NANYANG TECHNOLOGICAL UNIVERSITY
SYLLABUS FOR ENTRANCE EXAMINATION
FOR INTERNATIONAL STUDENTS

AO-LEVEL MATHEMATICS

STRUCTURE OF EXAMINATION PAPER

1. There will be one 2-hour paper consisting of 4 questions.
2. Each question carries 25 marks.
3. Candidates will be required to answer all 4 questions.

The detailed syllabus is on the next page.
Knowledge of the content of the O Level Mathematics syllabus is assumed in the syllabus below and will not be tested directly, but it may be required indirectly in response to questions on other topics.

<table>
<thead>
<tr>
<th>Topic / Sub-topics</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURE MATHEMATICS</td>
<td></td>
</tr>
<tr>
<td>1 Functions and graphs</td>
<td></td>
</tr>
</tbody>
</table>
| 1.1 Exponential and logarithmic functions and Graphing techniques | Include:
- concept of function
- use of notation such as $f(x) = x^2 + 5$
- functions e^x and $\ln x$ and their graphs
- laws of logarithms
- equivalence of $y = e^x$ and $x = \ln y$
- use of a graphic calculator to graph a given function
- characteristics of graphs such as symmetry, intersections with the axes, turning points and asymptotes
Exclude:
- concepts of domain and range
- the use of notation $f: x \mapsto x^2 + 5$ |
| 1.2 Equations and inequalities | Include:
- solving simultaneous equations, one linear and one quadratic, by substitution
- conditions for a quadratic equation to have real or equal roots
- solving quadratic inequalities
- conditions for $ax^2 + bx + c$ to be always positive (or always negative)
- solving inequalities by graphical methods
- formulating an equation from a problem situation
- finding the numerical solution of an equation using a graphic calculator |
<table>
<thead>
<tr>
<th>Topic / Sub-topics</th>
<th>Content</th>
</tr>
</thead>
</table>
| 2.1 Differentiation | Include:
- derivative of \(f(x) \) as the gradient of the tangent to the graph of \(y = f(x) \) at a point
- use of standard notations \(f'(x) \) and \(\frac{dy}{dx} \)
- derivatives of \(x^n \) for any rational \(n \), \(e^x \), \(\ln x \), together with constant multiples, sums and differences
- use of chain rule
- graphical interpretation of \(f'(x) > 0 \), \(f'(x) = 0 \) and \(f'(x) < 0 \)
- stationary points (local maximum and minimum points and points of inflexion)
- finding the numerical value of a derivative at a given point using a graphic calculator
- finding equations of tangents and normals to curves
- solving practical problems involving differentiation
Exclude:
- differentiation from first principles
- derivatives of products and quotients of functions
- use of \(\frac{dy}{dx} = \frac{1}{dx} \frac{dy}{dx} \)
- differentiation of functions defined implicitly or parametrically
- finding non-stationary points of inflexion
- problems involving small increments and approximation
- relating the graph of \(y = f'(x) \) to the graph of \(y = f(x) \) |
| 2.2 Integration | Include:
- integration as the reverse of differentiation
- integration of \(x^n \), for any rational \(n \), and \(e^x \), together with constant multiples, sums and differences
- integration of \((ax + b)^n \), for any rational \(n \), and \(e^{(ax + b)} \)
- definite integral as the area under a curve
- evaluation of definite integrals
- finding the area of a region bounded by a curve and lines parallel to the coordinate axes, between a curve and a line, or between two curves
- finding the numerical value of a definite integral using a graphic calculator
Exclude:
- definite integral as a limit of sum
- approximation of area under a curve using the trapezium rule
- area below the \(x \)-axis |
<table>
<thead>
<tr>
<th>Topic / Sub-topics</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS</td>
<td></td>
</tr>
<tr>
<td>3 Probability</td>
<td></td>
</tr>
<tr>
<td>3.1 Probability</td>
<td>Include:</td>
</tr>
<tr>
<td></td>
<td>• addition and multiplication of probabilities</td>
</tr>
<tr>
<td></td>
<td>• mutually exclusive events and independent events</td>
</tr>
<tr>
<td></td>
<td>• use of tables of outcomes, Venn diagrams, and tree diagrams to calculate probabilities</td>
</tr>
<tr>
<td></td>
<td>• calculation of conditional probabilities in simple cases</td>
</tr>
<tr>
<td></td>
<td>• use of $P(A') = 1 - P(A)$</td>
</tr>
<tr>
<td></td>
<td>$P(A \cup B) = P(A) + P(B) - P(A \cap B)$</td>
</tr>
<tr>
<td></td>
<td>$P(A</td>
</tr>
<tr>
<td>4 Binomial and normal distributions</td>
<td></td>
</tr>
<tr>
<td>4.1 Binomial distribution</td>
<td>Include:</td>
</tr>
<tr>
<td></td>
<td>• knowledge of the binomial expansion of $(a+b)^n$ for positive integer n</td>
</tr>
<tr>
<td></td>
<td>• use of the notations $n!$ and $\binom{n}{r}$</td>
</tr>
<tr>
<td></td>
<td>• concept of binomial distribution $B(n, p)$ and use of $B(n, p)$ as a probability model</td>
</tr>
<tr>
<td></td>
<td>• use of mean and variance of a binomial distribution (without proof)</td>
</tr>
<tr>
<td></td>
<td>• solving problems involving binomial variables</td>
</tr>
<tr>
<td></td>
<td>Exclude calculation of mean and variance for other probability distributions</td>
</tr>
<tr>
<td>4.2 Normal distribution</td>
<td>Include:</td>
</tr>
<tr>
<td></td>
<td>• concept of a normal distribution and its mean and variance; use of $\mathcal{N}(\mu, \sigma^2)$ as a probability model</td>
</tr>
<tr>
<td></td>
<td>• standard normal distribution</td>
</tr>
<tr>
<td></td>
<td>• finding the value of $P(X < x_i)$ given the values of x_i, μ, σ</td>
</tr>
<tr>
<td></td>
<td>• use of the symmetry of the normal distribution</td>
</tr>
<tr>
<td></td>
<td>• finding a relationship between x_i, μ, σ given the value of $P(X < x_i)$</td>
</tr>
<tr>
<td></td>
<td>• solving problems involving normal variables</td>
</tr>
<tr>
<td></td>
<td>• solving problems involving the use of $E(aX + b)$ and $\text{Var}(aX + b)$</td>
</tr>
<tr>
<td></td>
<td>• solving problems involving the use of $E(aX + bY)$ and $\text{Var}(aX + bY)$, where X and Y are independent</td>
</tr>
<tr>
<td></td>
<td>• normal approximation to binomial</td>
</tr>
<tr>
<td></td>
<td>Exclude:</td>
</tr>
<tr>
<td></td>
<td>• finding probability density functions and distribution functions</td>
</tr>
<tr>
<td></td>
<td>• calculation of $E(X)$ and $\text{Var}(X)$ from other probability density functions</td>
</tr>
<tr>
<td>Topic / Sub-topics</td>
<td>Content</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 5 Sampling and hypothesis testing | Include:
- concepts of population and sample
- random, stratified, systematic and quota samples
- advantages and disadvantages of the various sampling methods
- distribution of sample means from a normal population
- use of the Central Limit Theorem to treat sample means as having normal distribution when the sample size is sufficiently large
- calculation of unbiased estimates of the population mean and variance from a sample
- solving problems involving the sampling distribution |
| 5.1 Sampling |
- concepts of population and sample
- random, stratified, systematic and quota samples
- advantages and disadvantages of the various sampling methods
- distribution of sample means from a normal population
- use of the Central Limit Theorem to treat sample means as having normal distribution when the sample size is sufficiently large
- calculation of unbiased estimates of the population mean and variance from a sample
- solving problems involving the sampling distribution |
| 5.2 Hypothesis testing | Include:
- concepts of null and alternative hypotheses, test statistic, level of significance and p-value
- tests for a population mean based on:
 - a sample from a normal population of known variance
 - a large sample from any population
- 1-tail and 2-tail tests
Exclude testing the difference between two population means |
| 6 Correlation and Regression | Include:
- concepts of scatter diagram, correlation coefficient and linear regression
- calculation and interpretation of the product moment correlation coefficient and of the equation of the least squares regression line
- concepts of interpolation and extrapolation
Exclude:
- derivation of formulae
- hypothesis tests
- use of a square, reciprocal or logarithmic transformation to achieve linearity |
| 6.1 Correlation coefficient and linear regression | Include:
- concepts of scatter diagram, correlation coefficient and linear regression
- calculation and interpretation of the product moment correlation coefficient and of the equation of the least squares regression line
- concepts of interpolation and extrapolation
Exclude:
- derivation of formulae
- hypothesis tests
- use of a square, reciprocal or logarithmic transformation to achieve linearity |
MATHEMATICAL NOTATION

1. Set Notation

\(\in\) is an element of
\(\notin\) is not an element of
\(\{x_1, x_2, \ldots\}\) the set with elements \(x_1, x_2, \ldots\)
\(\{x: \ldots\}\) the set of all \(x\) such that
\(n(A)\) the number of elements in set \(A\)
\(\emptyset\) the empty set
\(\mathbb{C}\) universal set
\(A'\) the complement of the set \(A\)
\(\mathbb{Z}\) the set of integers, \(\{0, \pm1, \pm2, \pm3, \ldots\}\)
\(\mathbb{Z}^+\) the set of positive integers, \(\{1, 2, 3, \ldots\}\)
\(\mathbb{Q}\) the set of rational numbers
\(\mathbb{Q}^+\) the set of positive rational numbers, \(\{x \in \mathbb{Q}: x > 0\}\)
\(\mathbb{Q}_0^+\) the set of positive rational numbers and zero, \(\{x \in \mathbb{Q}: x \geq 0\}\)
\(\mathbb{R}\) the set of real numbers
\(\mathbb{R}^+\) the set of positive real numbers, \(\{x \in \mathbb{R}: x > 0\}\)
\(\mathbb{R}_0^+\) the set of positive real numbers and zero, \(\{x \in \mathbb{R}: x \geq 0\}\)
\(\mathbb{R}^n\) the real \(n\) tuples
\(\mathbb{C}\) the set of complex numbers
\(\subseteq\) is a subset of
\(\subset\) is a proper subset of
\(\not\subset\) is not a subset of
\(\not\subset\) is not a proper subset of
\(\cup\) union
\(\cap\) intersection
\([a, b]\) the closed interval \(\{x \in \mathbb{R}: a \leq x \leq b\}\)
\([a, b)\) the interval \(\{x \in \mathbb{R}: a \leq x < b\}\)
\((a, b]\) the interval \(\{x \in \mathbb{R}: a < x \leq b\}\)
\((a, b)\) the open interval \(\{x \in \mathbb{R}: a < x < b\}\)
2. Miscellaneous Symbols

= is equal to
≠ is not equal to
≡ is identical to or is congruent to
≈ is approximately equal to
∝ is proportional to
< is less than
≤; ≥ is less than or equal to; is not greater than
> is greater than
≥; ≧ is greater than or equal to; is not less than
∞ infinity

3. Operations

\(a + b \) \(a \) plus \(b \)
\(a \)− \(b \) \(a \) minus \(b \)
\(a \times b, ab, a.b \) \(a \) multiplied by \(b \)
\(a \div b, \frac{a}{b}, a/b \) \(a \) divided by \(b \)
\(a : b \) the ratio of \(a \) to \(b \)
\(\sum_{i=1}^{n} a_i \) \(a_1 + a_2 + \ldots + a_n \)
\(\sqrt{a} \) the positive square root of the real number \(a \)
\(|a| \) the modulus of the real number \(a \)
\(n! \) \(n \) factorial for \(n \in \mathbb{Z}^+ \cup \{0\} \), \((0! = 1)\)
\(\binom{n}{r} \) the binomial coefficient \(\frac{n!}{r!(n-r)!} \), for \(n, r \in \mathbb{Z}^+ \cup \{0\}, 0 \leq r \leq n \)
\(\frac{n(n-1)...(n-r+1)}{r!} \), for \(n \in \mathbb{Q}, r \in \mathbb{Z}^+ \cup \{0\} \)
4. Functions

\[f \]
function \(f \)

\[f(x) \]
the value of the function \(f \) at \(x \)

\[f: A \rightarrow B \]
\(f \) is a function under which each element of set \(A \) has an image in set \(B \)

\[f: x \rightarrow y \]
the function \(f \) maps the element \(x \) to the element \(y \)

\[f^{-1} \]
the inverse of the function \(f \)

\(g \circ f, gf \)
the composite function of \(f \) and \(g \) which is defined by \((g \circ f)(x) \) or \(gf(x) = g(f(x)) \)

\[\lim_{x \to a} f(x) \]
the limit of \(f(x) \) as \(x \) tends to \(a \)

\(\Delta x; \ \delta x \)
an increment of \(x \)

\[\frac{dy}{dx} \]
the derivative of \(y \) with respect to \(x \)

\[\frac{d^n y}{dx^n} \]
the \(n \)th derivative of \(y \) with respect to \(x \)

\(f'(x), f''(x), \ldots, f^{(n)}(x) \)
the first, second, \(\ldots \) \(n \)th derivatives of \(f(x) \) with respect to \(x \)

\[\int y \, dx \]
indefinite integral of \(y \) with respect to \(x \)

\[\int_a^b y \, dx \]
the definite integral of \(y \) with respect to \(x \) for values of \(x \) between \(a \) and \(b \)

\(\dot{x}, \ddot{x}, \ldots \)
the first, second, \(\ldots \) derivatives of \(x \) with respect to time

5. Exponential and Logarithmic Functions

\(e \)
base of natural logarithms

\(e^x, \exp x \)
exponential function of \(x \)

\(\log_a x \)
logarithm to the base \(a \) of \(x \)

\(\ln x \)
natural logarithm of \(x \)

\(\lg x \)
logarithm of \(x \) to base 10

6. Circular Functions and Relations

\(\sin, \cos, \tan, \)
the circular functions

\(\cosec, \sec, \cot \)
the circular functions

\(\sin^{-1}, \cos^{-1}, \tan^{-1} \)
the inverse circular functions

\(\cosec^{-1}, \sec^{-1}, \cot^{-1} \)
the inverse circular functions
7. Complex Numbers

\(i \) square root of \(-1\)

\(z \) a complex number, \(z = x + iy \)

\[r(\cos \theta + i \sin \theta), r \in \mathbb{R}^+ \]

\(= re^{i\theta}, r \in \mathbb{R}^+ \)

\(\text{Re } z \) the real part of \(z \), \(\text{Re} (x + iy) = x \)

\(\text{Im } z \) the imaginary part of \(z \), \(\text{Im} (x + iy) = y \)

\(|z| \) the modulus of \(z \), \(|x + iy| = \sqrt{x^2 + y^2}, |r(\cos \theta + i \sin \theta)| = r \)

\(\arg z \) the argument of \(z \), \(\arg(r(\cos \theta + i \sin \theta)) = \theta, \pi < \theta \leq \pi \)

\(z^* \) the complex conjugate of \(z \), \((x + iy)^* = x - iy \)

8. Matrices

\(M \) a matrix \(M \)

\(M^{-1} \) the inverse of the square matrix \(M \)

\(M^T \) the transpose of the matrix \(M \)

\(\det M \) the determinant of the square matrix \(M \)

9. Vectors

\(\mathbf{a} \) the vector \(\mathbf{a} \)

\(\overrightarrow{AB} \) the vector represented in magnitude and direction by the directed line segment \(AB \)

\(\mathbf{a} \) a unit vector in the direction of the vector \(\mathbf{a} \)

\(\mathbf{i}, \mathbf{j}, \mathbf{k} \) unit vectors in the directions of the cartesian coordinate axes

\(|\mathbf{a}| \) the magnitude of \(\mathbf{a} \)

\(|\overrightarrow{AB}| \) the magnitude of \(\overrightarrow{AB} \)

\(\mathbf{a} \cdot \mathbf{b} \) the scalar product of \(\mathbf{a} \) and \(\mathbf{b} \)

\(\mathbf{a} \times \mathbf{b} \) the vector product of \(\mathbf{a} \) and \(\mathbf{b} \)

10. Probability and Statistics

\(A, B, C, \text{ etc.} \) events

\(A \cup B \) union of events \(A \) and \(B \)

\(A \cap B \) intersection of the events \(A \) and \(B \)

\(P(A) \) probability of the event \(A \)

\(A' \) complement of the event \(A \), the event 'not \(A \)'

\(P(A \mid B) \) probability of the event \(A \) given the event \(B \)

\(X, Y, R, \text{ etc.} \) random variables
value of the random variables X, Y, R, etc.

observations

frequencies with which the observations, x_1, x_2 ... occur

the value of the probability function $P(X = x)$ of the discrete random variable X

probabilities of the values x_1, x_2, ... of the discrete random variable X

the value of the probability density function of the continuous random variable X

the value of the (cumulative) distribution function $P(X \leq x)$ of the random variable X

expectation of the random variable X

expectation of $g(X)$

variance of the random variable X

binominal distribution, parameters n and p

Poisson distribution, mean μ

normal distribution, mean μ and variance σ^2

population mean

population variance

population standard deviation

sample mean

unbiased estimate of population variance from a sample,

$$s^2 = \frac{1}{n-1} \sum (x - \bar{x})^2$$

probability density function of the standardised normal variable with distribution $N(0, 1)$

corresponding cumulative distribution function

linear product-moment correlation coefficient for a population

linear product-moment correlation coefficient for a sample