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Abstract

A procedure that aims to pinpoint the sensitivity of ordinary least-squares
based inferences regarding the degree of endogeneity of some regressors has been
put forward in Ashley and Parmeter, Economics Letters, 137 (2015) 70-74. Here
it is demonstrated that this procedure is based on an incorrect and systematically
too optimistic asymptotic approximation to the variance of inconsistent least-
squares. Therefore, and because the suggested sensitivity �ndings pertain to a
random set of estimated endogeneity correlations, the claimed signi�cance levels
are misleading. For a very basic one coe¢ cient model it is demonstrated why much
more sophisticated asymptotic expansions under a stricter set of assumptions are
required. This enables to replace some of the �awed sensitivity analysis results for
an empirical growth model by �ndings based on a proper limiting distribution for
a feasible inconsistency corrected least-squares estimator, given an adopted �xed
range for the correlation between the endogenous regressor and the disturbance.
Finally it is discussed how similar results could be achieved for models with several
possibly endogenous regressors estimated by possibly endogenous instruments.

1. Introduction

An attempt is made in Ashley and Parmeter (2015a), henceforth APLS, to assess the

sensitivity of ordinary least-squares (OLS) based tests with respect to simultaneity of an

arbitrary number of regressors. The methods used in APLS are basically a specialization
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of an approach put forward in Ashley and Parmeter (2015b), henceforth APIV, which

aims to assess the sensitivity of instrumental variables (IV) based inference in situations

where instruments are in fact endogenous. The APLS results are obtained by simply

adopting in the APIV approach the regressors as instruments. The APIV study builds

on Ashley (2009).

In Kiviet (2013), henceforth KLS, we developed an asymptotically valid inference

method on the basis of inconsistent OLS results for models with one endogenous re-

gressor. This would not be possible without making a further identifying assumption.

In the KLS approach identi�cation is achieved by making a nonzero moment condi-

tion, instead of the habitual zero moment conditions exploited by consistent IV. This

approach enables to assess the sensitivity of OLS based t-test inferences over intervals

nested in (�1;+1) which should contain the true value of the correlation between the
single endogenous regressor and the disturbance term.

APLS uses a similar, yet di¤erent, conversion of OLS inference than put forward in

KLS. However, both approaches depart from an assessment of the limiting distribution

of an unfeasible estimator which corrects OLS for its inconsistency. In this paper we will

just focus on the results in APLS for which KLS o¤ers an alternative, i.e. for models

with just one endogenous regressor. We will show that the APLS approach su¤ers from

two fundamental �aws. First, its asymptotic analysis is much too naive, which leads

to three shortcomings: (i) it does not highlight that numerical assumptions on third

and fourth moments are required; (ii) it overlooks that a choice has to be made regard-

ing conditioning or not on exogenous regressors; (iii) the asymptotic variance adopted

is systematically too small. Second, the suggested approach leads to an assessment of

sensitivity over an adopted set of values for the covariance between regressors and distur-

bances. To interpret this for the dataset under study, the correlation between regressors

and disturbances is estimated on the basis of the adopted covariance and the sample

variances of the regressors and the residuals. However, the randomness of these latter

estimates is not taken into account, whereas it is in the KLS approach. Therefore, test

results obtained by the KLS approach are either tight or conservative, so they can claim

asymptotic signi�cance at a level equal to or not exceeding some chosen value, whereas

the APLS results cannot.

By analyzing in all detail a very simple case we will show in Section 2 that obtaining

the required asymptotic results is much more involved than suggested in APLS. In Sec-

tion 3 we will compare for an empirical growth model with just one endogenous regressor

the sensitivity results obtained in APLS by those produced by the KLS approach. In the

concluding Section 4 we put the foregoing into perspective, and indicate some further

literature that seems useful for achieving the goals of assessing the sensitivity of OLS

and IV with respect to invalid orthogonality conditions for models with possibly more
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than just one endogenous regressor.

2. Examination of a simple case

Consider the very simple linear regression model with just one random regressor and

i.i.d. observations

y = x� + "; with x � (0; �2xI) and " � (0; �2"I); (2.1)

where both y and x are n� 1 observed data vectors. Regressor x could be endogenous.
Therefore we suppose that

x = � + �"; (2.2)

where " and � � (0; �2�I) are independent. For i = 1; :::; n we denote �x" = E(xi"i) =

��x�" = ��2" ; thus endogeneity correlation � = ��"=�x with j�j < 1: Of course, �2x =

�2�+�
2�2" ; thus �

2
� = (1��2)�2x: For � = 0 (which implies � = 0) regressor x is exogenous

and endogenous otherwise.

We make standard regularity assumptions, involving that the unknown scalars �;

�; �x > 0 and �" > 0 are all �nite. So x0x > 0 and the ordinary least-squares (OLS)

estimator for � exists and is given by

b = x0y=x0x = � + x0"=x0x: (2.3)

We shall examine its limiting behavior for n!1:

2.1. Expanding the OLS estimator

For wx" = x0"=n � �x" we �nd E(wx") = 0 and V ar(wx") = n�2�ni=1V ar(xi"i � �x") =
n�2�ni=1E[�i"i+�x"�

�2
" ("

2
i ��2")]2: Assuming further that "i has a symmetric distribution

with �nite kurtosis coe¢ cient � (hence E"3i = 0 and E"4i = ��4") then V ar(wx") =

n�1[�2��
2
" + (�� 1)�2x"] = O(n�1): Thus, the order of probability of wx" is Op(n�1=2); as

n1=2wx" has a �nite distribution. Likewise, assuming E(x3i ) = 0 and E(x4i ) = ��4x; we

�nd for wxx = x0x=n� �2x that it is Op(n�1=2): In fact,

wx" � (0; n�1[1 + (�� 2)�2]�2"�2x) and wxx � (0; n�1(�� 1)�4x): (2.4)

For the inverse of x0x=n = �2x(1 + �
�2
x wxx) we �nd

(x0x=n)�1 = ��2x (1 + �
�2
x wxx)

�1

= ��2x (1� ��2x wxx + ��4x w2xx � ��6x w3xx + :::)
= ��2x � ��4x wxx +Op(n�1); (2.5)
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where we took it for granted that all the omitted terms, which are of decreasing order,

have a sum of the same order as the �rst and largest omitted term, which is ��6x w
2
xx =

Op(n
�1):

Substituting (2.5) we �nd for the OLS estimator (2.3)

n1=2(b� �) = n1=2(x0x=n)�1x0"=n
= (��2x � ��4x wxx)n1=2(�x" + wx") +Op(n�1=2)
= n1=2�x"=�

2
x + n

1=2(��2x wx" � �x"��4x wxx) +Op(n�1=2);

where the term �n1=2��4x wxxwx" could be absorbed in the remainder term because

wxxwx" = Op(n
�1): This yields the expansion

n1=2(b� �x"=�2x � �) = n1=2(��2x wx" � �x"��4x wxx) +Op(n�1=2); (2.6)

for the infeasible consistent estimator b� �x"=�2x:

2.2. Limiting distributions

Because ��2x wx" � �x"��4x wxx can be written as the sample average of n i.i.d. random
drawings with zero mean and �nite variance a standard Central Limit Theorem can be

applied. Therefore the limiting distribution of (2.6) will be normal. Its variance is given

by the variance of the leading term of (2.6), which has a �nite distribution. It can be

found from (2.4) and from

E(wx"wxx) = E[(x
0"=n� �x")(x0x=n� �2x)]

= n�2E(x0"x0x)� n�1�x"E(x0x)� n�1�2xE(x0") + �x"�2x
= n�1[2�+ (�� 3)�3]�3x�"; (2.7)

as E(x0") = n�x"; E(x0x) = n�2x and

E(x0"x0x) = E[�ni=1(�i"i + �"
2
i )�

n
j=1(�

2
j + 2��j"j + �

2"2j)]

= 2�n�2��
2
" + �n

2�2"�
2
� + �

3[n(n� 1) + �n]�4"
= �(1� �2)(2n+ n2)�3x�" + �3[n2 + (�� 1)n]�3x�"
= n[(n+ 2)�+ (�� 3)�3]�3x�":

This yields V ar(��2x wx" � �x"��4x wxx) = n�1[1 + (2� � 5)�2 � (� � 3)�4]�2"��2x ; and
thus, when � = 3 (so especially when xi and "i are jointly normal), then

n1=2(b� �x"=�2x � �)
d! N (0; (1� �2)�2"=�2x): (2.8)

It seems that APLS in their formula (7), when specialized to the one regressor case,

use the same infeasible inconsistency expression �x"=�2x for the correction of the OLS
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estimator.1 However, this is not the case.2 They consider in their formula (6) an

estimator that in the present simple one regressor context is equivalent to

~b = (x0y � n�x")=x0x = � + wx"=(x0x=n): (2.9)

Employing (2.5) we �nd the expansion

n1=2(~b� �) = n1=2(��2x � ��4x wxx)wx" +Op(n�1=2)
= n1=2��2x wx" +Op(n

�1=2): (2.10)

Since var(n1=2��2x wx") = [1 + (�� 2)�2]�2"=�2x; for � = 3 this yields limiting distribution

n1=2(~b� �) d! N (0; (1 + �2)�2"=�2x): (2.11)

Hence, the by APLS naively chosen expression �2"=�
2
x for the limiting variance of n

1=2(~b�
�) is wrong, and under simultaneity it is systematically too small when � > 2. Note

that choosing (2.8) as a starting point seems much more attractive because its limiting

distribution has a systematically smaller variance.

Due to skipping a formal derivation of (2.11) APLS do not realize either that as-

sumptions on third and fourth moments are required. Moreover, they do not recognize

that it matters whether or not one conditions on the random exogenous component � of

the vector x. In KLS it has been shown that when conditioning on �; while assuming

normality of x and "; one obtains

n1=2(b� �x"=�2x � �)
d! N (0; (1� �2)(1� 2�2 + 2�4)�2"=�2x); (2.12)

which is even more attractive than (2.8), because 1�2�2+2�4 � 1 for j�j < 1. However,
in what follows we will focus on the unconditional case; note that this will yield results

which are conservative (over-cautious) for the conditional case.

For the unconditional case it has been derived in KLS as well that for the feasible

consistent estimator b��; which is obtained by correcting b using the actual value of � and

consistently estimating �2" and �
2
x; one has

n1=2(b�� � �)
d! N (0; �2"=�2x); (2.13)

where

b�� = b� n1=2�(1� �2)�1=2se(b); with (2.14)

se(b) = s=(x0x)1=2 and s2 = (y � xb)0(y � xb)=(n� k):
1Note that when �X" is introduced in (6) of APLS there is a confusing typo: E(X 0

i"i) should read
E(X 0"):

2The term �E�1XX�X" should be removed from formula (7) in APLS, because estimator ~ has already
been corrected. However, this has been corrected by �(X 0X=n)�1�X":

5



Here se(b) is the expression for the usual OLS standard error estimate of b as produced

under assumed exogeneity of x: In the present special model k (the number of regressors)

is one, but for the asymptotic result to hold a degrees of freedom correction is irrelevant,

of course. Estimator b�� is consistent for �; because �x"=�
2
x = �(�

2
"=�

2
x)
1=2; whereas x0x=n

is consistent for �2x and, as has been proved in KLS, s
2=(1��2) is a consistent estimator

of �2" : Note that n
1=2se(b) = Op(1) and therefore the inconsistency correction term in b��

is �nite too and vanishes only for � = 0:

One may �nd it inappropriate that above estimator b�� is addressed as a feasible

estimator, whereas in practice the actual value of � is commonly unknown. A not un-

reasonable response to that is: OLS/IV estimators are usually not labelled as unfeasible

either, whereas their underlying (just) identifying orthogonality conditions simply adopt

the value zero for the correlation between regressor(s)/instrument(s) and disturbance,

for which it is equally di¢ cult or sheer impossible to �nd statistical evidence, see Kiviet

(2016).

Result (2.13) is quite remarkable, not because consistent feasible estimator b�� is

found to have, due to estimating (�2"=�
2
x)
1=2, a larger asymptotic variance than the

unfeasible estimator b � �x"=�2x; but because this increment exactly leads to the same
asymptotic variance as b has when it is consistent. However, this equivalence only holds

(unconditionally) under the special assumptions made regarding skewness and kurtosis

for x and "; it can be shown that the asymptotic variance of b�� will be larger in case of

excess kurtosis. It is remarkable too that estimating (�2"=�
2
x)
1=2 for obtaining consistent

estimator b�� increases the limiting variance of b� �x"=�2x less than estimating just �2x fo
obtaining consistent estimator ~b:

Summarizing: Unlike KLS, APLS do not �x � but �x"; which seems much less practi-

cable, because this is not dimensionless like � is. Moreover, it requires to employ the less

attractive limiting distribution (2.11) of consistent estimator ~b: Using simply, as APLS

do, the incorrect standard expression N (0; �2"=�2x); which does apply to b��; will lead to
systematically too optimistic inferences.

2.3. Sensitivity of OLS with respect to endogeneity

Asymptotically valid inference on � based on (2.13) can be obtained from the asymptotic

approximation

b��
a� N (�; s2=[(1� �2)x0x]); (2.15)

which for � = 0 simpli�es to the standard result b a� N (�; s2=x0x): Let us focus now
on testing H0 : � = �0 against H1 : � 6= �0 for known numerical value �0: The usual

statistic t(�0) = (b � �0)=se(b) is asymptotically standard normal under H0; provided
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� = 0: From (2.15) it follows that under simultaneity

t�(�0) = (1� �2)1=2(b�� � �0)=se(b) = (1� �2)1=2t(�0)� n1=2� (2.16)

is asymptotically standard normal under H0: This result can be used for a sensitivity

analysis as follows. Imagine we �nd a t-value of 3 in a regression where n = 100:

Then by solving 3(1��2)1=2�10� > 1:96; which gives � � 0:102; we learn that rejection
against a right-hand side alternative at the asymptotic signi�cance level of 2.5% requires

a negative or just a very small positive simultaneity correlation.

Note that for �nite t(�0) and n > 4 we �nd that for � getting closer to +1 we have

t�(�0) < �c and for � getting closer to �1 we have t�(�0) > c; for c some positive critical
value. This means that for any OLS test result and any chosen nominal signi�cance

level we can always �nd a range of values for the degree of simultaneity for which the

test is asymptotically signi�cant and also one for which it is insigni�cant. This clearly

demonstrates the inadequacy of the APLS approach, because they report in their Table

1 that they did establish OLS inferences which were found to be robust to any degree

of simultaneity (rmin = 1).

As we understand it, the essential elements of the APLS sensitivity analysis in

the context of the above simple one coe¢ cient model involves the following. Sup-

pose one has found for a particular data set that jt(�0)j > z1��=2; where zp denotes

for 0 < p < 1 the pth quantile of the standard normal distribution. So H0 is rejected

at level �, presupposing exogeneity. Now the method seeks to establish the values

� for which H0 would still be rejected. This is done as follows. The set of values

for �x" (here scalar), say S(�x"); is assessed (by a random search procedure), giving

S(�x") =
n
�x" 2 R : z�=2 < (~b� �0)=se(~b) < z1��=2

o
; where

~b = b� �x"=(x0x=n) with (2.17)

se(~b) = �̂�x"=(x
0x)1=2 and �̂2�x" = (y � x~b)

0(y � x~b)=n:

When the numerical problem to assess S(�x") has been solved, the corresponding set of
values for �̂ given by S(�̂) =

�
�̂ = �x"=[�̂

2
�x"(x

0x=n)]1=2 : �x" 2 S(�x")
	
is assessed, and

the conclusion is drawn that rejection of H0 is robust with respect to endogeneity for all

values covered by S(�̂):
Hence, a crucial di¤erence with KLS is that a choice is made regarding �x" and not

with respect to � directly. The price for that is that APLS �nd a random set S(�̂) for
�; and omit to discuss the consequences of this randomness (which is not due to the

random search, but to the dependence of �̂ on �̂2�x" and on x
0x). Moreover, as shown in

the foregoing section, the formula used for se(~b) in (2.17) is systematically too small.
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3. Empirical illustration

The methods developed in APLS have been applied to a particular empirical growth

model presented in Mankiw et al. (1992) where possible endogeneity of regressors has

not been taken into account. This model for 98 countries can be represented as yi =

�1 + �2xi2 + �3xi3 + �xi4 + "i; where yi is per capita output, xi2 is the rate of human

capital, xi3 is investment in physical capital and xi4 is the logarithm of the sum of the

population growth rate, the growth rate in technology and the depreciation rate. The

focus in the APLS analysis is on testing �2 = 0 and �2+�3+�4 = 1 (constant returns to

scale). APLS �nd OLS results as given in their equation (8), which are slightly di¤erent

from those in Mankiw et al. (1992, p.420, Table II, �rst column). APLS perform a

sensitivity analysis for four di¤erent scenarios, which allow either xi2; or xi3 or xi4 to be

endogenous, or xi2 and xi3 are jointly assumed endogenous.

The KLS results for regression models with just one explanatory variable that may

be endogenous can also serve the situation where the model has some further exogenous

regressors, which have all been partialled out. This means that only for the �rst scenario

of APLS (xi2 endogenous) we can produce KLS results relevant for testing �2: For these

access to the observations on the regressand and regressors is not required. The OLS co-

e¢ cient estimates and standard errors presented in APLS equation (8) su¢ ce to analyze

t�(�0) of (2.16). Just for illustrative purposes we also present in Table 1 results relevant

on testing �3 allowing xi3 to be endogenous and on �4 allowing xi4 to be endogenous.

Table 1: KLS sensitivity of signi�cance at 2.5% of growth coe¢ cients

alternative hypothesis �2 > 0 �3 > 0 �4 < 0
admissible values for � � � 0:572 � � 0:311 � � �0:222

The parallel �nding in APLS regarding �2 is: rmin = 0:425 at 5% (from their text it is

not clear whether they confront the test statistic with critical value 1.96 or 1.64; when

we test the signi�cance of �2 at 5% critical value 1:64 the result is � � 0:591): Note that
there is also a range of � values for which the observed OLS t-ratio�s imply signi�cance

of opposite sign. For � � 0:782; which would lead to a huge positive bias of b and thus
of t(�0), the empirical results corroborate with �2 < 0 at 2.5%.

4. How to tackle more general cases?

From the above it should be clear that the KLS approach has yet been developed for only

very few special simple cases, whereas the APLS approach has serious �aws in various

of its underpinnings. Even when employing sound asymptotics, the latter will lead
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to �ndings which are hard to interpret because the resulting rmin vector is random and

obtaining an asymptotic approximation to its distribution to assess its accuracy seems far

from easy. On the other hand, further development of the KLS approach for more general

cases seems possible, but requires an asymptotic analysis which certainly cannot be

characterized as in APLS (just above their section 2.2) as "easy" and "straightforward",

because of the following three reasons.

First, although the corrected estimator (6) in APLS is clearly consistent, it is not

self-evident what its limiting distribution will look like unless one embarks on a proper

derivation. Doing so reveals that extra assumptions are required regarding the numer-

ical values of third and fourth moments of the regressors and disturbance. Second, an

inconsistent estimator has a bias which is O(1); and hence any useful random assess-

ment of this bias will be Op(1), and thus employing such an assessment to correct the

inconsistent estimator will a¤ect its limiting distribution and require a further expan-

sion.3 Third, a further complicating issue is that whereas the limiting distribution of

standard consistent estimators is similar whether or not one conditions on exogenous

variables, this situation apparently changes when consistency is achieved by correcting

an inconsistent estimator.

Many aspects of these complications for regression models with an arbitrary number

of endogenous and exogenous regressors have already been addressed in Kiviet and

Niemczyk (2012) with respect to OLS estimation and in Kiviet and Niemczyk (2014)

with respect to IV estimation when invalid instruments may have been used. A next

step should be to obtain for these more general settings the limiting distributions of

inconsistency corrected estimators which are feasible in the sense of KLS, and next

exploit these to produce inference which is valid over a credible set of values for all

endogeneity correlations. Only after this has been achieved for empirically relevant

models it seems justi�able to provide a fully satisfactory answer to the question posed

in the titles of APLS and of this study. Other approaches to achieve a similar goal in

one way or another can be found in Murray (2006), Small (2007), Ebbes et al. (2009),

Conley et al. (2012) and Kraay (2012).
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