Modular Supervisory Control

Rong Su
Outline

• Motivation
• Ramadge-Wonham Modular Supervisory Control
• Queiroz-Cury Extension
• Coordinated Modular Supervisory Control
• Example
• Interface-based Approach
• Conclusions
Divide & Conquer

Machine G_1

Specification R_1

Machine G_2

Specification R_2

Machine G_3
Construct Local Supervisors (by TCT)

- \(G = G_1 \times G_2 \times G_3 \) \((G = \text{Sync}(\text{Sync}(G_1, G_2), G_3)) \) (8 ; 24)
- \(\text{SPEC}_1 = \text{Selfloop}(R_1, \{a_1, a_3, b_2, b_3\}) \) (2 ; 10)
- \(\text{SPEC}_2 = \text{Selfloop}(R_2, \{a_1, a_2, b_1, b_3\}) \) (2 ; 10)
- \(\text{SUPER}_1 = \text{Supcon}(G, R_1) \) (12 ; 28)
- \(\text{SUPER}_2 = \text{Supcon}(G, R_2) \) (12 ; 28)
- \(\text{Nonconflict}(\text{SUPER}_1, \text{SUPER}_2) = \text{true} \)
- \(R = R_1 \times R_2 \) \((R = \text{Sync}(R_1, R_2)) \) (4 ; 16)
- \(\text{SUPER} = \text{Supcon}(G, R) \) (18 ; 32)
- \(\text{Isomorph}(\text{SUPER}, \text{Sync}(\text{SUPER}_1, \text{SUPER}_2)) = \text{true} \)
What to Gain?

- $\text{Minsuper} = \text{Supreduce}(G, \text{SUPER}, \text{SUPER}) \ (4; 13)$

- $\text{Minsuper}_1 = \text{Supreduce}(G, \text{SUPER}_1, \text{SUPER}_1) \ (2; 2)$

- $\text{Minsuper}_2 = \text{Supreduce}(G, \text{SUPER}_2, \text{SUPER}_2) \ (2; 2)$

- $|A| := \text{the total number of states and transitions of } A$

 $$|\text{SUPER}_1| + |\text{SUPER}_2| < |\text{SUPER}|$$
Motivation of Modular Control

Reduce complexity by allocating control tasks to local supervisors!
Outline

• Motivation
• Ramadge-Wonham Modular Supervisory Control
• Queiroz-Cury Extension
• Coordinated Modular Supervisory Control
• Example
• Interface-based Approach
• Conclusions
Architecture of Modular Supervisory Control

local specification

E₁ → S₁ → G → S₂ → E₂
Composition of Local Supervisors (1)

• Recall that S is a proper supervisor of G if
 \- $L_m(S) \cap L_m(G)$ is controllable with respect to G
 \- $L_m(S) \cap L_m(G) = L(S) \cap L(G)$
 \- S is nonblocking, i.e. $L_m(S) = L(S)$

• Let S/G denote the supervision of S over G
 \- $L_m(S/G) := L_m(S) \cap L_m(G)$
 \- $L(S/G) := L(S) \cap L(G)$

• Given S_1 and S_2, let $S_1 \land S_2 := \text{reachable}(S_1 \times S_2)$
Composition of Local Supervisors (2)

- **Theorem 1 (Ramadge-Wonham)**
 - Given two proper supervisors S_1 and S_2 of G, we have
 \[
 L_m((S_1 \land S_2)/G) = L_m(S_1/G) \cap L_m(S_2/G) \\
 L((S_1 \land S_2)/G) = L(S_1/G) \cap L(S_2/G)
 \]
 - Furthermore, $S_1 \land S_2$ is a proper supervisor of G if and only if
 - $S_1 \land S_2$ is nonblocking
 - $L_m(S_1/G)$ and $L_m(S_2/G)$ are nonconflicting, i.e.
 \[
 L_m(S_1/G) \cap L_m(S_2/G) = L_m(S_1/G) \cup L_m(S_2/G) = L(S_1/G) \cap L(S_2/G)
 \]
Composition of Local Supervisors (3)

- Let $C(G, E) := \{K \subseteq L_m(G) \cap L_m(E) | \overline{K} \Sigma_{uc} \cap L(G) \subseteq \overline{K}\}$.
- Let $\text{sup} C(G, E)$ be the greatest element of $C(G, E)$.
- Theorem 2 (Wonham-Ramadge)
 - Given a plant G and two specifications E_1, E_2, if $\text{sup} C(G, E_1)$ and $\text{sup} C(G, E_2)$ are nonconflicting, then
 \[
 \text{sup} C(G, E_1 \times E_2) = \text{sup} C(G, E_1) \cap \text{sup} C(G, E_2)
 \]
The General Procedure for RW Modular Design

- Given G and E_1, E_2
- $S_1 = \text{Supcon}(G, E_1)$
- $S_2 = \text{Supcon}(G, E_2)$
- $\text{Nonconflict}(S_1, S_2) = \text{true}$?
 - If yes, then $\{S_1$ and $S_2\}$ is a modular supervisor of G w.r.t. E_1, E_2
 - Otherwise, the problem is unsolvable by RW modular control theory
 • But we can compute a coordinator to solve the conflicting part of $(S_1 \land S_2)/G$
Inadequacy of RW Modular Control Theory (MCT)

• More on implementation simplicity than synthesis simplicity
 – It is computationally expensive to verify the condition $\sup \mathcal{C}(G, E_1)$ and $\sup \mathcal{C}(G, E_2)$ are nonconflicting
 – If the condition doesn’t hold, RWMCT doesn’t tell what to do next?
Example – Resource Competition

User 1: G_1

User 2: G_2

Resource A: R_A

Resource B: R_B
Specification

- Deadlock should not happen.
A “Naive” Modular Supervisor

Local Supervisor: S_A Local Supervisor: S_B
Facts

- S_A is a proper supervisor of $G_1 \times G_2 \times R_A$

- S_B is a proper supervisor of $G_1 \times G_2 \times R_B$

- Nevertheless, $L_m(S_A)$ and $L_m(S_B)$ are conflicting.

- We can check that $G_1 \times G_2 \times R_A \times R_B \times S_A \times S_B$ has deadlock!
Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions
An Extended Architecture
Main Result

• (Product) Plant: \(\{G_i \in \phi(\Sigma_i) \mid i \in I \land (\forall j \in I) \ j \neq i \Rightarrow \Sigma_i \cap \Sigma_j = \emptyset \} \)

• Specifications: \(\{E_i \in \phi(\Sigma_i) \mid i \in I \} \)

• Let \(G = \times_{i \in I} G_i \) and \(E = \times_{i \in I} E_i \)

• Let \(S_i \) be a proper supervisor of \(G_i \) with respect to \(E_i \)

• Theorem 3 (Queiroz-Cury)
 – \(\land_{i \in I} S_i \) is a proper supervisor of \(G \) with respect to \(E \) if \(\land_{i \in I} S_i \) is nonblocking and \(\{L_m(S_i/G_i) \mid i \in I \} \) is (synchronously) nonconflicting.

 – Furthermore, if \(\{\text{sup}_C(G_i,E_i) \mid i \in I \} \) is (synchronously) nonconflicting then
 \[\text{sup}_C(G,E) = \|_{i \in I} \text{sup}_C(G_i,E_i) \]
The inadeqracy of RW modular control theory still exists!

But we can do something about it …
One Solution to The Inadequacy

\[P: \Sigma^* \rightarrow \Sigma'^* \]

\[\Sigma = \Sigma_1 \cup \Sigma_2 \]
\[\Sigma' \supseteq \Sigma_1 \cap \Sigma_2 \]
Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions
Example – Resource Competition Revisit

Graphs G_1 and G_2 with resource competition C.

Selfloops: $\{b_1, b_2\}$ for S_A; $\{a_1, a_2\}$ for S_B.
$S_A \land S_B \land C$ is a proper supervisor of $G_1 \times G_2 \times R_A \times R_B$
The Concept of L-observer

- Given $L \subseteq \Sigma^*$ and $\Sigma' \subseteq \Sigma$, let $P: \Sigma^* \rightarrow \Sigma'^*$ be the natural projection
- P is called an L-observer if

$$(\forall t \in P(L))(\forall s \in L) \ P(s) \leq t \Rightarrow (\exists u \in \Sigma^*) \ su \in L \land P(su) = t$$

\[\begin{array}{ccc}
\text{t'} & \rightarrow & \text{t''} \\
\uparrow & & \uparrow \\
P(s) = t' & \rightarrow & P(u) = t'' \\
\text{s} & \rightarrow & \text{u} \\
\rightarrow & \rightarrow & \rightarrow \\
& \rightarrow & su \in L \\
\end{array} \]
The Main Property of L-observer (MPLO)

- $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma' \subseteq \Sigma_1 \cup \Sigma_2$
- If
 - $P_1: \Sigma_1^* \rightarrow (\Sigma_1 \cap \Sigma')^*$ is L_1-observer
 - $P_2: \Sigma_2^* \rightarrow (\Sigma_2 \cap \Sigma')^*$ is L_2-observer
- then
 - $P: (\Sigma_1 \cup \Sigma_2)^* \rightarrow \Sigma'^*$ is $L_1||L_2$-observer
Application of MPLO

- Given $L \subseteq \Sigma^*$ and $\Sigma' \subseteq \Sigma$, let $P: \Sigma^* \rightarrow \Sigma'^*$ be the L-observer.
- Let $\Sigma'' \subseteq \Sigma'$ and $L'' \subseteq \Sigma''^*$, then

$$P(L) \text{ and } L'' \text{ is nonconflicting } \iff L \text{ and } L'' \text{ is nonconflicting}$$

$$L \text{ nonconflicting} \quad L'' \text{ nonconflicting}$$

$$P \quad L \quad \downarrow \quad P(L) \quad L''$$

$$\overline{L \parallel L''} = \overline{L} \parallel \overline{L''}$$

$$\overline{P(L) \parallel L''} = \overline{P(L)} \parallel \overline{L''}$$
Coordinated Modular Supervisory Control

- Given Σ, let $\phi(\Sigma)$ denote the set of all FSAs over Σ.
- Given two alphabets Σ_1 and Σ_2, let $G_1 \in \phi(\Sigma_1)$ and $G_2 \in \phi(\Sigma_2)$.
- Let S_i be a proper supervisor of G_i ($i=1,2$).
- Let $\Sigma' \subseteq \Sigma_1 \cup \Sigma_2$ with $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma'$.
- Suppose $P_i : \Sigma_i^* \rightarrow (\Sigma_i \cap \Sigma')^*$ be an $L_m(S_i/G_i)$-observer, where $i=1,2$.
- Let $P_1(S_1/G_1)$ denote an automaton, where
 - $L(P_1(S_1/G_1)) = P_1(L(S_1/G_1))$ and $L_m(P_1(S_1/G_1)) = P_1(L_m(S_1/G_1))$
- Let $G := P_1(S_1/G_1) \times P_2(S_2/G_2)$
- Compute a coordinator $C \in \phi(\Sigma')$ such that C/G is nonblocking

Theorem 4
- Given the above setup, $S_1 \wedge S_2 \wedge C$ is a proper supervisor of $G_1 \times G_2$.
Illustration of Coordinator Synthesis

\[C : C/G \text{ is nonblocking} \]

\[G = P_1(S_1/G_1) \times P_2(S_2/G_2) \]

- \(P_1(S_1/G_1) \) - observer
- \(P_2(S_2/G_2) \) - observer

- \(S_1 \)
- \(G_1 \)
- \(S_2 \)
- \(G_2 \)
Multi-Level Coordinators

- $\Sigma'' \subseteq \Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \Sigma_4$
- $(\Sigma_1 \cup \Sigma_2) \cap (\Sigma_3 \cup \Sigma_4) \subseteq \Sigma''$

$G = P_{12}((S_1 \land S_2 \land C_{12})/(G_1 \times G_2)) \times P_{34}((S_3 \land S_4 \land C_{34})/(G_3 \times G_4))$

$P_{12}: (\Sigma_1 \cup \Sigma_2)^* \rightarrow ((\Sigma_1 \cup \Sigma_2) \cap \Sigma'')^*$

$P_{34}: (\Sigma_3 \cup \Sigma_4)^* \rightarrow ((\Sigma_3 \cup \Sigma_4) \cap \Sigma'')^*$
Outline

• Motivation
• Ramadge-Wonham Modular Supervisory Control
• Queiroz-Cury Extension
• Coordinated Modular Supervisory Control
• Example
• Interface-based Approach
• Conclusions
Simple Transfer Line (STL)
Component Models

M1

M2

M3

M4

TU
Buffer Specifications

B₁

B₂

B₃

B₄
Partition of STL

PLANT_1

PLANT_2
Local Synthesis with TCT

- \text{PLANT}_1 = M_1 \times M_2 \times M_3 \times TU \quad (\text{use Sync}) \quad (16, 72)
- \text{PLANT}_2 = M_3 \times M_4 \times TU \quad (8, 28)
- \text{SPEC}_1 = \text{Selfloop}(\text{Sync}(B_1, B_2), \{1, 6, 9, 10\}) \quad (4, 42)
- \text{SPEC}_2 = \text{Selfloop}(\text{Sync}(B_3, B_4), \{5, 10, 12\}) \quad (9, 51)
- \text{SUPER}_1 = \text{Supcon}(\text{PLANT}_1, \text{SPEC}_1) \quad (48, 146)
- \text{SUPER}_2 = \text{Supcon}(\text{PLANT}_2, \text{SPEC}_2) \quad (50, 137)
- \text{SUPER}_1 \text{ and } \text{SUPER}_2 \text{ are conflicting}
Create an Coordinator

\[\Sigma_1 = \{1,2,3,4,5,6,9,10,12\} \]

\[\Sigma_2 = \{5,6,7,8,9,10,12\} \]

\[\Sigma_c \supseteq \Sigma_1 \cap \Sigma_2 = \{5,6,9,10,12\} \]
Coordinator Synthesis

• Preparation
 – Set the coordinator’s alphabet as $\Sigma_c = \{1, 5, 6, 9, 10, 12\}$
 – We can check that both P_1 and P_2 are observers.

• Create local abstractions
 – P_{PLANT_1} = Project($SUPER_1, \{1, 5, 6, 9, 10, 12\}$) (14, 40)
 – P_{PLANT_2} = Project($SUPER_2, \{5, 6, 9, 10, 12\}$) (18, 41)

• Create a specification SPEC, recognizing Σ_c^*.

• Synthesis
 – P_{PLANT} = Sync(P_{PLANT_1}, P_{PLANT_2}) (63, 168)
 – $C = \text{Supcon}(P_{PLANT}, \text{SPEC})$ (59, 158)
Verification

- C, SUPER₁ and SUPER₂ are nonconflicting
Monolithic Supervisor Synthesis

- PLANT = Sync(PLANT₁, PLANT₂) \hspace{1cm} (32 , 176)
- SPEC = Selfloop(Sync(Sync(Sync(B₁,B₂),B₃),B₄), \{1,10\}) \hspace{1cm} (54 , 414)
- SUPER = Supcon(PLANT, SPEC) \hspace{1cm} (568 , 1927)

Isomorphic(Sync(C,Sync(SUPER₁, SUPER₂)),SUPER)=true
Comparison

• Monolithic Approach
 – Plant : (32, 176)
 – Supervisor : (568, 1927)
 – The largest intermediate computational result : (568, 1927)

• Coordinated Modular Approach
 – Local Plants : (16, 72), (8, 28)
 – Local Supervisors : (48, 146), (50, 137)
 – Coordinator : (59, 158)
 – The largest intermediate computational result : (63, 168)
Outline

• Motivation
• Ramadge-Wonham Modular Supervisory Control
• Queiroz-Cury Extension
• Coordinated Modular Supervisory Control
• Example
• Interface-based Approach
• Conclusions
Motivations

- Each component has a fixed interface
- Each component’s internal behaviour is unseen to outsiders
- Components communicate with each other through interfaces
Example 1 – Digital Circuit
Example 2 – Component-Based Software

Data Retrieval (DR)

Video Signal Processor (VSP)

Audio Signal Processor (ASP)

Video-Audio Synchronizer (VAS)
Our Goal

• Use interfaces to separate components, allowing local synthesis
The System Architecture

High-Level Component $G_H \in \phi(\Sigma_H)$ (where $\phi(\Sigma_H)$ contains all FSAs over Σ_H)

Interfaces

Low-Level Components

• For any $i,j \in \{H,L1,...,Ln\}$
 - $\Sigma_i = \Sigma_{i,c} \cup \Sigma_{i,uc}$
 - $i \neq j \Rightarrow \Sigma_{i,c} \cap \Sigma_{j,uc} = \emptyset$

• For any $i,j \in \{L1,...,Ln\}$
 - $\Sigma_H \cap \Sigma_L = \Sigma_{Li}$
 - $i \neq j \Rightarrow \Sigma_{Li} \cap \Sigma_{Lj} = \Sigma_{Li} \cap \Sigma_{Lj}$
Separable Requirements

- At the high level: $E_H \in \phi(\Sigma_H)$

- At the low level: $\{E_{Li} \in \phi(\Sigma_{Li}) \mid i=1,\ldots,n\}$

A requirement can “touch” different components via interface events!
A Supervisor Synthesis Problem

- Compute an interface-based modular (IBM) supervisor \(\{S_H, S_{L1}, \ldots, S_{Ln}\} \),
 - Requirements: \(L_m(S_H/G_H) \subseteq L_m(E_H) \land (\forall i \in \{1, \ldots, n\}) \ L_m(S_{Li}/G_{Li}) \subseteq L_m(E_{li}) \)
 - Nonblockingness: \(\overline{L_m(S/G)} = L(S/G) \) where
 - \(L_m(G) = L_m(G_H)\|L_m(G_{L1})\|\ldots\|L_m(G_{Ln}) \) and \(L(G) = L(G_H)\|L(G_{L1})\|\ldots\|L(G_{Ln}) \)
 - \(L_m(S) = L_m(S_H)\|L_m(S_{L1})\|\ldots\|L_m(S_{Ln}) \) and \(L(S) = L(S_H)\|L(S_{L1})\|\ldots\|L(S_{Ln}) \)
 - Controllability: \(L(S/G)\Sigma_{uc} \cap L(G) \subseteq L(S/G) \)
 - Interface Invariance:
 \[
 (\forall i \in \{1, \ldots, n\}) \ P_i(L_m(S_{Li}/G_{Li})) = L_m(G_{li})
 \]
 where \(P_i : \Sigma_{Li}^* \rightarrow \Sigma_{li}^* \) is an \(L_m(S_{Li}/G_{Li}) \)-observer
Theorem 1:

Given $\mathcal{G} = \{G_H, G_{Li}, G_{li} \mid i=1,\ldots,n\}$ and $\mathcal{E} = \{E_H, E_{Li} \mid i=1,\ldots,n\}$, the largest IBM supervisor, denoted as the supremal IBM supervisor, in terms of component-wise set inclusion exists.
Local Supervisor Synthesis (1)

- At the high level
 - Plant: $G = G_H \times G_{I_1} \times \ldots \times G_{I_n}$
 - Requirement: E_H
 - Synthesize $S_H \in \phi(\Sigma_H)$, where
 - $L_m(S_H/G) \subseteq L_m(E_H)$
 - $L_m(S_H/G) = L(S_H/G)$
 - $L(S_H/G)\Sigma_{H,uc} \cap L(G) \subseteq L(S_H/G)$
Local Supervisor Synthesis (2)

- At the low level, for each local component \(G_{Li} \) \((i \in \{1, \ldots, n\})\)

 - **Plant**: \(G_{Li} \)

 - **Requirement**: \(E_{Li} \)

 - **Synthesize** \(S_{Li} \in \phi(\Sigma_{Li}) \), where

1. \(L_m(S_{Li}/G_{Li}) \subseteq L_m(E_{Li}) \)
2. \(L_m(S_{Li}/G_{Li}) = L(S_{Li}/G_{Li}) \)
3. \(L(S_{Li}/G_{Li}) \Sigma_{Li,uc} \cap L(G_{Li}) \subseteq L(S_{Li}/G_{Li}) \)
4. \(P_i(L_m(S_{Li}/G_{Li})) = L_m(G_{Li}) \), where \(P_i : \Sigma_{Li}^* \rightarrow \Sigma_{Li}^* \) is an \(L_m(S_{Li}/G_{Li}) \)-observer
Theorem 2:

The largest language $L_m(S_{Li}/G_{Li})$ satisfying conditions 1-4 exists.

(Why?)
• The largest language $L_m(S_{Li}/G_{Li})$ in Theorem 2 is computable.
Theorem 3:

\{S_H, S_{L1}, \ldots, S_{Ln}\} is the supremal IBM supervisor w.r.t. \(\mathcal{G} \) and \(\mathcal{E} \).
Conclusions

• Advantages of Modular Supervisory Control
 – It is easy to present a system in a modular way
 – It is computationally tractable compared to the monolithic approach
 – It possesses a certain level of implementation flexibility

• Disadvantage of Modular Supervisory Control
 – Modular control is more conservative than centralized control (why?)
 – The observer property is required during model abstraction