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Abstract

We examine the e¤ect of endogenous and exogenous risk on the equilibrium

(expected) membership of an International Environmental Agreement when

countries are risk averse. Endogenous risk arises when countries use mixed

rather than pure strategies at the participation game, and exogenous risk arises

from the inherent uncertainty about the costs and bene�ts of increased abate-

ment. Under endogenous risk, an increase in risk aversion increases expected

participation. Under exogenous risk and pure strategies, increased risk aver-

sion weakly decreases equilibrium participation if and only if the variance of

income decreases with abatement.
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1 Introduction

There are at least two types of risk associated with climate negotiations. We do not

know whether nations will sign a treaty that leads to meaningful action, and in the

event that such a treaty does emerge, we do not know the net bene�t of those actions.

The �rst type of risk depends on the interaction amongst nations and is therefore

endogenous to negotiations. The second type is exogenous, because it is due to

imperfect knowledge and inherent risk, e.g. about the costs and bene�ts of reducing

greenhouse gas (GHG) emissions. For risk averse countries, we consider the e¤ect

of both types of risk on equilibrium participation in an International Environmental

Agreement (IEA). Exogenous and endogenous risk have di¤erent implications for

the (expected) level of equilibrium participation in an IEA.

Our paper is the �rst to examine the e¤ect of risk aversion on equilibrium IEA

participation under endogenous risk. We also extend and clarify Boucher and Bra-

moulle (2010), who study the e¤ect of risk aversion with exogenous risk. We examine

the two types of risk in isolation, because combining them into a single model adds

complexity without producing additional insights.

Benedick (2009, page xv), a prominent US negotiator for many IEAs, notes acad-

emics�tendency to view the negotiating process as mechanistic, yielding a determin-

istic outcome. He emphasizes the contingency of the process, and the possibility of

surprises. To capture this endogenous uncertainty, Hong and Karp (2012) assume

that countries use mixed rather than pure strategies when deciding whether to par-

ticipate in an IEA. For risk neutral countries, they show that expected participation

under mixed strategies is lower than participation under pure strategies, except for a

narrow range of parameter space where unilateral abatement is �almost�a dominant

strategy. Mixed strategies create endogenous risk.1 We extend the results in Hong

and Karp (2012), showing that risk aversion increases the equilibrium mixed strategy

1Several papers study di¤erent comparative static relations involving mixed strategies and risk
aversion. Engelmann (2003) and Engelmann and Steiner (2007) show that increased risk aversion
in 2�2 games can increase equilibrium payo¤s. Collins and Sherstyuk (2000) �nd that risk aversion
leads to more dispersion in the mixed strategy equilibrium to a game in which �rms select their
location. Chuah et al (2011) examine risk aversion�s e¤ect on escalation bargaining.
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participation probability; for su¢ ciently risk averse countries, equilibrium expected

membership is greater than the deterministic pure strategy level.

Boucher and Bramoulle (2010) consider the e¤ect, on equilibrium IEA participa-

tion, of risk aversion in the presence of exogenous risk.2 Their abstract states

When countries directly contribute to a public good, uncertainty tends

to lower signatories�e¤orts but may increase participation... In contrast,

when countries try to reduce a global public bad, uncertainty tends to

increase signatories�e¤orts and decrease participation.�

The authors treat climate change as a problem of reducing a public bad, and they

conclude that risk aversion tends to decrease participation. This distinction between

public goods and bads is misleading: an outcome does not depend on whether we

de�ne the action as abatement (a public good) or emissions (a public bad). Although

we disagree with their interpretation of their own results, their formal analysis is

correct and valuable. We provide an alternative analysis of the participation game

under exogenous risk. The equilibrium e¤ect of risk aversion has �contrary to their

claim �nothing to do with whether the action is a public good or a public bad, and �

consistent with their results �everything to do with the manner in which exogenous

uncertainty in�uences the e¤ect of an action on payo¤ volatility.

2 Model basics

Barrett (1999) �rst proposed the following IEA model; see also Barrett (2003, Chap-

ter 7), Burger and Kolstad (2009) and Kolstad (2011) (chapter 19).3 There are N

2With exogenous risk, Endres and Ohl (2003) show that risk aversion may increase prospects
of cooperation in transboundary pollution. Bramoulle and Treich (2009), which we discuss below,
show that risk aversion reduces GHG emissions in a non-cooperative equilibrium. Neither paper
considers equilibrium participation in an IEA.

3The Nash equilibrium to this game achieves only a small fraction of potential gains to coop-
eration. Karp and Simon (2013) show that this conclusion can be overturned with more general
functional forms, and in that respect is fragile. We adopt this functional form because of its
tractability for comparative statics exercises, without relying on its implications concerning the
equilibrium level of welfare.
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Figure 1: A canonical IEA model

identical countries, each of which has two sequential decisions: participation in an

IEA and abatement. The equilibrium is subgame perfect. The cost and bene�t of

abatement are both linear, so in equilibrium each country abates at the level 0 or at

capacity, normalized to 1. Given linearity and the absence (here) of exogenous risk,

there is no additional loss in generality in assuming that the abatement decision is

binary. We adopt this assumption here and in Section 3 and relax it in section 4,

where we introduce exogenous risk. Abatement is a global public good. By choice

of units, the bene�t of each unit of abatement, to each country, equals 1. Each

country�s abatement cost is c, with 1 < c < N . The �rst inequality means that

it is a dominant strategy for a country acting alone not to abate, and the second

inequality means that the world is better o¤when a country abates. Figure 1 shows

the two stages of the game. In the �rst stage, each country decides whether to

participate in an IEA. In the second stage, non-members choose their individually

rational level of abatement, here equal to 0 because 1 < c.

The IEA maximizes the total welfare of its members, instructing all members

whether to abate. Conditional on membership k, the IEA instructs its members to

abate if and only if k� c � 0. An IEA with f (c) members, where the function f(x)
returns the smallest integer not less than x, is the �minimally successful IEA�under

the assumption that the IEA optimizes conditional on membership.

Any outcome with more than f(c) members is not an equilibrium in pure strate-

gies because the �extra�members would want to leave: each member�s defection
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leaves unchanged other members�equilibrium action, resulting in a net bene�t c�1 >
0 to the defector. An outcome with f(c) members is an equilibrium; defection by a

single member causes the IEA to instruct remaining members to not abate, causing a

net loss to the defector f(c)�c � 0; a non-member loses c�1 by joining. Under the
tie-breaking assumption that a country indi¤erent between joining and staying out

of the IEA, decides to join, f(c) is the unique pure strategy equilibrium, in addition

to being the minimally successful IEA. For example, with c = 3:2, there are four

members in this equilibrium.

3 Endogenous risk

A pure strategy equilibrium does not capture the risk of nations failing to agree on a

meaningful treaty; a mixed strategy equilibrium in the participation game captures

exactly this risk. The use of mixed rather than pure strategies (with no exogenous

risk) gives rise to endogenous risk about participation. IEA membership is a real-

ization of a random variable; it may or may not reach the critical level above which

the IEA instructs its members to abate. We show that risk aversion increases the

equilibrium expected level of participation.

Assume that countries randomize their participation decisions. Recall that the

IEA instructs its members to abate if and only if there are at least k = f(c)members.

Therefore, a country is pivotal if and only if exactly f(c)� 1 other countries join. If
fewer than f(c)� 1 other countries join, then there would still be too few members
to elicit abatement even if an additional country joins. If more than f(c)� 1 other
countries join, then membership by an additional country is (from its own standpoint)

harmful: by joining it has no e¤ect on other countries�abatement but it incurs the

net cost c � 1 > 0. Using the abbreviation f = f (c) and denoting the probability

of joining as p, the probability that a country is pivotal is

g(p) =
(N � 1)!

(f � 1)! (N � f)!p
f�1 (1� p)N�f :
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The probability that at least f other countries join is

G (p) =

N�1X
i=f

(N � 1)!
i! (N � 1� i)!p

i (1� p)N�1�i :

Under risk neutrality, the net expected bene�t of joining is the bene�t of joining

when the country is pivotal, f � c, times the probability that it is pivotal, g, minus
the loss of joining when the IEA would have abated even had this country not joined,

c�1, times the probability of that event, G. In a mixed strategy equilibrium, p must
be such that a country is indi¤erent between joining and not joining. The equilibrium

condition for p under risk neutrality is therefore

(f � c) g (p) = (c� 1)G (p) ; (1)

which is equation (1) of Hong and Karp (2012).

To examine the e¤ect of risk aversion, de�ne A as a country�s baseline income in

the absence of environmental damage or abatement, N as the environmental dam-

age when no country abates, and let ym (k)and yn (k) be, respectively, income of a

member and a non-member of an IEA with k members.4

ym(k) =

(
A� (N � k + c) if k � c

A�N if k < c

)
;

yn(k) =

(
A� (N � k) if k � c

A�N if k < c

)
:

Let U (y) be a concave function that is strictly concave in a subset of the inter-

val [A�N + f � c; A� 1]. With preferences U(y), countries are risk averse, and

strictly risk averse over some interval. In the participation game, the utility gain of

joining when the country is pivotal is U (A�N + f � c) � U (A�N) while the
utility loss of joining when there are i � f other members is U (A�N + i) �

4Abatement costs and environmental damages are measured in the same units. For example,
integrated assessment models (e.g. DICE (Nordhaus 2008) treat abatement costs and stock-related
pollution damages as output reductions.
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U (A�N + i+ 1� c). Thus the equilibrium condition under risk aversion is

g(p) [U (A�N + f � c)� U (A�N)] =PN�1
i=f

(N�1)!
i!(N�1�i)!p

i (1� p)N�1�i [U (A�N + i)� U (A�N + i+ 1� c)] :
(2)

Replacing preferences by V (U (y)), where V is concave, and strictly concave in a

subset of the interval [A�N + f � c; A� 1], represents an increase in risk aversion.
We have the following:

Proposition 1 (i) The introduction of risk aversion (changing the payo¤ from y to

U(y)) increases the equilibrium participation probability. (ii) An increase in risk

aversion increases the equilibrium participation probability.

(Appendix A collects proofs.) The intuition for Proposition 1 is straightforward.

Note that for both members and non-members, income is (weakly) increasing in the

number of members. Under risk aversion, the marginal utility of income decreases

with the level of income. A country loses c � 1 units of income by joining if at
least k � f other countries have joined. The larger is k, the larger is income, and

therefore the smaller is the utility loss of joining �unnecessarily�(i.e., when k � f

other countries have joined). A country gains f � c by joining only if k = f � 1,
i.e. when income is low, and the marginal utility of income is relatively high. Risk

aversion therefore increases the utility gain of joining when k = f � 1 and decreases
the utility loss of joining when k � f . In order for a country to remain indi¤erent
between joining and not joining, the probability of k � f must increase. That

cumulative probability increases if and only if p, the probability that an individual

country joins, increases.

Thus, in the presence of endogenous risk, an increase in risk aversion increases

the equilibrium expected participation level of the IEA. To assess the magnitude of

the e¤ect of risk aversion we consider two examples here: one analytic and the other

with CRRA utility.

Example: piece-wise linear utility Suppose that utility is piece-wise linear in

income, with the kink at A�N + f � c, in order to satisfy the assumption that the
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country is strictly risk averse over a subset of the interval [A�N + f � c; A� 1]:

U =

(
y if y � A�N + f � c

�2w
1�2w (A�N � c+ f) +

1
1�2wy if y < A�N + f � c

)
; (3)

for w 2 [0; 0:5). With this utility function, the marginal utility of income equals 1

for y � A�N +f � c and marginal utility equals 1
1�2w for y < A�N +f � c.

5 As w

increases from 0 to its supremum value of 0.5, marginal utility for y < A�N + f � c
increases from 1 to in�nity; thus, risk aversion increases with w .

The fact that utility is linear above and below the kink, A�N + f � c, simpli�es
the equilibrium condition (2). The equilibrium condition is now

1
1�2w (f � c)
c� 1 =

G (p)

g (p)
: (4)

The numerator of the left side of equation (4) is the utility loss when the country

decides not to join and there are f�1members, and the denominator is the utility loss
when the country decides to join and there are k � f other members. An increase
in the risk aversion parameter w increases the left hand side, due to the increase in
1

1�2w (f � c). The proofs of Propositions 1 and 2 in Hong and Karp (2012) show

that the right side of equation (4), G(p)
g(p)
, is increasing in p; and approaches in�nity as

p! 1. These results imply that the equilibrium p increases in w, and approaches 1

as the risk aversion parameter approaches its supremum, w = 0:5. Figure 2 shows

the relation between the equilibrium p and the exogenous parameter w 2 [0; 0:4995)
for N = 20 and for three values of c 2 f5:01; 5:5; 5:99g. For these values, equilibrium
participation is 6 under pure strategies. Under risk neutrality (w = 0) and mixed

strategies, the participation probability is less than 0.1 for all three values of c, so

expected participation is less than 2. The participation probability approaches 1 (so

expected participation approaches 20) as w ! 0:5. Hong and Karp (2012) show that,

under risk neutrality, the expected membership of the mixed strategy equilibrium is

5The presence of the kink can be interpreted simply as risk aversion, or as the related idea of
loss aversion, where positive and negative changes in the the neighborhood of a reference level,
A�N + f � c, have asymmetric e¤ects.
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Figure 2: Relation between w and equilibrium p for N = 20 and c = 5:01 (solid),
c = 5:5 (dotted) and c = 5:99 (dashed)

always lower than the corresponding membership of the pure strategy equilibrium

for any c > 2. This result does not hold under risk aversion; for su¢ ciently risk

averse agents, the expected membership of the mixed strategy equilibrium is higher

than the corresponding membership of the pure strategy equilibrium.

Example: constant relative risk aversion (CRRA) When countries use mixed

strategies and have CRRA utility

U (y) =
y1��

1� � for � 6= 1; U (y) = ln y for � = 1; (5)

an increase in the CRRA parameter � increases the participation probability. The

equilibrium condition for p is

g(p)
h
(A�N+f�c)1��

1�� � (A�N)1��
1��

i
=PN�1

i=f
(N�1)!

i!(N�1�i)!p
i (1� p)N�1�i

h
(A�N+i)1��

1�� � (A�N+1+i�c)1��
1��

i
:

Figure 3 shows the equilibrium p as a function of �, given N = 20 and c = 2:1 for two

values of A = 10N (the left scale) and A = 1:1N (the right scale). For A = 10N ,
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Figure 3: Relation between � and p for N = 20, c = 2:1, A = 10N (left axis and the
solid line p1) and A = 1:1N (right axis and the dotted line p2).

environmental damage when no nation abates is only 10% of baseline income, so for

all levels of participation, income is high and the marginal utility of income is nearly

constant. In this case, risk aversion has little e¤ect on the equilibrium participation

probability. Membership in the pure strategy equilibrium equals 3. Expected

membership varies between 1.7 and 1.9 when the CRRA parameter increases from 0

to 5.

For A = 1:1N , environmental damage when no nation abates is approximately

90% of baseline income. Thus, A = 10N corresponds to moderate climate-related

damages, and A = 1:1N corresponds to catastrophic climate-related damages. With

A = 1:1N , at low levels of participation, income is low and the marginal utility

of income is high. For A = 1:1N , risk aversion has a signi�cant e¤ect on the

equilibrium participation probability. Expected membership increases from 1.7 to

8.2 when CRRA parameter increases from 0 to 5. In particular, when � = 2 (a

value sometimes proposed for climate policy models), expected membership is about

4, greater than the equilibrium membership under pure strategies, 3.
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Comparison of examples The parameterw, which appears in the piecewise linear

example, equation (3), is a measure of risk aversion in the neighborhood of the kink

in the utility function. To see this, suppose that income were a random variable

that takes the value A�N + f � c� " or A�N + f � c+ ", each with probability
0.5. Let the risk premium r equal the amount that society would pay to stabilize

income at its expected value, A � N + f � c, leaving society with the sure income
A � N + f � c � r. A calculation shows that w = r

"
, so w is the risk premium as

a fraction of the random shock ". Under risk neutrality (w = 0) the risk premium

is 0, and as society becomes in�nitely averse to risk (w ! 0:5) the risk premium

approaches 0:5". In a general model with strictly concave utility, the supremum of
r
"
is 1.

To compare the piecewise linear and the CRRA examples, consider the case where

expected income is y and actual income is y � ", each with probability 0.5. With

r de�ned as the amount that society would spend to stabilize income at its mean

value, r
"
, is again a measure of risk aversion. The appendix shows that a second

order expansion of the CRRA utility function yields

r

"
� 1

�

 
�y
"
+

r�y
"

�2
+ �2

!
: (6)

Equation (6) and w = r
"
(in the piece-wise linear setting) thus relate the two examples

using r
"
as a measure of risk attitude.

The ratio y
"
provides an inverse measure of the amount of risk relative to baseline

income. For the CRRA utility, as this risk becomes small (y
"
! 1), r

"
! 0; as

the risk approaches its maximum (y
"
! 1), r

"
! 1

�

�
�1 +

p
1 + �2

�
, a quantity that

varies between 0 and 1, as � increases from 0 to 1. For example, if � = 2, then the
approximation of r

"
given by equation (6) exceeds 0.4 provided that " > y

2:1
. Thus,

moderate levels of risk aversion correspond to large values of r
"
when the relevant

risk, ", is large.
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4 Exogenous risk

We consider two variants of a simple model, in order to clarify the relation between

risk aversion and equilibrium membership. This relation depends on the e¤ect of the

action on the variance of income, but is unrelated to whether the action is a public

good or a public bad. In both variants of the model, agents make the participation

and abatement decisions before learning the realization of random abatement costs.6

By choice of units, we set the BAU level of emissions equal to 1. We assume that

marginal environmental damage is deterministic, and equal to 1. The emissions of

an IEA member equals e; abatement, a, equals members�fractional reduction of their

BAU emissions: a = 1� e, so 0 � a � 1. With risk averse countries and exogenous
risk, abatement might take an interior value. The continuously distributed random

abatement cost parameter c has support [cL; cH ], with density function h (c) and

expectation �c; c is a country�s cost-bene�t ratio of unilateral abatement. We adopt

the following parameter restrictions:

(i) 1 < cL < cH < N ; (ii) f (c) > c: (7)

Inequality (7.i) implies that zero abatement is a dominant strategy for a non-member,

and 100% abatement is optimal for a su¢ ciently large IEA, regardless of members�

degree of risk aversion. Inequality (7.ii) implies that in the equilibrium under risk

neutrality (where membership equals f (c) as shown below), members strictly prefer

not to leave the IEA.

For Model 1, de�ne A(1) as the non-random baseline income in the absence of

environmental damage or emissions. The marginal bene�t to a country of emissions

is c, so the marginal opportunity cost of abatement is also c. Thus, in an IEA with

k members, income for an IEA member equals the baseline A(1), minus damages

associated with the non-members�BAU emissions, N �k, minus damages associated
with the members�emissions, ke, plus the bene�ts of own-emisisons, ce:

6Ulph (2004), Kolstad (2007), Kolstad and Ulph (2008) and Karp (2012) study the e¤ect of
exogenous risk and learning on equilibrium participation and welfare in an IEA.
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y(1) = A(1) � (N � k)� ke+ ce = A(1) �N + ka+ c (1� a) : (8)

The �rst equality expresses income as a function of emissions, a public bad, and the

second expresses income as a function of abatement, a public good. Obviously, the

characteristics of the model do not depend on which formulation we use.

For Model 2, de�ne A(2) as the non-random baseline income in the absence of

environmental damage or abatement. Here, each unit of abatement has the random

cost c. An IEA member�s income equals its baseline, A(2), minus damages associated

with non-members, N � k, minus damages associated with members, ke, minus its
own abatement cost, ca = c (1� e):

y(2) = A(2) � (N � k)� ke� c (1� e) = A(2) �N + ka� ca: (9)

Again, the �rst equality here expresses the action as a public bad and the second

treats it as a public good.

In Model 1, the marginal bene�t of emissions (equal to the marginal opportunity

cost of abatement) is a random variable. For example, the value of marginal product

of an extra unit of fossil fuel may depend on the random price of an energy-intensive

product. In Model 2, the marginal abatement cost is a random variable. For

example, the cost of abatement may depend on the success of a technology whose

properties are currently imperfectly understood. A richer model would include other

random variables to account for these features, but our simpler �reduced form�mod-

els are su¢ cient to examine the role of risk aversion; they also nest, in a transparent

manner, the familiar deterministic model. We do not regard one of these models

as more plausible than the other. Consideration of both models shows that appar-

ently minor changes in assumptions can reverse comparative static conclusions; this

reversal is unrelated to whether the action is a public good or a public bad.7

7An alternative to Model 1 treats marginal damages rather than abatement costs as random,
and also implies that an increase in abatement reduces the variance of income. We can construct
a di¤erent alternative to Model 2, in which abatement increases the variance of income.
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For both models i = 1; 2, the IEA�s policy rule is

a(i) (k) = arg max
a2[0;1]

Ec
X
j2J

U
�
y
(i)
j

�
;

where J is the set of members, with cardinality k, and j is the country index. By

concavity of the IEA�s maximand, a(i) (k) is a (single-valued) function of k. By

symmetry, the IEA chooses the same action for each member, a(i) (k). We use the

following de�nition.

De�nition 1 For Model i 2 f1; 2g, m(i)
a equals the minimum integer k for which

a(i) (k) > 0, and m(i)
b equals the minimum integer k at or above which a(i) (k) = 1,

the maximum feasible abatement level.

The de�nition implies thatm(i)
b �1 equals the maximum integer for which a(i) (k) < 1.

To establish the existence of m(i)
a and m(i)

b , with m
(i)
b � m(i)

a , note that by inequality

(7.i), a(i) (k) = 1 for all k > cH , and a(i) (k) = 0 for all k < cL, for both risk averse

or risk neutral agents.

With risk neutrality, a(i) = 0 for any k < f (c), and a(i) = 1 for any k � f (c).

Recall that in general a country�s incentive to join the IEA is to exercise leverage

on other members�abatement levels. If a non-member joins, or a member leaves,

its decision alters the marginal utility, to the IEA, of abatement, possibly changing

the value of a(i) (k). Under risk neutrality, additional members above f (�c) have no

e¤ect on equilibrium actions, because the members are already abating at capacity;

departure of a member when membership equals f (�c) causes the equilibrium abate-

ment of remaining members to fall from 1 to 0, because a(i) (k) = 0 for k < f (�c).

Thus, in view of our tie-breaking assumption (a country that is indi¤erent between

joining and not joining, decides to joins the IEA), the unique equilibrium under risk

neutrality contains f (�c) members.

Matters are more complicated under risk aversion. The tie-breaking assumption

implies that an IEA with m(i)
a � 2 or fewer members is not externally stable: if one

additional country joins, abatement remains at 0 and payo¤s are unchanged. An

IEA with m(i)
a � 1 members is not externally stable: if one additional country joins,
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a positive level of abatement is optimal. Because the IEA maximizes members�

welfare, the fact that it assigns a positive level of abatement, even though a zero

level remains feasible, means that members�welfare is higher at the positive level of

abatement. (Recall that a(i) (k) is a single-valued function.) An IEA withm(i)
b +1 or

more members is not internally stable, because a member can leave without altering

the abatement levels of remaining members. The following proposition establishes

existence and a basic property of equilibrium

Proposition 2 For model i = 1; 2 and any level of risk aversion, there exists an

equilibrium number of members, m� 2
h
m
(i)
a ;m

(i)
b

i
. If m(i)

a = m
(i)
b , the equilibrium

is unique, m� = m
(i)
a . There is no equilibrium outside

h
m
(i)
a ;m

(i)
b

i
. For risk neutral

agents, m(i)
a = m

(i)
b = f (c).

Proposition 2 generalizes the result that under risk neutrality, the equilibrium mem-

bership equals the �minimally successful IEA�, f (c). For risk neutral agents,

m
(i)
a = m

(i)
b = f (c), but under risk aversion it is possible that m(i)

b > m
(i)
a , in

which case, the equilibrium might not be unique.

The following lemma provides the ordering of the m(i)
a ;m

(i)
b . We use this lemma

to establish and explain the subsequent proposition, which describes the e¤ect of risk

aversion on equilibrium abatement and participation.

Lemma 1 For risk averse or risk neutral agents m(i)
a and m(i)

b satisfy

f (cL) � m(1)
a � m(1)

b = f (c) = m(2)
a � m(2)

b � f (cH) : (10)

Proposition 3 (i) For any membership level k, risk aversion weakly increases abate-
ment under Model 1 and weakly reduces abatement under Model 2, relative to abate-

ment levels under risk neutrality. (ii) Risk aversion weakly decreases the equilibrium

membership of the IEA under Model 1 and weakly increases the equilibrium member-

ship of the IEA under Model 2.

The essence of the comparison between Models 1 and 2 is evident from equalities

(8) and (9). In Model 1, an increase in emissions (something risky) increases the

14



variance of income; equivalently, an increase in a decreases the variance of income.

In Model 2, an increase in abatement (something risky) increases the variance of

income. Given risk aversion, an IEA wants to decrease the variance of members�

income. Thus, conditional on membership, higher risk aversion gives the IEA in

Model 1 a greater incentive to abate; in contrast, higher risk aversion gives the IEA

in Model 2 less incentive to abate. As a consequence, higher risk aversion weakly

reduces a minimum critical level, m(1)
a , in Model 1, and weakly increases a minimum

critical level, m(2)
b , in Model 2. Because the equilibrium membership always lies in

the interval of
h
m
(i)
a ;m

(i)
b

i
, and in view of the ordering in inequality (10), higher risk

aversion weakly reduces equilibrium membership in Model 1 and weakly increases

equilibrium membership in Model 2.

Proposition 3 describes �weak� changes of equilibrium membership. In order

to provide su¢ cient conditions where risk aversion strictly increases or decreases

equilibrium IEA membership, we use the following parameter restrictions:

(i) f (c) > cL + 1 and (ii) f (c) + 1 > cH > f (c) : (11)

Inequalities (11.i) and (11.ii) imply that the range of uncertainty is non-trivial, and

that the distribution of costs is not skewed �too far to the right�. If the range of

uncertainty is small, randomness and risk aversion are not important. If the distri-

bution was very skewed to the right, abatement becomes unattractive for extremely

risk averse agents. We have

Proposition 4 (i) Suppose that inequality (11.i) holds. A su¢ ciently high risk

aversion strictly reduces (relative to the risk-neutral case) membership of every equi-
librium in Model 1. (ii) Suppose that inequality (11.ii) holds. Su¢ ciently high risk

aversion strictly increases membership (relative to the risk-neutral case) of every
equilibrium for Model 2.

The logic of the proof of this proposition is the following. By Propositions 2

and 3, if f (c) is not an equilibrium, then strict changes of equilibrium membership

occur under risk aversion. Also, f (c) is externally stable for Model 1 and internally
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stable for Model 2 (because m(1)
b = f (�c) = m

(2)
a by equation (10)). Therefore, for

Model 1, there is a strict decrease in equilibrium membership if f (c) is not internally

stable, and for Model 2, there is a strict increase in equilibrium membership if f (c)

is not externally stable. The parameter restrictions in Proposition 4 ensure that for

su¢ ciently high levels of risk aversion, these conditions are met.

In the interest of a complete analysis, we show that in some cases the equilibrium

membership in Model 2 equals the highest possible level, f (cH), and the equilibrium

membership in Model 1 equals the lowest possible level, f (cL). In some other cases,

the only equilibrium in either model is f (c). To establish these claims, we use the

following restrictions,

(i) cH > f (c) ; (ii) f (cH) > cL + 1 and (iii) c > f (cL) > cL. (12)

Proposition 5 (i) Suppose that inequalities (12.i) and (12.ii) hold. For su¢ ciently
high level of risk aversion, there exists an equilibrium with f (cH) members in Model

2 (with f (cH) > f (c)). (ii) Suppose that inequality (12.iii) holds. For su¢ ciently

high level of risk aversion, there exists an equilibrium with f (cL) members in Model

1 (with f (cL) < f (c)). (iii) If inequality (11.i) does not hold, and cL is not an

integer, then for any level of risk aversion, the equilibrium membership in Model 1

is f (c); if inequality (12.i) does not hold, then for any level of risk aversion, the

equilibrium membership in Model 2 is f (c).

The proof of Proposition 5 is similar to that of Proposition 4 and is relegated to a

referee�s appendix.

In summary, for Model 1, risk aversion weakly increases abatement for given k,

and as a consequence weakly decreases equilibrium participation. The reverse holds

for Model 2. The reversal depends on the e¤ect that the action has on the volatility

of income, not on whether agents provide a public good or a public bad.8

8In a related paper, Bramoulle and Treich (2009) consider the e¤ect of risk aversion on emissions
in a Nash equilibrium without an IEA, assuming increasing marginal environmental damage of
emissions. They show that with exogenous risk, risk aversion reduces emissions in the Nash
equilibrium. In their model, a reduction in emissions reduces the volatility of income. Using the
arguments presented here, we can show that risk aversion has an ambiguous e¤ect on emissions in
the non-cooperative outcome, depending on how the action a¤ects the volatility of income.
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Example: constant relative risk aversion (CRRA) Here we illustrate the

role of risk aversion when the distribution of c is binary, and utility is given by

the CRRA function in equation (5). For this example, let N = 10, the low cost

realization cL = 2:6, the high cost realization, cH = 4:9, and � = 0:5, the probability

that the cost is low. For these values, c = 3:75. Figure 4 shows how equilibrium

membership, k, and total abatement level, ta, change as the CRRA parameter, �,

increases from 0.1 to 10. We numerically establish uniqueness of a pure strategy

equilibrium with positive abatement. The left panel of Figure 4, corresponding to

Model 1, assumes A(1) = 12; the right panel, corresponding to Model 2, assumes

that A(2) = A(1) + c = 15:75. With these values, expected income in the absence of

abatement is the same in the two settings.

The green dashed curves (kn) in both panels graph the equilibrium membership

and abatement level (equal to 4) under risk neutrality. In Model 1, an increase

in risk aversion leads to a discrete reduction in equilibrium membership and total

abatement level around � = 5; a further increase in � increases total abatement level;

nevertheless, abatement level remains below 3 for � > 5. In contrast, in Model 2,

an increase in risk aversion leads to a discrete increase in equilibrium membership

around � = 6; total abatement is below the risk neutral level for � < 6 and above

that level for � > 6.

5 Conclusion

The possibility that nations will not succeed in negotiating a (meaningful) climate

agreement creates endogenous risk. Failure at the 2009 Copenhagen Conference

of Parties meeting, and at various other meetings, illustrate this risk. Even if

countries do reach an agreement, they face exogenous risk, arising from the inherent

uncertainty about the costs and bene�ts of climate policy. Using mixed strategies

to represent endogenous risk, we showed that increased risk aversion increases the

equilibrium participation probability. Examples con�rm that for high levels of risk

aversion or high levels of environmental damage, countries are likely to join the IEA.

These results imply that including risk aversion makes the predictions of the mixed
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Figure 4: The left panel assumes that the baseline income without environmental
damage and emissions, A(1), is �xed at 12 and the right panel assumes that the
baseline income without environmental damage and abatement, A(2), is �xed at
15.75. Solid curve shows membership and dotted curve shows total abatement under
risk aversion. Dashed line shows membership and abatement under risk neutrality.
N = 10, cL = 2:1, cH = 4:9, � = 0:5, and � varies between 0.1 and 10.

strategy participation equilibrium less pessimistic.

In contrast, with pure strategies, the e¤ect of risk aversion in the presence of

exogenous risk has ambiguous e¤ects on emissions and the level of participation,

depending on whether abatement increases or lowers the variability of income. A

simple model illustrates that in the former case, risk aversion tends to raise equilib-

rium participation, and in the latter case, risk aversion tends to reduce equilibrium

participation.
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A Appendix

Derivation of equation (6) We have

U (y � r) = EU = 1

2
(U (y + ") + U (y � ")) (13)

A second order expansion of the left side and the right side of equation (13), evaluated

at r = 0 = ", yields

U(y)� U 0(y)r + 1
2
U 00 (y) r2

� 1

2

�
U(y) + U 0(y)"+

1

2
U 00 (y) "2 + U(y)� U 0(y)"+ 1

2
U 00 (y) "2

�
= U(y) +

1

2
U 00 (y) "2;

implying

r � �U
00 (y) ("2 � r2)
2U 0 (y)

=
�

2y

�
"2 � r2

�
(14)

for CRRA utility. Solving equation (14) yields

r � 1

�

�
�y +

p
y2 + �2"2

�
r

"
� 1

�

 
�y
"
+

r
y2

"2
+ �2

!
:

Proof of Propositions The proof of Proposition 1 uses the following lemma,

which establishes that the functions g(p) and G(p) have the characteristics shown in

Figure 5. In �gure 5, the horizontal axis is p, the monotonic curve graphs the right

side of equation (1), (c� 1)G (p), and the hump shaped curve graphs the left side,
(f � c) g (p). The equilibrium probability p under risk neutrality is determined by

the intersection of these two curves.
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Figure 5: The monotonic curve shows (c � 1)G and the hump-shaped curve shows
(f � c)g. c = 1:2 and N = 20.

Lemma 2 We establish the following claims: (i) g (0) = G (0) = 0, and G (1) =

1 > g (1) = 0; (ii) g (p) is single-peaked, �rst increasing and then decreasing in p;

(iii) G (p) is increasing in p; and (iv) (f � c) g0(0) > (c� 1)G0(0):

Proof. (Lemma 2) The �rst claim is evident by inspection. To prove claim (ii) we

take the derivative of g with respect to p to obtain

dg(p)

dp
=

(N � 1)!
(f � 1)! (N � f)!p

f�2 (1� p)N�f�1 [(f � 1)� (N � 1) p]

Thus when p < f�1
N�1 ,

dg(p)
dp

> 0, and when p > f�1
N�1 ,

dg(p)
dp

< 0. So g (p) is single-

peaked, �rst increasing and then decreasing in p.

Claim (iii), which statesG (p) is increasing in p takes a bit more work. A property

of binomial distribution is that
PN�1

i=0
(N�1)!

i!(N�1�i)!p
i (1� p)N�1�i = 1. Thus we have

G (p) =
N�1X
i=f

(N � 1)!
i! (N � 1� i)!p

i (1� p)N�1�i (15)

= 1�
f�1X
i=0

(N � 1)!
i! (N � 1� i)!p

i (1� p)N�1�i
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The cumulative distribution function of a binomial distribution can be rewritten as

F (q;n; p) = Pr (x � q) = (n� q) n!

q! (n� q)!
R 1�p
0
tn�q�1 (1� t)q dt

(Source: http://en.wikipedia.org/wiki/Binomial_distribution). Thus, we can rewrite

equation (15) as

G (p) = 1� [(N � 1)� (f � 1)] (N � 1)!
(f � 1)! (N � f)!

R 1�p
0
t(N�1)�(f�1)�1 (1� t)f�1 dt

= 1� (N � 1)!
(f � 1)! (N � f � 1)!

R 1�p
0
tN�f�1 (1� t)f�1 dt

from which we easily see that G0 (p) > 0.

We establish claim (iv), (f � c) g0(0) > (c� 1)G0(0), using a proof by contra-
diction. If (f � c) g0(0) < (c� 1)G0(0), then by claims (i) (ii) and (iii), (c� 1)G
and (f � c) g will either have no intersections or have two intersections at p > 0.

But Proposition 1 of Hong and Karp (2012) shows that there exists a unique (pos-

itive) intersection that determines p under risk neutrality. Thus it is impossible

that (f � c) g0(0) < (c� 1)G0(0). The remaining possibility is that (f � c) g0(0) =
(c� 1)G0(0) and that the two functions are equal in the neighborhood of p = 0, but
that again contradicts the uniqueness of the intersection.

Proof. (Proposition 1) Part i. Given any function U that satis�es our assumptions,
we can rescale U so that

U(A�N + f � c)� U(A�N) = f � c (16)

without changing preferences. Using equation (16), the left side of equation (2) is

the same as the left side of the equilibrium condition under risk neutrality, equation

(1). For i � f , we have

A�N + i > A�N + i+ 1� c > A�N + f � c: (17)
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Using equation (16) and the assumption that U is strictly concave in a subset of

[A�N + f � c; A� 1], inequality (17) implies

U(A�N + i)� U(A�N + i+ 1� c) � c� 1

for all i 2 [f;N � 1] and the strict inequality holds for at least one i 2 [f;N � 1].
Consequently,PN�1

i=f
(N�1)!

i!(N�1�i)!p
i (1� p)N�1�i [U (A�N + i)� U (A�N + i+ 1� c)]

< G (p) (c� 1) :

for p > 0. Therefore, the right side of equation (2) is less than the right side

of equation (1), the equilibrium condition under risk neutrality. Meanwhile, by

inspection, it is evident that the right side of equation (2) is 0 when p = 0 and

positive for any p � 0.
Using the results obtained above and Lemma 2 and referring to Figure 5, we

see that the right side of equation (2) will intersect with the hump-shape curve,

g (p) (f � c), and the intersection is to the right of the intersection betweenG (p) (c� 1)
and g(p) (f � c). Hence, the equilibrium probability of participation is larger under

risk aversion.

Part ii. Let V be a concave function, strictly concave over a subset of the interval

[A�N + f � c; A� 1], so that the decision-maker with preferences V is more risk

averse than the decision-maker with preferences U . Minor changes in the argument

of Part i establish the result.

Proof. (Proposition 2) The discussion preceding the proposition establishes that

the equilibrium, if it exists, must be an element of the interval
h
m
(i)
a ;m

(i)
b

i
, so

we only need to establish existence. Denote �i (k) and �o (k) as the payo¤ to

an insider and an outsider, respectively, when there are k members, and denote

�(k) � �i (k)��o (k � 1), the loss to a member of leaving an IEA with k members.
External stability of a candidate k requires �(k + 1) < 0 and internal stability re-

quires �(k) � 0. From De�nition 1 and the discussion preceding the proposition,
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�
�
m
(i)
a

�
� 0 and �

�
m
(i)
b + 1

�
< 0. Let

n
m
(i)
a ;m

(i)
a + 1; :::m

(i)
b � 1;m

(i)
b

o
be the

sequence of integers between m(i)
a and m(i)

b , with j�th element m
j. If m(i)

a = m
(i)
b

the sequence consists of a single number that satis�es the conditions for internal and

external stability, and therefore is the unique equilibrium. Now consider the case

where m(i)
b > m

(i)
a . Suppose, contrary to our claim, that there is no equilibrium. By

de�nition, the �rst element of the sequence, m1 = m
(i)
a is internally stable, so if m1

is not an equilibrium, then it must fail the test of external stability. That failure

implies �(m2) � 0 (where m2 = m
(i)
a + 1). Consequently, m2 is internally stable.

By hypothesis, m2 is not an equilibrium, so it must fail the test of external stability,

and thus �(m3) � 0. Proceeding inductively, we reach the conclusion that the �nal
element of the sequence, m(i)

b , satis�es �
�
m
(i)
b

�
� 0. By hypothesis, m(i)

b is not an

equilibrium, so it must fail the test of external stability, implying �
�
m
(i)
b + 1

�
� 0.

But we have �
�
m
(i)
b + 1

�
< 0, contradicting our hypothesis. This completes our

proof on existence. The risk neutral case is the standard model, discussed in Section

2 and in the second paragraph below De�nition 1.

Proof. (Lemma 1) If k < f (cL), then any positive level of abatement decreases

income for any possible realization of c. Therefore, the marginal utility of abatement

is negative for any possible realization of c if k < f (cL). This establishes the

claim that for both models i = 1; 2, m(i)
a � f (cL). Similarly, if k � f (cH) then

the marginal increase in income due to an increase in a, evaluated at a = 1, is

positive for any possible realization of c. Therefore, for k � f (cH) the marginal

utility of abatement, evaluated at a = 1, is positive for any possible realization of

c. Consequently, for both models m(i)
b � f (cH). Thus (trivially) f (cL) � m(1)

a and

f (cH) � m(2)
b .

For Model 1, given membership k, the expected marginal utility of abatement for

an IEA member, evaluated at a = 1, isZ
U 0
�
A(1) �N + k

�
(k � c)h (c) dc = U 0

�
A(1) �N + k

�
(k � c) ;
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which is positive for any k � c (since c is a non-integer by Inequality (7.ii)) and

negative for any k < c. Therefore, m(1)
b = f (c).

For Model 2, given membership k, the expected marginal utility of abatement for

a member, evaluated at a = 0, isZ
U 0
�
A(2) �N

�
(k � c)h (c) dc = U 0

�
A(2) �N

�
(k � c) ;

which is negative for any k < c and positive for k = f (c) > c. Therefore,m(2)
a = f (c).

Proof. (Proposition 3) We use the ordering in Lemma 1 for both parts of the

proof. Part (i). Under Model 1, abatement is the same under risk neutrality and

risk aversion for k < m(1)
a and for k � m(1)

b = f (c). If m(1)
a = m

(1)
b then risk aversion

has no e¤ect on abatement in this model, for any k. However, if m(1)
a < m

(1)
b , then

at least for k = m
(1)
a (and possibly also for larger k less than m(1)

b ) abatement is

positive under risk aversion; but abatement is 0 under risk neutrality. Under Model

2, abatement is the same under risk neutrality and risk aversion for k < f (c) = m(2)
a

and for k � m
(2)
b . If m

(2)
a = m

(2)
b then risk aversion has no e¤ect on abatement in

this model for any k. However, if m(2)
a < m

(2)
b , then for k = m

(2)
b � 1, (and maybe

some other k that lies in
h
m
(2)
a ;m

(2)
b � 1

i
), abatement under risk aversion is lower

than one, while abatement under risk neutrality for any k 2
h
m
(2)
a ;m

(2)
b � 1

i
is one.

Part (ii). Proposition 2, Lemma 1, and the fact that equilibrium membership

under risk neutrality is f (c), immediately imply Part (ii).

Proof. (Proposition 4) By Proposition 3, equilibrium membership is no larger than

f (c) for Model 1, and no smaller than f (c) for Model 2. Therefore, if f (c) is not

an equilibrium, then for Model 1, risk aversion strictly reduces the membership of

every equilibrium, and for Model 2, risk aversion strictly increases the membership of

every equilibrium. We prove Parts (i) and (ii) by obtaining conditions under which

f (c) is not an equilibrium.

Part (i). By equation (10), an IEA with f (c) members is externally stable

for Model 1. To establish Part (i) it is necessary and su¢ cient to show that for
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su¢ ciently risk averse agents, f (c) is not internally stable. An outsider�s income in

an IEA with k members is A(1) �N + ka(1) (k) + c: An insider�s income in an IEA
with f (c) members is A(1) �N + f (c), as the abatement of the insider equals 1, by
m
(1)
b = f (c). Denote �i (k) and �o (k) as the payo¤ to an insider and an outsider,

respectively, when there are k members, and denote �(k) � �i (k)� �o (k � 1), the
loss to a member of leaving an IEA with k members. The necessary and su¢ cient

condition to establish that f (c) is not internally stable is

�(f (c)) = �i (f (c))� �o (f (c)� 1) < 0,

U
�
A(1) �N + f (c)

�
<

Z
U
�
A(1) �N + (f (c)� 1) a(1) (f (c)� 1) + c

�
h (c) dc:

(18)

A su¢ cient (but not necessary) condition for the second line of Equation (18) is that

the lowest possible income for the defector, which occurs when c = cL, is no less than

the non-stochastic income for the country that remains in the IEA:

A(1) �N + f (c) � A(1) �N + (f (c)� 1) a(1) (f (c)� 1) + cL

, f (c) � (f (c)� 1) a(1) (f (c)� 1) + cL

, a(1) (f (c)� 1) � f(c)�cL
f(c)�1 :

(19)

The ratio on right side lies between (0; 1) by inequality (7.i). By equation (10),

we know that a(1) (f (c)� 1) < 1. To show that for su¢ ciently high risk aversion

there exists an interior optimal abatement level, 1 > a(1) (f (c)� 1) > 0, satisfying
the last line of inequality (19), we proceed in two steps. First, ignoring the non-

negativity constraint a(1) (f (c)� 1) > 0, we show that an abatement level that

satis�es the necessary condition for an interior optimum, monotonically increases

with risk aversion and is less than 1. If this abatement level also satis�es the non-

negativity constraint, then by concavity of the maximand, it is optimal. Second, we

show that for su¢ ciently high risk aversion, we can increase the level of abatement

that satis�es this �rst order condition, so that the levels satis�es last line of inequality

(19). This level is positive and lower than one, so it must be optimal; because it
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satis�es last line of inequality (19), we therefore know that f (c) is not internally

stable.

Step 1. Ignoring the non-negativity constraint, an interior optimal abatement

level, at k = f (�c)� 1, satis�es the First Order Condition (FOC):Z
U 0
�
A(1) �N + (f (c)� 1� c) a+ c

�
(f (c)� 1� c)h (c) dc = 0: (20)

For any c such that f (c) � 1 > c, U 0 in equation (20) is non-increasing in a and

f (c)�1�c > 0, so the integrand in equation (20) is non-increasing in a; for any c such
that f (c)�1 < c, U 0 is non-decreasing in a and f (c)�1�c < 0, so the integrand is also
non-increasing in a. Therefore, the left side of equation (20), which represents the ex-

pected marginal utility of abatement, is non-increasing in a. (Similar statements will

be made below for other �rst order conditions.) Meanwhile, the left side of equation

(20), when evaluated at a = 1; equals U 0
�
A(1) �N + f (c)� 1

�
(f (c)� 1� c) < 0.

Because the left side of equation (20) is non-increasing in a and is negative if a = 1,

the abatement level that satis�es Equation (20) is less than 1.

Equation (20) can be rewritten as

B (a) �
Z f(c)�1

cL

U 0
�
A(1) �N + (f (c)� 1� c) a+ c

�
(f (c)� 1� c)h (c) dc

=

Z cH

f(c)�1
U 0
�
A(1) �N + (f (c)� 1� c) a+ c

�
(c� f (c) + 1)h (c) dc � D (a) :

(21)

Inequality (11.i) ensures that f (c) � 1 > cL. The functions B (a) and D (a) are

functionals of U , and therefore depend on the degree of risk aversion; to conserve

notation, we suppress that dependence. We �rst consider the slopes of B (a) and

D (a) and then explain how a change in risk aversion shifts the relative values of

these functions.

The term (f (c)� 1� c) that multiplies a in both functions B and D is positive

in B (a) and negative in D (a). This fact and the concavity of U imply that, for

�xed risk aversion and membership, B0 (a) < 0 and D0 (a) > 0. (Thus, the solution

26



to equation (21) is unique �but we already know this to be the case, as noted in the

text.)

Now consider the e¤ect of increased risk aversion on the functions (integrals) B

and D. The integrands in both of these functions contain U 0
�
y(1)
�
, with y(1) =

A(1)�N +(f (c)� 1� c) a+ c. For a < 1, income y(1) increases with c, so for every
c in the domain of integration of B, income and utility are lower than at any c in

the domain of integration of D. Let V be any strictly concave function. Replacing

preferences U with preferences V � U implies an increase in risk aversion. With

higher risk aversion, the function U 0
�
y(1)
�
in the de�nitions of B and D is replaced

by V 0
�
U
�
y(1)
��
U 0
�
y(1)
�
. The new FOC is

BV (a) �
Z f(c)�1

cL

V 0
�
U
�
y(1)
��
U 0
�
A(1) �N + (f (c)� 1� c) a+ c

�
(f (c)� 1� c)h (c) dc

=

Z cH

f(c)�1
V 0
�
U
�
y(1)
��
U 0
�
A(1) �N + (f (c)� 1� c) a+ c

�
(c� f (c) + 1)h (c) dc � DV (a) ;

(22)

where the superscript V indicates the increased level of risk aversion. Because V is

concave, and in view of our observation concerning the relative values of U over the

domains of integration in the functions B and D, we know that at any two points in

their respective domains of integration, the value of V 0 in (the risk-modi�ed) integral

BV is greater than the value of V 0 in the (risk-modi�ed) integral DV . Consequently,

replacing preferences U with preferences V � U causes B to increase relatively more
thanD. (For geometric intuition, graph the downward sloping B and upward sloping

D as functions of a. An increase in risk aversion could cause these graphs to shift up

or down, but the comments above imply that for any a, the increase in risk aversion

causes B to increase relative to D, thus increasing the point of intersection.) We

therefore know that a solution to the FOCmonotonically increases with risk aversion,

for a given level of membership.

Step 2. To accomplish the second step, and thus complete the argument, we

note that by choosing V su¢ ciently concave for low levels of U , and nearly linear for

high levels of U , we can make the interior equilibrium a(1) (f (c)� 1) arbitrarily close
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to 1, and thus satisfy inequality (19). For example, we can set V 0
�
U
�
y(1)
��
� 1 for

values of U
�
y(1)
�
in the integrand DV , and make V 0

�
U
�
y(1)
��
arbitrarily large for

values of U
�
y(1)
�
in the integrand of BV .

Part (ii). Note that m(2)
a = f (c), implying a(2) (f (c)) > 0 = a(2) (k) for any

k < f (c). Thus, for Model 2, an IEA with f (c) members is internally stable. To

verify Part (ii) it is su¢ cient to show that f (c) is not externally stable for su¢ ciently

risk averse countries. This condition is equivalent to

�(f (c) + 1) = �i (f (c) + 1)� �o (f (c)) � 0,Z
U
�
A(2) �N + (f (c) + 1� c) a(2) (f (c) + 1)

�
h (c) dc � U

�
A(2) �N + f (c) a(2) (f (c))

�
:

(23)

Hence, in Model 2, risk aversion strictly increases membership for every equilibrium

if and only if inequality (23) holds. A su¢ cient condition for inequality (23) is that

the lowest possible level of income (associated with c = cH) for the IEA member

exceeds the defector�s income:

A(2) �N + (f (c) + 1� cH) a(2) (f (c) + 1) � A(2) �N + f (c) a(2) (f (c))

, (f (c) + 1� cH) a(2) (f (c) + 1) � f (c) a(2) (f (c)) :
(24)

Inequality (11.ii) implies, f (c) + 1 � cH > 0; this inequality, the fact that m(2)
b is

no greater than the smallest integer weakly above cH , and the fact that f (�c) + 1 is

an integer, imply that f (c) + 1 � m
(2)
b ; this inequality implies a

(2) (f (c) + 1) = 1.

Therefore, the second line of (24) holds if and only if

a(2) (f (c)) � f (c) + 1� cH
f (c)

: (25)

Inequalities (7.i) and (11.ii) imply that the right side of this inequality lies in (0; 1).

We now establish that for su¢ ciently risk averse agents, the optimal abatement

level, a(2) (f (c)) satis�es inequality (25). Temporarily ignoring non-negative and
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less-than-one constraints, the �rst order condition that determines a(2) (f (c)) isZ
U 0
�
A(2) �N + (f (c)� c) a

�
(f (c)� c)h (c) dc = 0: (26)

The left side of Equation (26) is non-increasing in a, and is positive when a = 0

by Inequality (7.ii). Therefore, the abatement level that satis�es Equation (26) is

positive. Equation (26) can be rewritten as

B (a) �
Z f(c)

cL

U 0
�
A(2) �N + (f (c)� c) a

�
(f (c)� c)h (c) dc

=

Z cH

f(c)

U 0
�
A(2) �N + (f (c)� c) a

�
(c� f (c))h (c) dc � D (a) :

Inequality (11.ii) ensures that cH > f (c). We abuse notation by again using

the functions B and D to denote particular integrals. The rest of the proof of Part

(ii) parallels the argument used to establish Part (i), so we merely sketch the steps.

Income, y(2) = A(2) �N + f (c) a� ca, increases in a over the domain of integration
in B; therefore U 0 decreases in a over that domain. Therefore, B is a decreasing

function of a. Similarly, D is an increasing function of a. At every point in the

domain of integration in B, income and thus utility is higher than at any point in the

domain of integration in the function D. Therefore, if we replace preferences U with

preferences V � U , with V strictly concave, we have increased risk aversion, and we

obtain the functions BV (a) and DV (a) together with an equation that corresponds

to equation (22). Here, increased risk aversion reduces the function B relative

to the function D, reducing their point of intersection. Again, by appropriately

choosing the function V we ensure that the abatement level determined by the FOC,

Equation (26), is no larger than f(c)+1�cH
f(c)

(and of course less than 1). Also because

this abatement level is positive as shown above, it is the optimal level a(2) (f (c)).

Therefore, for su¢ ciently risk averse agents, the optimal abatement level a(2) (f (c))

satis�es Inequality 25.
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B Referee�s appendix

B.1 Proof of Proposition 5

Proof. (Proposition 5) Part (i). In Model 2, an IEA with f (cH) members instructs
its members to abate at capacity, so it satis�es external stability. It is also internally

stable if and only if

�(f (c)) = �i (f (cH))� �o (f (cH)� 1) � 0,Z
U
�
A(2) �N + f (cH)� c

�
h (c) dc � U

�
A(2) �N + (f (cH)� 1) a(2) (f (cH)� 1)

�
:

(27)

A su¢ cient condition for the second line of equation (27) is

A(2) �N + f (cH)� cH � A(2) �N + (f (cH)� 1) a(2) (f (cH)� 1)

, f (cH)� cH � (f (cH)� 1) a(2) (f (cH)� 1)

, a(2) (f (cH)� 1) � f(cH)�cH
f(cH)�1 � ba;

(28)

where ba 2 [0; 1). Note that expected marginal utility of abatement for a member is
non-increasing in a by concavity of the IEA�s maximand. If it is the case that the

expected marginal utility of a member of an IEA with f (cH)�1 members, evaluated
at a = ba, is nonpositive, then we know that an IEA with f (cH)� 1 members would
set abatement no higher than â; in that case, the last line of inequality (28) is

satis�ed. It is thus su¢ cient to show that for su¢ ciently risk averse agents, the

marginal expected utility of a member of an IEA with f (cH)�1 members, evaluated
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at a = ba, is nonpositive, i.e.,Z
U 0
�
A(2) �N + (f (cH)� 1� c)ba� (f (cH)� 1� c)h (c) dc � 0

, B (â) �
Z f(cH)�1

cL

U 0
�
A(2) �N + (f (cH)� 1� c)ba� (f (cH)� 1� c)h (c) dc

�
Z cH

f(cH)�1
U 0
�
A(2) �N + (f (cH)� 1� c)ba� (c+ 1� f (cH))h (c) dc � D (â) ;

(29)

where we again abuse notation by using the functions B and D (here, with argument

â rather than a). Inequality (12.ii) ensures that f (cH) � 1 > cL. The rest of the

proof again parallels the arguments used in the proof of Proposition 4.i. It is

straightforward to show that B is a decreasing, and D an increasing function of â.

At any point in the domain of integration of B, y(2) and U are larger than at every

point in the domain of integration of D. Therefore, increasing risk aversion increases

D relative to B. By choosing a su¢ ciently high level of risk aversion, we guarantee

that inequality (29) is satis�ed.

Part (ii). We show external stability �rst. In Model 1, an IEA with f (cL)

members is externally stable if and only if

�(f (cL) + 1) = �
i (f (cL) + 1)� �o (f (cL)) < 0, (30)Z

U
�
A(1) �N + (f (cL) + 1� c) a(1) (f (cL) + 1) + c

�
h (c) dc

<

Z
U
�
A(1) �N + f (cL) a(1) (f (cL)) + c

�
h (c) dc:

A su¢ cient condition for the second line of equation (30) is for any c,

A(1) �N + (f (cL) + 1� c) a(1) (f (cL) + 1) + c < A(1) �N + f (cL) a(1) (f (cL)) + c
, (f (cL) + 1� c) a(1) (f (cL) + 1) < f (cL) a(1) (f (cL))

( a(1) (f (cL)) � f(cL)+1�cL
f(cL)

� ea;
(31)

where ea 2 (0; 1). Note that expected marginal utility of abatement for a member is
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non-increasing in a by concavity of the IEA�s maximand. If it is the case that the

expected marginal utility of a member of an IEA with f (cL) members, evaluated at

a = ea, is nonnegative, then we know that an IEA with f (cL) members would set

abatement no lower than ea; in that case, the last line of inequality (31) is satis�ed.
It is thus su¢ cient to show that for su¢ ciently risk averse agents, the marginal

expected utility of a member of an IEA with f (cL) members, evaluated at a = ea, is
nonnegative, i.e.,Z

U 0
�
A(1) �N + (f (cL)� c)ea+ c� (f (cL)� c)h (c) dc � 0

, B (ea) � Z f(cL)

cL

U 0
�
A(1) �N + (f (cL)� c)ea+ c� (f (cL)� c)h (c) dc

�
Z cH

f(cL)

U 0
�
A(1) �N + (f (cL)� c)ea+ c� (c� f (cL))h (c) dc � D (ea) ;

where we again abuse notation by using the functions B and D (here, with argumentea rather than a). Inequality (12.iii) ensures that f (cL) > cL. The rest of the

proof again parallels the arguments used in the proof of Proposition 4.i. It is

straightforward to show that B is a decreasing, and D an increasing function of ea.
For ea < 1, at any point in the domain of integration of B, y(1) and U are lower than
at every point in the domain of integration of D. Therefore, increasing risk aversion

reduces D relative to B. By choosing a su¢ ciently high level of risk aversion, we

guarantee that inequality (31), which is a su¢ cient condition for external stability,

is satis�ed.

Note that in Model 1, an IEA with f (cL) � 1 members makes zero abatement.
By inequality (31), a(1) (f (cL)) > 0, then an IEA with f (cL) is also internally stable.

For Part (iii) of Proposition 5, it is obvious (by Lemma 1) that if cH � f (c),

then f (cH) = f (c), and thus m(2)
b = f (c); in this case, equilibrium membership

is f (c) for Model 2. If f (c) � cL + 1, then f (c) = f (cL) (because cL is not an

integer) and thus m(1)
a = f (c); here, equilibrium membership is f (c) for Model 1,

by Propositions 2 and 3. In these cases, risk aversion does not a¤ect the equilibrium

membership of an IEA.
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