 0$;
3. Initialize search tree T to be empty;
4. Mark u as visited and push (S, u);
5. $\text{pre}(u) = ++\text{Time}$;
6. **while** S is not empty **do**
 - $x = \text{peek}(S)$;
 - **foreach** vertex $y \in \text{Adj}(x) **do**$
 - **if** y is not visited **then**
 - Mark y as visited and push (S, y);
 - $\text{pre}(y) = ++\text{Time}$;
 - **if** there is no such $y **then**$
 - $\text{post}(x) = ++\text{Time}$;
 - pop(S);