Algorithms and Theory of Computation

Lecture 2: Big-O Notation
Graph Algorithms

Xiaohui Bei

MAS 714

August 14, 2018
O, \Omega, \text{ and } \Theta

Let \(T, f \) are two monotone increasing functions that maps from \(\mathbb{N} \) to \(\mathbb{R}^+ \).

Asymptotic Upper Bounds

We say \(T(n) = O(f(n)) \) if there exists constants \(c > 0 \) and \(n_0 \geq 0 \), such that for all \(n \geq n_0 \), we have \(T(n) \leq c \cdot f(n) \).

Examples

- \(T(n) = 1000n + 100 \implies T(n) = O(n) \)
 - set \(c = 1001 \) and \(n_0 = 100 \)

- \(T(n) = pn^2 + qn + r \) for constants \(p, q, r > 0 \implies T(n) = O(n^2) \)
 - set \(c = p + q + r \) and \(n_0 = 1 \)
 - also correct to say \(T(n) = O(n^3) \)
Some Remarks

- **Equals sign.** $O(f(n))$ is a set of functions, but computer scientists often write $T(n) = O(f(n))$ instead of $T(n) \in O(f(n))$.
 - Consider $f(n) = 5n^3$ and $g(n) = 3n^2$, we write $f(n) = O(n^3) = g(n)$, but it does not mean $f(n) = g(n)$.

- **Domain.** The domain of $f(n)$ is typically the natural numbers $\{0, 1, 2, \ldots\}$.
 - Sometimes we restrict to a subset of the natural numbers.
 - Other times we extend to the reals.

- **Nonnegative functions.** When using big-O notation, we assume that the functions involved are (asymptotically) nonnegative.
\(O, \Omega, \text{ and } \Theta \)

Let \(T, f \) are two monotone increasing functions that maps from \(\mathbb{N} \) to \(\mathbb{R}^+ \).

Asymptotic Lower Bounds

We say \(T(n) = \Omega(f(n)) \) if there exists constants \(\epsilon > 0 \) and \(n_0 \geq 0 \), such that for all \(n \geq n_0 \), we have \(T(n) \geq \epsilon \cdot f(n) \).

Examples

- \(T(n) = pn^2 + qn + r \) for constants \(p, q, r > 0 \) \(\Rightarrow \) \(T(n) = \Omega(n^2) \)
 - set \(\epsilon = p \) and \(n_0 = 1 \)
 - also correct to say \(T(n) = \Omega(n) \)

Meaningful Statement. Any compare-based sorting algorithm requires \(\Omega(n \log n) \) compares in the worst case.

Meaningless Statement. Any compare-based sorting algorithm requires \(O(n \log n) \) compares in the worst case.
Let T, f are two monotone increasing functions that maps from \mathbb{N} to \mathbb{R}^+.

Asymptotic Tight Bounds

We say $T(n) = \Theta(f(n))$ if there exists constants $c_1, c_2 > 0$ and $n_0 \geq 0$, such that for all $n \geq n_0$, we have $c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n)$.

Alternative definition

$T(n) = \Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and also $\Omega(f(n))$.

Examples

- $T(n) = pn^2 + qn + r$ for constants $p, q, r > 0 \implies T(n) = \Theta(n^2)$
 - set $c_1 = p, c_2 = p + q + r$ and $n_0 = 1$
 - $T(n)$ is neither $\Theta(n)$ nor $\Theta(n^3)$
Properties of Asymptotic Growth Rates

1. If \(f = O(g) \) and \(g = O(h) \), then \(f = O(h) \).

2. If \(f = \Omega(g) \) and \(g = \Omega(h) \), then \(f = \Omega(h) \).

3. If \(f = \Theta(g) \) and \(g = \Theta(h) \), then \(f = \Theta(h) \).

4. If \(f = O(h) \) and \(g = O(h) \), then \(f + g = O(h) \).

5. If \(g = O(f) \), then \(f + g = \Theta(f) \).

6. If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \), then \(f = \Theta(g) \).
Some Common Functions

1. **Polynomials.** Let f be a polynomial of degree d, in which the coefficient a_d is positive. Then $f = O(n^d)$.
 - Asymptotic rate of growth is determined by their “high-order term”.

Polynomial-Time Algorithm

A polynomial-time algorithm is one with running time $O(n^d)$ for some constant d.

2. **Logarithms.** For every $a, b > 1$ and every $x > 0$, we have
 \[\log_a n = \Theta(\log_b n) = O(n^x). \]
 - No need to specify base (assuming it’s a constant).
 - Logarithms are always better than polynomials.

3. **Exponentials.** For every $r > 1$ and every $d > 0$, we have $n^d = O(r^n)$.
 - Polynomials are always better than exponentials.
More Notations

Asymptotic Smaller

We say $T(n) = o(f(n))$ if $\lim_{n \to \infty} \frac{T(n)}{f(n)} = 0$.

Asymptotic Larger

We say $T(n) = \omega(f(n))$ if $\lim_{n \to \infty} \frac{f(n)}{T(n)} = 0$.
Asymptotic Upper Bounds

We say $T(m, n) = O(f(m, n))$ if there exists constants $c > 0$, $m_0 \geq 0$ and $n_0 \geq 0$, such that for all $m \geq m_0$ and $n \geq n_0$, we have $T(m, n) \leq c \cdot f(m, n)$.

Similar definitions for Ω and Θ.

Examples

$T(m, n) = 32mn^2 + 17mn + 32n^3$

- $T(m, n)$ is both $O(mn^2 + n^3)$ and $O(mn^3)$.
- $T(m, n)$ is neither $O(n^3)$ nor $O(mn^2)$.
We discussed algorithms in pseudocode, but how the data will be represented in an actual implementation of the algorithm?

- **Data Structures**: a particular way of organizing data such that it can be used efficiently in an algorithm.
- Appropriately designed data structures can help to give more efficient algorithms.
- Data structure in “Number Addition”: arrays.

Program = Algorithm + Data Structure
Common Data Structures

- Elementary Data Structures
 - Arrays
 - Linked Lists
 - Stacks and Queues
- Priority Queues
- Hash Tables
- Binary Search Trees
- many others
Graph Algorithms
Graphs

One of the most important combinatoric object in Computer Science, Optimization, Combinatorics.

Figure: Seven Bridges of Königsberg
A graph G consists of a set V of vertices and a set E of edges

- **Directed Graph:** Each edge $e \in E$ is an ordered pair (u, v) for some $u, v \in V$.
- **Undirected Graph:** Each edge $e \in E$ is an unordered pair $\{u, v\}$ for some $u, v \in V$.

Example

In the above undirected graph $G = (V, E)$:

- $V = \{1, 2, 3, 4, 5, 6\}$
- $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{3, 5\}, \{4, 5\}, \{4, 6\}\}$
Applications

Transportation Networks
The map of routes served by an airline carrier/railway company.
- vertices are airports/train stations;
- an edges from u to v if there is a flight/railway track between them.

Information Networks
The World Wide Web can be viewed as a directed graph.
- vertices are Web pages;
- an edge from u to v if u has a hyperlink to v.

Social Networks
A collection of people who interact with each other forms an undirected graph.
- vertices are people
- an edge joining u and v if they are friends.

Dependency Networks
A directed graph that captures the interdependencies among a collection of objects, e.g., in an university:
- vertices are courses offered
- an edge from u to v if u is a prerequisite for v.
Notation and Convention

- usually use \(n = |V| \) and \(m = |E| \)
- \(u \) and \(v \) are the end points of an edge \(e = \{u, v\} \)
- multi-graphs may have
 - loops which are edges \((u, u)\)
 - multi-edges which are different edges between same pair of vertices
- in most of this class we only consider simple graphs
Graph Representation

Adjacency Matrix

Represent a graph $G = (V, E)$ by an $n \times n$ adjacency matrix A, where

- The matrix is symmetric for undirected graphs.

Advantages:

- can check if an edge $(u, v) \in E$ in $O(1)$ time
- can do linear algebra on the matrix

Disadvantages:

- require $\Omega(n^2)$ space even when $m = o(n^2)$
- cannot examine all edges incident to a given node efficiently
Graph Representation

Adjacency List

Represent a graph $G = (V, E)$ by **adjacency lists**, which is an array Adj of length n, where

- each entry $\text{Adj}[v]$ is a list containing all vertices adjacent to vertex v

Advantages:

- take $O(n + m)$ space, which is close to optimal
- can browse all edges incident to a given vertex efficiently

Disadvantages:

- hard to find a specific edge

Standard representation for graphs.
A Concrete Representation

Linked List

Linked lists are a data structure to represent sequence whose length is arbitrary and changeable.

- each entry in a linked list consists of a cell for data and a pointer that points to the next entry
- there is a pointer to the first element
- the last entry points to NIL

- Advantages: easy to add an element into a linked list, and to sequentially read the list.
- Disadvantages: no random access.
Example of a Linked List

Example of an Adjacency List