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Abstract

Investment frictions reduce, delay or protract investment expenditure that
is necessary for �rms to capture growth opportunities. Using a capital adjust-
ment costs framework, this paper estimates the gap between China�s actual and
frictionless aggregate output. It applies the method of simulated moments to a
fully structural investment model on a panel of Chinese �rms; and takes into ac-
count potential unobserved heterogeneities and measurement errors in the data.
The estimated capital adjustment costs are substantial and vary across �rms
of di¤erent sizes, and across regions with di¤erent investment environments. If
Chinese �rms had faced a lower level of adjustment costs such as in the U.S.,
China�s aggregate output would be 25% higher.
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1 Introduction

Substantial economic transformation in China has brought strong growth opportuni-

ties and a high return to capital (Song, Storesletten and Zilibotti, 2011). According

to neoclassical producer theory, �rms will optimally respond to this high return by

increasing their investment expenditure, in order to fully capture such growth oppor-

tunities. However, as in many developing economies, the actual investment behavior

in China might be subject to various frictions, which are caused by a poor investment

climate (World Bank, 2005). According to the Doing Business ranking by the World

Bank, compared with its counterpart in the U.S., a typical Chinese �rm has to spend

many more days and pay a much higher cost on starting a business, registering prop-

erty, getting credit and enforcing contract. Within China, western inland cities like

Guiyang and Lanzhou have much poorer indicators than Beijing and Shanghai.1 Such

investment frictions may prevent the instantaneous and costless adjustment of capi-

tal stock and potentially make the actual capital stock di¤erent from the frictionless

benchmark. An under accumulation of capital stock is then translated into a gap be-

tween the actual aggregate output and the �rst-best aggregate output in an otherwise

frictionless environment.

The sharp contrast between strong growth opportunities and large investment fric-

tions motivates the research questions of this paper. For a given investment oppor-

tunity, how much lower is the aggregate output in China as a result of investment

frictions? How much more would Chinese �rms invest and produce if they enjoyed a

better investment climate, such as the one that prevails in the U.S.? Would �rms in

underdeveloped regions catch up had they operated in an environment that is typical

of more developed areas within China?

The list of frictions that may a¤ect investment is long and complex. As surveyed

in Banerjee and Du�o (2005), speci�c reasons, such as government failure, poorly

functioning credit markets and lack of insurance markets, have been examined to

explain large variations in investment across otherwise similar environments. Although

each particular friction is of interest, this paper aims to understand the quantitative

signi�cance of their overall e¤ects. As such it complements other research which focuses

on speci�c channels.

The neoclassical investment model augmented with capital adjustment costs o¤ers

a useful framework to investigate our research questions. In a variety of settings, the

investment literature has adopted capital adjustment costs to summarize frictional el-

ements that reduce, delay or protract investment (Khan and Thomas, 2006), while the

1Appendix 1 presents a list of selected indicators based on which the World Bank has constructed
the global and subnational Doing Business ranking as a measure of investment climate.
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frictionless investment model o¤ers a �rst-best benchmark where investment responds

to growth opportunities instantaneously and costlessly. Three forms of adjustment cost

have been highlighted in this literature: a quadratic adjustment cost, irreversibility

and a �xed cost of undertaking any investment (Abel and Eberly, 1994).

Using this framework, the paper estimates the e¤ects of investment frictions on

aggregate output loss through capital accumulation. The key challenge in this empir-

ical exercise is to separate capital adjustment costs from other factors that may a¤ect

investment as well, in particular, the stochastic process. For example, �rms in western

inland China exhibit lower and more stagnant investment activities compared to their

counterparts in eastern coastal region. Is this because these �rms have a lower growth

rate, or because they face higher capital adjustment costs, or both? Depending on the

answer to this question, the desired policy response could be very di¤erent.

To address this identi�cation challenge, this paper adopts a fully structural econo-

metric approach. It speci�es the complete environment in which investment decisions

are taken: the Jorgensonian user cost of capital, production technology, demand sched-

ule, stochastic process, and di¤erent forms of adjustment costs. The exact investment

policies are then solved out for the structural parameters that characterize the environ-

ment. These deep or primitive parameters are estimated using a method of simulated

moments, which matches simulated model moments with empirical moments from a

panel of Chinese �rms. This empirical exercise therefore indirectly infers the overall

investment frictions facing these Chinese �rms, by asking how large the capital adjust-

ment costs must be so as to be consistent with the observed investment behavior.

The main �ndings of this paper are as follows. First, there are substantial capital

adjustment costs for the whole sample. These costs imply that China�s aggregate

output is 31% below the frictionless benchmark. Second, subsample estimation detects

signi�cant di¤erences in the quadratic adjustment costs across �rms of di¤erent sizes,

and across regions with di¤erent investment climates. If all the �rms in China had

faced a lower level of adjustment costs such as in the U.S., China�s aggregate output

would be 25% higher. Within China, the output gain could be as large as one-third

for small �rms and one-quarter for �rms in western inland cities.

This research is most closely related to two seminal papers, Cooper and Haltiwanger

(2006) and Bloom (2009), in terms of methodology. However, there are three important

novelties that are worth highlighting.

First, in addition to investment and sales growth rates, this paper also matches

moments of pro�t to sales ratio and sales to capital ratio. The information in these

two ratios allows the model to �exibly estimate the production technology and demand

schedule, which are usually taken as given in previous researches .

Second, although unobserved heterogeneity prevails in micro-level data, it has not
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been explicitly taken into account by the part of the investment literature using struc-

tural estimation. This paper models and estimates unobserved heterogeneities in the

capital share of the production technology and in the growth rate of the stochastic

process. Allowing for such heterogeneities is crucial, both for consistent estimation of

the adjustment costs, and for an accurate interpretation of the results.

Finally, one common feature of survey data is the possibility of signi�cant mea-

surement error in recorded variables, especially in stock variables such as capital. This

paper therefore estimates measurement error in capital stock simultaneously with the

true model. It helps to match some important features of the data, and hence improves

the overall �t substantially.

Section 2 outlines the investment model and de�nes the aggregate output loss. Sec-

tion 3 presents the data and introduces the empirical speci�cation. Section 4 discusses

the identi�cation strategy and the structural econometric approach. Section 5 reports

the empirical results and provides the counterfactual simulations. Section 6 concludes

the paper and discusses directions for future research.

2 The Model

Our analysis is based on a standard model in the investment literature, such as Abel

and Eberly (1994). It considers how an ongoing representative �rm optimally makes

its investment decision, in a partial equilibrium framework where investment opportu-

nities are exogenously given. As usual, a static instantaneous operating pro�t function

can �rst be obtained by optimizing out variable inputs. The intertemporal investment

decision is then derived by maximizing the discounted sum of future net pro�ts in the

presence of capital adjustment costs.

2.1 Production and Demand

By paying capital adjustment costs, in each period t new investment It contributes to

productive capital bKt immediately, which depreciates at the end of each period at a

constant rate �.2 The law of motion for capital stock is therefore

Kt+1 = (1� �) (Kt + It) � (1� �) bKt: (1)

Consider a �rm that uses capital stock bKt, and a vector of variable inputs Lt (such

as labor, material and management) to produce output Qt, according to a stochastic

2An alternative timing assumption would be Kt+1 = (1 � �)Kt + It. Qualitatively this and
equation (1) have the same implications. However, equation (1) allows for a closed-form solution to
the investment problem in the frictionless case, which does not involve any expectation terms. This
provides a convenient benchmark for studying the e¤ects of capital adjustment costs.
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constant returns to scale Cobb-Douglas technology,

Qt = At bK�
t L

1��
t ;

where At represents the randomness in productivity and the capital share � satis�es

0 < � < 1.3 The �rm faces monopolistic competition in the product market. Assume

an isoelastic, downward-sloping, stochastic demand curve,

Qt = XtP
�"
t ;

where Xt represents the randomness in demand; �" < �1 is the demand elasticity
with respect to price.

In any period t, for a given predetermined capital stock, productivity and demand

realization, the �rm chooses a vector of variable inputs Lt to maximize its operating

pro�t,

�t = max
Lt
fYt � wLtg;

where Yt � PtQt denotes sales revenue, and w is a constant vector containing the

prices of variable inputs. The �rst-order condition implies a constant cost share for

variable inputs,
wLt
Yt

= (1� �) (1� 1
"
):

Therefore the aggregate output loss also means the same magnitude of aggregate vari-

able inputs loss, for example, a lower level of employment.4 Optimization then yields

the maximized value of operating pro�t,

�t

�
Zt; bKt

�
=

h

1� Z

t
bK1�
t ; (2)

where Zt = Xt (At)
"�1, h = (1� )

�
"�1
w

�"�1
(")�", and

 =
1

1 + �("� 1) ; (3)

capturing the curvature of the operating pro�t function. The linear homogeneity of the

production technology and the isoelastic demand schedule imply that the maximized

operating pro�t is always a constant proportion of sales,

�t
Yt
=
1

"
= �(1� 1

"
) +

1

"
: (4)

3As surveyed by Ackerber, Benkard, Berry and Pakes (2007), in the large literature of production
function estimation, both in advanced economies such as the U.S. (Blundell and Bond, 2000) and
in many developing countries (Söderbom and Teal, 2004), constant return to scale is a speci�cation
that is not generally rejected by the data. Since labor share is relatively poorly measured in China,
this paper only uses information on capital share to estimate � and regulates the labor share as 1- �
under the constant return to scale restriction.

4I acknowledge one referee for pointing this out, since employment is an important policy target
for a country like China, which has a large population and concerns about stability.
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Together with equation (2), this property implies a sales revenue as below:

Yt

�
Zt; bKt

�
=
"h

1� Z

t
bK1�
t : (5)

The sales and pro�t function use Zt to incorporate stochastic variations from both

Xt and At. Following Foster, Haltiwanger and Syverson (2008), this paper calls Zt
the revenue total factor productivity or revenue TFP. This is to emphasize that the

stochastic variations in the revenue function could come from both demand and pro-

ductivity shocks. Assume Zt is a trend stationary process with growth rate � and serial

correlation �. The standard deviation � of the innovations characterizes the level of

uncertainty in this model. That is,

logZt = �t+ zt; (6)

zt = �zt�1 + et;

where 0 < � < 1, et
i:i:d:� N(0; �2), and z0 = 0.

2.2 Investment Frictions and Capital Adjustment Costs

In contrast to variable inputs, various investment frictions prevent instantaneous and

costless adjustment of the capital stock. To seek for the driving force of investment

frictions, the World Bank�s Doing Business ranking has considered factors in the ease

of getting credit, getting electricity, paying taxes, trading across borders, registering

property, protecting investors, enforcing contracts, starting a business, dealing with

construction permits and closing a business. To provide a modeling mechanism, the

investment literature has adopted three forms of capital adjustment costs to capture

the e¤ects of various investment frictions on investment behavior.

Traditionally the investment literature has used quadratic adjustment costs to

model certain frictions that prevent �rms from immediately attaining their chosen

capital levels, instead through a series of gradual, partial adjustment towards these

target levels over time. For example, di¢ culties in getting credit and electricity and

bureaucracies in paying taxes and trading across borders may a¤ect investment in the

way of quadratic adjustment costs.

Partial irreversibility is another form of adjustment costs that has been widely ex-

amined in investment theory. It re�ects the adverse selection problem in the second-

hand capital goods market, or more generally the wait-and-see behavior in investment

decisions. For example, di¢ cult property registration, weak investor protection and

poor contract enforcement will make �rms more conservative in their investment ex-

penditure, and sometimes even cause them to do no investment at all.

More recently, �xed adjustment costs have been introduced into the literature to

re�ect the indivisibility in capital, or more generally the lumpiness in investment.
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For example, a high cost of starting a subplant in a new business line, dealing with

construction permits for a large investment project, or closing a loss-making subplant,

can be modelled as a form of �xed adjustment costs.5

Following the functional form in Cooper and Haltiwanger (2006) and Bloom (2009),

these capital adjustment costs can be summarized by the adjustment cost function:

G(Zt; Kt; It) =
bq
2

�
It
Kt

�2
Kt � biIt1[It<0] + bf1[It 6=0]�t;

where 1[It<0] and 1[It 6=0] are indicators for negative and non-zero investment. bq mea-

sures the magnitude of quadratic adjustment costs. bi re�ects the signi�cance of ir-

reversibility and can be interpreted as the di¤erence between the purchase price and

the resale price, expressed as a percentage of the purchase price of capital goods. The

�xed adjustment cost bf is interpreted as the fraction of operating pro�t loss due to

any non-zero investment.

2.3 Investment Decision

Normalizing the price of capital to one, the �rm�s net pro�t in each period t is therefore

�(Zt; Kt; It) = �(Zt; Kt; It)�G(Zt; Kt; It)� It:

Suppose the owner of the �rm discounts future net pro�ts at a constant rate r. The op-

timal investment problem can be represented as the solution to a dynamic optimization

problem de�ned by the stochastic Bellman equation

V (Zt; Kt) = max
It
f�(Zt; Kt; It) +

1

1 + r
Et [V (Zt+1; Kt+1)]g; (7)

together with the law of motion (1) and (6) for Kt and Zt.

In the benchmark case of no adjustment cost, that is when G(Zt; Kt; It) = 0, it is

straightforward to solve out the the optimal productive capital stock

bK�
t � (It +Kt)

� = HZt; (8)

and the optimal investment rate�
It
Kt

��
= H

�
Zt
Kt

�
� 1; (9)

where

H =

�
h

J

� 1


;

5There is a large body of literature on the economic rationale for why di¤erent forms of capital
adjustment costs may be utilized to model the e¤ects of various investment frictions on investment
behavior. Recent surveys include Chirinko (1993), Hamermesh and Pfann (1996), and Khan and
Thomas (2006).
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and

J =
r + �

1 + r
: (10)

Here J is known as the Jorgensonian user cost of capital. Intuitively, without any

friction the optimal investment rate
�
It
Kt

��
is a linear function of revenue TFP Zt

relative to inherited capital stock Kt to meet the imbalance between the optimal

productive capital stock bK�
t and the level of revenue TFP Zt in each period. This

optimality condition also implies a constant frictionless sales to capital ratio�
YtbKt

��
=

J

�
�
1� 1

"

� : (11)

When G(Zt; Kt; It) > 0, the optimal investment policy can be solved out using

numerical dynamic programming methods. Figures 1a to 1c illustrate these policies

under di¤erent forms of adjustment costs, where the 45 degree lines are plotted as

the frictionless benchmark equation (9). First of all, irrespective of the form of ad-

justment costs, the optimal investment policy is always a non-decreasing function of�
Zt
Kt

�
. With respect to each particular form of adjustment costs, when bq > 0, capital

accumulation is through a series of small and continuous adjustments. This is consis-

tent with the prediction of the convex adjustment cost literature, such as Abel (1983).

When bi > 0, there is a familiar region of inaction in the investment rate as predicted

by the irreversibility literature, represented by Dixit and Pindyck (1994), where the

optimal investment decision is characterized as a �barrier control�policy. When bf > 0,

lumpiness in the investment rate implies that the optimal investment decision can be

characterized as a �jump control�policy, as documented by Doms and Dunne (1998)

in the �xed adjustment cost literature.

2.4 Aggregate Output Loss

According to equation (5), for a representative �rm i in year t, the actual and �rst-

best sales revenue are Yi;t =
"h
1�Z


i;t
bK1�
i;t and Y �i;t =

"h
1�Z


i;t
bK�1�
i;t , respectively. For an

economy withN �rms, de�ne the aggregate output loss as the average of the di¤erences

between Yi;t and Y �i;t, which is driven by the di¤erences between the actual productive

capital stock bKi;t and the frictionless productive capital stock bK�
i;t:

� logYt � 1

N

XN

i=1

�
log Yi;t � log Y �i;t

�
= (1� ) 1

N

XN

i=1

�
log bKi;t � log bK�

i;t

�
(12)

� (1� )� logKt

For a given Jorgensonian user cost of capital, production technology, demand sched-

ule and a realization of revenue TFP, the frictionless capital stock bK�
i;t can be solved
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out according to equation (8). In addition to these factors, the actual capital stockbKi;t also depends on the capital adjustment costs facing the �rm. It is such costs at

the �rm level that are translated into an output loss at the aggregate level according

to equation (12).

However, without a closed-form solution to the investment problem in the presence

of adjustment costs, it is unclear whether bKi;t is higher or lower than bK�
i;t and by

how much. When bi > 0, Abel and Eberly (1999) demonstrate that irreversibility

may increase or decrease capital accumulation due to the opposite user cost e¤ect and

hangover e¤ect.6 When bq > 0, Bond, Söderbom and Wu (2011) show that the capital

stock would be unambiguously lower than in the frictionless case, because any capital

adjustment incurs a cost in addition to the Jorgensonian user cost of capital. If bf > 0,

Wu (2009) shows that the e¤ect of �xed adjustment costs on capital accumulation

is similar to quadratic adjustment costs under complete certainty, and is similar to

irreversibility in an uncertain environment. This implies that the e¤ects of adjustment

costs on aggregate output loss is in fact an empirical question.

2.5 A First-Order Approximation in a Special Case

To provide an intuitive example on how capital adjustment costs may cause an ag-

gregate output loss, consider a special case when there is quadratic adjustment cost

only. That is when bq > 0 and bi = bf = 0. This special case allows for a closed-form

investment Euler equation so that the actual capital stock can be approximated as

bKi;t =

�
h

U

� 1


Zi;t; (13)

where U is the generalized user cost of capital,

U ' J
�
1 + bq

Ii;t
Ki;t

�
: (14)

Comparison between equations (10) and (14) highlights the fact that in the presence

of quadratic adjustment costs, the actual user cost of capital is an ampli�cation of

the Jorgensonian user cost of capital. The magnitude of the ampli�cation depends on

both the quadratic adjustment costs bq and the investment rate
Ii;t
Ki;t
. All else being

equal, a larger generalized user cost of capital will unambiguously lead to lower capital

stock levels. It is in this sense that quadratic adjustment costs may function as a

6To be speci�c, the �user cost e¤ect�occurs because the �rm anticipates that the irreversibility
constraint may bind in the future and thus is more reluctant to invest today, so that the capital
stock under irreversibility is smaller than that under reversibility. The �hang over e¤ect� indicates
the dependence of the current capital stock on past behavior, especially behavior that later the
�rm would like to reverse, which can lead to a higher capital stock under irreversibility than under
reversibility.
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generic representation of various investment frictions on capital accumulation through

the user cost of capital.

Together with equations (8) and (13), the aggregate output loss now has a conve-

nient �rst-order approximation,

� logYt ' �
1� 


bq
1

N

XN

i=1

Ii;t
Ki;t

: (15)

Di¤erent from conventional empirical exercises, it is not possible to estimate bq by

regressing equation (15) since � logYt is not observable. Instead, � logYt itself is

the quantity of our interest, which depends on the deep or primitive parameters of

the investment model, such as  and bq. This motivates the structural econometric

approach adopted in this paper, which indirectly infers model parameters by matching

model simulated data with the Chinese �rm-level data described below.

3 Data and Empirical Speci�cation

3.1 Data and Variables

The dataset comes from two World Bank Investment Climate Surveys, which were

conducted in China in 2001 and 2003 respectively. The combined sample includes

3948 �rms distributed across 15 industries and 23 cities of China. Compared with po-

tential alternatives such as the China�s Industrial Survey dataset, the dataset that we

use has two important advantages. First, the sample of �rms is strati�ed by size and

therefore includes a large number of small �rms. These �rms are of particular interest

because according to conventional wisdom, they are most likely to face an unfavorable

investment climate in developing countries. However, such �rms are excluded from

the Industrial Survey, which only samples �rms whose sales revenue exceeds 5 million

Chinese yuan. Second, the Investment Climate Survey explicitly asks about the invest-

ment expenditure on �xed assets for each �rm in each year. Accurate information on

investment is crucial in estimating any investment model. However, such information

is not available in the Industrial Survey.

Four key variables are collected from the data for this analysis. They are: invest-

ment (Ii;t): value of investment expenditure net of value of disinvestment in machinery,

equipment and �rm; capital stock (Ki;t): net book value of machinery, equipment and

�rm; sales revenue (Yi;t): total value of sales plus change in inventory of �nished goods;

and operating pro�t (�i;t): sales net of costs of raw materials and inputs, total energy

costs, total labour costs and other overhead costs, where i denotes �rm and t denotes

year.

For this empirical exercise, four variables in level-form are used to construct �ve key

variables which are either ratios or growth rates. These �ve variables are investment
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rate (Ii;t=Ki;t); real sales growth rate (� log Yi;t � log Yi;t � log Yi;t�1); pro�t to sales
ratio (�i;t=Yi;t); log sales to productive capital ratio

�
log
�
Yi;t= bKi;t

��
as a measure of

capital intensity, and log sales to beginning-of-period capital ratio (log (Yi;t=Ki;t)) as

a proxy for the marginal revenue product of capital (MRPK, hereafter).

The Data Appendix provides further information about sampling, how these vari-

ables are de�ated and cleaned, together with the macroeconomic background for China

during our sample period.

Figure 2a plots the empirical distribution of the investment rate Ii;t=Ki;t. The most

distinctive feature is a considerable mass at zero. The second feature is that although

the investment rate is highly dispersed, very few �rms have negative investment rates.

Therefore, there is a striking asymmetry between investment and disinvestment and

the distribution is highly skewed to the right. Figure 2b illustrates the empirical

distribution of the sales growth rate � log Yi;t, and shows that it is also very dispersed.

However unlike the investment rate, the distribution of the sales growth rate is much

more symmetric, around a mean of approximately 9%. Figure 2c is the empirical

distribution of log
�
Yi;t= bKi;t

�
, which is very similar to that of log (Yi;t=Ki;t). Both

variables are highly dispersed and distributed symmetrically abound 0.55.

Figures 3a to 3c plot the cross correlations between the investment rate Ii;t=Ki;t,

sales growth rate � log Yi;t and log sales to capital ratio log (Yi;t=Ki;t). As highlighted

in these �gures, both the investment and sales growth rates respond to the proxy of

MRPK positively, and they are also positively correlated with each other. However,

the �at �tted lines also indicate a dampened response and a low correlation, which is

consistent with the importance of capital adjustment costs, as simulated in Figures 1a

to 1c.

3.2 Identi�cation and Empirical Speci�cation

3.2.1 Capital Share Heterogeneity

The �rst novelty in our empirical speci�cation is to consider potential heterogeneity

in the capital share of the production function (�). This is motivated by the follow-

ing consideration. First, �rms in this analysis are sampled from various industries

which may have di¤erent production technology; even within the same industry, the

production technology could be �rm-speci�c. Second, Figure 2c highlights the large

dispersion in log
�
Yi;t= bKi;t

�
and log (Yi;t=Ki;t). Recall that in the absence of adjust-

ment costs log
�
Yi;t= bKi;t

�
would be a constant as in equation (11). Both adjustment

costs and heterogeneity in � could cause a dispersion in log
�
Yi;t= bKi;t

�
. Therefore

not allowing for potential heterogeneity in � might cause an overestimate of the ad-

justment costs. Similarly, log (Yi;t=Ki;t) has served as a proxy for MRPK so that
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capital adjustment costs can be inferred by how the investment rate Ii;t=Ki;t responds

to this proxy according to equation (9). Since heterogeneity in � will cause disper-

sion in log (Yi;t=Ki;t), both adjustment costs and heterogeneity in � could reduce the

correlation between Ii;t=Ki;t and log (Yi;t=Ki;t). This also implies that not allowing

for potential heterogeneity in � may overestimate the adjustment costs.7 The sym-

metric empirical distribution of log
�
Yi;t= bKi;t

�
suggests that � can be assumed to be

log-normally distributed.

Assumption 1 Capital Share Heterogeneity: log �i
i:i:d� N

�
�log �; �

2
log �

�
That is each �rm i has a �rm-speci�c capital share �i, where log �i is drawn

independently from an identical normal distribution with mean �log � and standard

deviation �log �.

3.2.2 Growth Rate Heterogeneity

The second empirical feature taken into account is the potential heterogeneity in the

growth rate of revenue TFP (�). There are three reasons why modelling this hetero-

geneity is important. First, we pool data across surveys which themselves are spanning

across years and regions. Heterogeneity in the growth rate is one way to characterize

some year-speci�c and region-speci�c e¤ects. Second, as recognized in both Cooper

and Haltiwanger (2006) and Bloom (2009), a key challenge in estimating adjustment

costs is to distinguish permanent di¤erences in the stochastic process from adjustment

costs. For example, heterogeneity in � across �rms, as well as high quadratic adjust-

ment costs, can both lead to persistent di¤erences across �rms in their investment

rates. Finally, a key challenge in estimating the stochastic process itself is to distin-

guish permanent di¤erences in the growth rate from a highly serially correlated driving

process (Browning, Ejrnaes and Alvarez, 2010). For example, both heterogeneity in �

and a highly serially correlated driving process can lead to persistent di¤erences across

�rms in their sales growth rates. The empirical distribution of � log Yi;t suggests that

a normality assumption on the distribution of � may be appropriate.8

Assumption 2 Growth Rate Heterogeneity: �i
i:i:d� N

�
��; �

2
�

�
7All these arguments also apply to potential heterogeneity in the demand elasticity ". However,

without separate information about thequantity of output (Qi;t) and the price of product (Pi;t),
one cannot further distinguish heterogeneity in � from that in " in this model. Hence we assume
homogeneity in demand elasticity and heterogeneity in capital share.

8Bloom (2000) shows that, despite the presence of adjustment costs, in the long run both cap-
ital stock and sales will grow at the same rate as the revenue TFP in this model. This is essen-
tially because when a �rm is on its balanced growth path, the gap between friction and frictionless

capital stock is bounded so that � log Yi;T � lim
T!1

1
T ln (Yi;T+t=Yi;t) = lim

T!1
1
T ln

� bKi;T+t= bKi;t

�
=

lim
T!1

1
T ln (Zi;T+t=Zi;t) = �i.
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That is each �rm i has a �rm-speci�c revenue TFP growth rate �i, where �i is

drawn independently from an identical normal distribution with mean �� and standard

deviation ��.

The investment policy under di¤erent (�i; �i) is di¤erent. Accordingly the opti-

mization problem described in equation (7) must be solved for each �rm i at each value

of (�i; �i), which is infeasible even for a small sample due to the "curse of dimensional-

ity". Therefore this paper adopts a standard approach used in the literature modelling

unobserved heterogeneities, for example, Eckstein and Wolpin (1999), to allow for a

�nite number of �rm types.

Assumption 3 Finite Type of Firms: There are 3 � 3 types of �rms, each com-
prising a �xed proportion 1= (3� 3) of the population, where the type set is de�ned as
z = f(�v; �x) : v = 1; 2; 3; x = 1; 2; 3g.

3.2.3 Measurement Error

In addition to a rich structure of heterogeneities, our empirical speci�cation also allows

for potential measurement error in capital stock. This is motivated by two facts. First,

measurement errors are common in micro-level data, and the capital stock is usually

poorly measured. Second and more fundamentally, measurement error in capital stock

Ki;t will a¤ect key variables such as Ii;t=Ki;t and log (Yi;t=Ki;t). Given capital adjust-

ment costs are inferred from the distribution and dynamics of these ratios, neglecting

such measurement error may lead to inconsistency in the estimation. In reality the

form of measurement error could be very complicated. The speci�cation we consider

below has three advantages. First, it guarantees positive values for capital stock. Sec-

ond, it does not change the sign of recorded investment rate. Finally, by construction,

it does not contaminate identi�cation of other model parameters.

Assumption 4 Measurement error in capital stock:

Ki;t = K
0

i;t
exp(eK

i;t
), where eKi;t

i:i:d� N(0; �2meK)

Here Ki;t denotes the observed capital stock, K
0
i;t denotes the true underlying cap-

ital stock which is not measured accurately in the data. The measurement error has a

multiplicative structure, with mean zero and standard deviation �meK .

4 Structural Estimation

The structural parameters in the model are estimated by the method of simulated

moments (MSM). This methodology has been widely employed in the recent empirical
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investment literature using micro-level data.9 Intuitively, the MSM estimates a set of

structural parameters by minimizing the quadratic distance between a set of simulated

moments from the model and the same set of empirical moments from the data. Since

di¤erent speci�cations may match some moments more precisely than others, the MSM

gives each moment a weight in calculating the quadratic distance, which shares exactly

the same idea as GMM. The key point of this methodology is that the value of the

simulated moments depends on the structural parameters imposed in each round of

simulation. Therefore, if the model is well speci�ed, the distance between the moments

is minimized at the optimal estimates of the parameters.

4.1 Method of Simulated Moments

Formally, following Gouriéroux and Monfort (1996), theMSM estimator �� solves

b�� = argmin
�

 b�D � 1

S

SX
s=1

b�Ms (�)
!0



 b�D � 1

S

SX
s=1

b�Ms (�)
!
; (16)

where � is the vector of parameters of interest; b�D is a set of empirical moments

estimated from an empirical dataset; b�M (�) is the same set of simulated moments
estimated from a simulated dataset based on the structural model; S is the number of

simulation paths; and 
 is a positive de�nite weighting matrix.

Suppose the empirical dataset is a panel with N �rms and T years. Given the

unobserved heterogeneities across �rms, the asymptotic results are for �xed T and

N ! 1. At the e¢ cient choice for the weighting matrix 
�, the MSM procedure

provides a global speci�cation test of the overidentifying restrictions of the model:

OI =
NS

1 + S

 b�D � 1

S

SX
s=1

b�Ms (�)
!0

�

 b�D � 1

S

SX
s=1

b�Ms (�)
!

� �2
h
dim

�b��� dim (�)i : (17)

If the optimal weighting matrix 
� is used in solving (16), the MSM estimator is

asymptotically normal for �xed S and T , and N !1, i.e.
p
N
�b����� D! N (0;W (S;
�)) ; (18)

where

W (S;
�) =

�
1 +

1

S

��
E

�
@b�M �b��0 =@��
�E h@b�M �b�� =@�0

i��1
:

9For example, in addition to Cooper and Haltiwanger (2006) and Bloom (2009), Cooper and
Ejarque (2003) and Eberly, Rebelo and Vincent (2008) evaluate the Q-model; Bond, Söderbom
and Wu (2008) study the e¤ects of uncertainty on capital accumulation; Schündeln (2006), Henessy
and Whited (2007) and Bond, Söderbom and Wu (2007) estimate the cost of �nancing investment;
Fafchamps and Söderbom (2006) and Cooper, Gong and Yan (2011) investigate the dynamic labor
demand, all through this structural econometric approach.
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4.2 Identi�cation Strategy

The data simulated from this investment model are determined by �ve factors: the

Jorgensonian user cost of capital (r, �), production technology
�
�log �, �log �

�
, de-

mand schedule ("), the stochastic process characterizing serial correlation (�), growth�
��, ��

�
, uncertainty (�), di¤erent forms of adjustment costs (bq; bi; bf ), and measure-

ment error (�meK).

In a model without any heterogeneity and measurement error, by imposing other

factors and pre-estimating the stochastic process, Cooper and Haltiwanger (2006) in-

dicate that the distribution and dynamics of the investment rate provide identi�cation

for capital adjustment costs. Bloom (2009) takes one step further and shows it is

possible to distinguish the stochastic process and adjustment costs simultaneously by

using moments of investment rate and sales growth rate jointly.

Since the empirical speci�cation in this paper includes two new features�namely

unobserved heterogeneities and measurement error, we adopt a similar two-step esti-

mation procedure as in Cooper and Haltiwanger (2006) and use moments for variables

in addition to the investment rate for identi�cation. To be speci�c, this paper �nds

that for a given Jorgensonian user cost of capital, the pro�t to sales ratio and log sales

to capital ratio could jointly identify the production technology and demand schedule.

By pre-estimating the stochastic process in the �rst step, the distribution and dynam-

ics of investment rate, sales growth rate and log sales to capital ratio could then jointly

identify capital adjustment costs, unobserved heterogeneities and measurement error

in the second step.

As illustrated inWhited (2010), a necessary and su¢ cient condition of identi�cation

is that the Jacobian matrix
h
@b�M �b�� =@�0

i
is of full rank. Intuitively, the precision

of the estimates is related to the sensitivity of the moments to movements in the

structural parameters through this matrix. If the sensitivity is low, the derivative will

be near zero, which will produce a high variance for the structural estimates according

to equation (18). Therefore, the standard errors of the estimates provide a useful check

for local identi�cation.

4.3 Parameters and Moments

Column (1) in the upper panel of Table 1 lists the set of parameters � to estimate. In

addition to these nine parameters of interest, there are four predetermined parameters.

For the Jorgensonian user cost of capital, the main speci�cation imposes � = 0:03,

which is the di¤erence between the mean of gross capital growth rate and the sales

growth rate; and r = 0:14, which is the average required rate of return for investment

in China estimated in Bai, Hsieh and Qian (2005).
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For the stochastic process, we follow Cooper and Haltiwanger (2006) by estimating

the following model in the �rst step,10

log Yi;t = �+ � log Yi;t�1 + (1� ) log bKi;t � � (1� ) log bKi;t�1 + �i + �i;t: (19)

Our empirical speci�cation on measurement error implies that the idiosyncratic error

term �i;t is composed of both the innovations of revenue TFP and the measurement

error in capital stock,

�i;t = ei;t � (1� ) eKi;t + � (1� ) eKi;t�1:

To get a proxy for the variance of �i;t, we estimate equation (19) and calculate the

variance of the �rst di¤erenced residual V ar
�
�b�i;t�. Under the assumption that ei;t,

eKi;t and e
K
i;t�1 are uncorrelated with each other, this imposes a joint restriction on �

and �meK ,

V ar
�
�b�i;t� = 2 �2�2 + �1 + �+ �2� (1� )2 �2meK� : (20)

By imposing � = 0:885 and  = 0:408 as estimated in Cooper and Haltiwanger (2006),

� can be inferred from equation (20) for any estimated �meK in the second step esti-

mation. A later section considers how sensitive the results are, to imposing di¤erent

values for �, r and �. In the section of speci�cation tests, we examine the e¤ect of

imposing a  which is estimated simultaneously with �meK in inferring �. We also in-

vestigate the e¤ect of imposing alternative restriction to equation (20) and estimating

�meK and � simultaneously.

Column (2) in the lower panel of Table 1 lists the set of moments b�D to match. The
third column reports the value of these empirical moments estimated from the data,

whilst the standard errors are reported in the fourth column. The set of moments

includes the means, standard deviations, skewness coe¢ cients, serial correlations, and

cross correlations between log sales to capital ratio, investment rate, and sales growth

rate, in addition to the mean of pro�t to sales ratio, and proportions of investment

spikes, zero investment and disinvestment. The selection of moments is guided by two

principles. First, these moments are e¤ective summary statistics for the important

features of the data as illustrated in Figures 2 and 3. Second, the properties of the

model discussed in Section 2.3 and the empirical speci�cations discussed in Section 3.2

provide theoretical predictions on how these moments may vary with the structural

parameters of our interest, so that jointly this set of moments could potentially identify

the parameters listed in the upper panel of Table 1.

10This equation is derived by taking logs on both sides of the sales equation Yi;t =
"h
1�Z


i;t
bK1�
i;t ,

where  = 1
N

PN
i=1

1
1+�i("�1)

, quasi di¤erencing the logged equation, replacing logZi;t and � logZi;t�1
using the AR(1) structure speci�ed in equation (6), and substituting the observed capital stock with
the true capital stock and measurement error speci�ed in Assumption 4.
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5 Empirical Results

The inverse of the variance-covariance matrix of the empirical moments is estimated

using a bootstrapping method. This provides a candidate for the e¢ cient choice of the

weighting matrix in the global speci�cation test (17). Michaelides and Ng (2000) �nd

that good �nite sample performance requires a simulated sample that is approximately

ten times as large as the actual data sample. Therefore S is set as 10 in this empirical

exercise. To avoid potential local minima, the minimum quadratic distance problem

(16) is solved using the simulated annealing algorithm described in Go¤e, Ferrier

and Rogers (1994). Alternative starting values for parameters and random draws

for TFP shocks have been employed to check the robustness of the results. Within

each simulation, the linear homogeneity of the model allows us to detrend the growth

rate when solving the model and add back the growth rate in simulating the data.

The dynamic programming (7) is solved by the improved policy iteration algorithm

(Ljungqvist and Sargent, 1999), taking �i and �i as state variables in addition to Zt
and Kt. Numerical standard errors for the MSM estimator are calculated according

to equation (18).11

5.1 Estimates

Table 1 presents the empirical results for the benchmark model. Column (4) in the

upper panel reports the optimal estimates of the structural parameters and column

(5) lists the numerical standard errors of these estimates. All three forms of capital

adjustment costs are found to be quantitatively important. In particular, bbq = 1:532
implies a quadratic adjustment cost, which is about 6.5% of the capital stock,12 eval-

uated at the sample average. bbi = 0:370 suggests that the resale price of capital goods
is only 63% of the purchase price. bbf = 0:011 implies any investment or disinvestment
would result in a 1.1% loss of operating pro�t. Since about 29.5% observations are at

the inaction region of investment, this implies that on average �rms are paying a �xed

adjustment cost equal to 0.8% of their operating pro�t.

In their comparable speci�cations, Cooper and Haltiwanger (2006) estimate bbq =
0:153, bbi = 0:019 and bbf = 0:204; Bloom (2009) �nds bbq = 0, bbi = 0:339 and bbf = 0:015.
Therefore compared with similar research using U.S. data, this Chinese dataset has

predicted a similar size of bi and bf as in Bloom (2009), a larger bi and a smaller bf than

Cooper and Haltiwanger (2006), but a substantially larger bq than both. Nevertheless,

11Wu (2009), which is available upon request or via the online Oxford University Library System,
provides further technical details.
12The size of quadratic adjustment costs as a proportion of capital stock can be calculated as

bq
2 E

�
Ii:t
_Ki;t

�2
=

bq
2

�
V ar

�
Ii:t
_Ki;t

�
+
�
E
�
Ii:t
_Ki;t

��2�
= 1:537

2

�
0:2562 + 0:1392

�
= 0:065:
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compared with empirical works inferring quadratic adjustment costs from the �Q-

model�, for example, Hayashi (1982), where bq is typically estimated to be around 20,

the estimate for bq in this paper is in fact much closer to our structural predecessors

and is signi�cantly lower than those traditional �ndings.

The estimated mean and standard deviation for log � implies that capital share

� varies from 0.021 to 0.329 with a median at 0.082. The estimates for both the

dispersion and the median value of � are broadly consistent with those in Jorgenson,

Gollop and Fraumeni (1987), who use a production function regression based on U.S.

data.13 The median value of � is even closer to that in Pavcnik (2002), who �nds that

the average of the capital share in the production function across industries is 0.085

for a large sample of Chilean �rms, using consistent Olley and Pakes (1996) structural

estimates. The estimate for the demand elasticity with respect to price is b" = 13:953.
According to equation (4), the pro�t to sales ratio is determined by �(1 � 1

"
) + 1

"
in

this model. Therefore, for a given �, the value of " depends on the pro�tability in

the data and is ultimately an empirical question.14 Together, the estimates for " and

heterogeneous � imply that the capital coe¢ cient in the sales or pro�t function 1� bi
is 0:516 at the median, and varies from 0.210 to 0.810 across the sample.

The estimate for the mean growth rate implies that on average the revenue TFP

grows at 8.7% per year. This is consistent with China�s real GDP growth rate in the

secondary and tertiary industries at the macro level. Meanwhile, the substantial stan-

dard deviation of the growth rate may re�ect large ups and downs across heterogeneous

�rms during economic transition. The standard deviation of the measurement error

in capital stock is estimated to be b�meK = 0:522 and is statistically signi�cant. This
suggests that measurement error in capital stock is indeed an important feature of the

dataset. According to equation (20), the standard deviation for revenue TFP shocks

can be inferred as 0:569, which measures the level of uncertainty in this model. An

estimate of b� = 0:569 is between the baseline level of uncertainty (0.413) and high level
of uncertainty (0.826) estimated in Bloom (2009); and at the median bb� = 0:275 is

similar to the level of uncertainty (0.30) estimated in Cooper and Haltiwanger (2006).15

13Jorgenson, Gollop and Fraumeni (1987) run production function regression over intermediate
input, capital input and labor input and report empirical results for di¤erent sectors in their Table
7.3. Among the 45 U.S. manufacturing and services sectors, the capital share estimate varies from
0.0489 (apparel and other fabricated textile products) to 0.404 (communication services) with a
median of 0.115 (motor vehicles and equipment). Such estimate for � should be distinguished from
the one in an aggregate production function for value added with capital and labor inputs only,
where Jorgenson, Gollop and Fraumeni (1987) report a capital share of 0.385 for the U.S. in such an
aggregate model in their Table 9.8.
14For example, Bond, Söderbom and Wu (2008) �nd " is around 24 for a sample of U.K. manu-

facturing �rms from 1972 to 1991 in the Datastream dataset; Song and Wu (2013) estimate " to be
around 10 for a sample of U.S. manufacturing �rms from 2002 to 2005 in the Compustat dataset.
15Both this paper and Bloom (2009) have assumed a sales function linearly homogeneous in revenue

TFP and capital stock such as Yt = constant�Zt bK1�
t . In contrast, the sales function in Cooper and
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Column (5) in the lower panel of Table 1 lists the simulated moments from the

model evaluated at the optimal estimates. Comparison between columns (5) and (3)

implies that the model has provided a reasonably good �t to a large set of empirical

moments which describe the level, distribution and dynamics of the key variables.

5.2 Speci�cation Tests

Table 2 reports speci�cation tests for alternative models. For reference, the preferred

full model is listed in column (1). Columns (2) to (4) show what happens when

we impose respectively no quadratic adjustment costs, no irreversibility and no �xed

adjustment costs. Compared with the preferred full model, a model with quadratic

adjustment costs together with either irreversibility (column (4)) or �xed adjustment

costs (column (3)) could �t the data reasonably well. In other words, irreversibility

and �xed adjustment costs are two alternative forms of non-convex adjustment costs

and are substitutes for one another if we only allow for one of them. In contrast,

a model without quadratic adjustment costs (column (2)) �ts the data much worse

and generates a substantially higher overidentifying restriction test statistic. This is

because this restricted model cannot �t the large positive serial correlation in the

investment rate. Furthermore, the simulated investment rate series is too volatile, too

right-skewed and over-responsive.

Column (5) presents a model which assumes a homogeneous capital share �. As one

may expect, without heterogeneity in �, the model cannot match the large dispersion

and the high serial correlation in log sales to capital ratio. As a result, the model

over-estimates adjustment costs, heterogeneity in growth rate and level of uncertainty

to match these important features of the data. Column (6) illustrates the result of

imposing no heterogeneity in the growth rate �. Such a model, �rst, cannot �t the

positive serial correlation of the sales growth rate; and second, over-estimates the

quadratic adjustment costs. Comparison between columns (5), (6) and (1) therefore

highlights the importance of allowing for unobserved heterogeneities in order to get

consistent estimates for the adjustment costs.

Column (7) shows the result of imposing no measurement error, which impliesb� = 1:160 by equation (20). Not surprisingly, this restricted speci�cation is massively
rejected, mainly because the simulated sales growth rates are too volatile at such a

high level of uncertainty. To dampen the sales growth rate, the model generates much

higher estimates for the adjustment costs, which in turn makes the investment rate

too persistent and not dispersed enough compared with the real data. To study the

Haltiwanger (2006) is Yt = constant�Zt bK1�
t . All three papers assume a similar law of motion for

Zt. Therefore the level of uncertainty in our paper is directly comparable with that in Bloom (2009)
but should be normalized by  to compare with that in Cooper and Haltiwanger (2006).
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e¤ect of imposing  = 0:408 in the restriction (20), we use b = 1
N

PN
i=1

1

1+b�i(b"�1)
which is estimated simultaneously with �meK . Column (8) implies that even greater

capital adjustment costs are estimated using this speci�cation. Finally, to examine the

e¤ect of using the restriction (20) on the estimates, column (9) reports a model which

estimates �meK and � simultaneously. Instead of using equation (20), the alternative

restriction in column (9) assumes that the noise-to-signal ratio is no larger than one,

that is �meK � �. Such a model estimates even larger measurement error and a higher
level of uncertainty.

5.3 Robustness Tests

Table 3 presents robustness checks across three di¤erent parameters. Column (1) is

the benchmark model, where � = 0:03, r = 0:14 and � = 0:885. Columns (2) and

(3) show the results for the same model but imposing the depreciation rate to be 0.02

and 0.04 respectively. Columns (4) and (5) present the results for the same model

but imposing the discount rate to be 0.13 and 0.15 respectively. Compared with

the benchmark model, a model with lower depreciation rate or lower discount rate

implies slightly higher quadratic adjustment costs and smaller demand elasticity, in

order to match the empirical mean of log sales to capital ratio. Nevertheless, with

the exception of the estimates for the mean of growth rate ��, the estimates for other

parameters are robust to the choice of depreciation rate and discount rate within the

range we considered. Columns (6) and (7) show what happens when the same model

is estimated but with serial correlation of 0.85 and 0.92, respectively. As expected, a

model imposing higher serial correlation implies less heterogeneity in the growth rate.

However, there is no signi�cant di¤erence between estimates reported in these two

columns and the estimates in the benchmark model.

5.4 Subsample Results

Table 4 estimates the same model on several subsamples. We estimate V ar
�
�b�i;t�

for each subsample in the �rst-step, and impose di¤erent values of � and r, searching

along a range of potential values to match each subsample best. These values are

reported in the corresponding columns at the bottom of Table 4, together with the

number of �rms and the median number of employees.

The �rst sample split is between manufacturing �rms and services �rms. According

to columns (1) and (2), �rms in the service sector are more pro�table and grow faster

on average, however they also face higher quadratic and �xed adjustment costs than

their manufacturing counterparts. This could imply that the investment climate of the

service sector is worse than that of the manufacturing sector in China. However this
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could also be driven by the fact that �rms in the service sector are on average much

smaller than those in the manufacturing sector.

To study whether there is a signi�cant di¤erence between large and small �rms in

terms of their adjustment costs, we split the sample at the median number of employees

and estimate the model for large �rms in column (3) and small �rms in column (4).

To take into account that the data for large �rms might be consolidated across several

small subplants within the �rm, following Bloom (2009) we assume that the large �rms

have been aggregated over 3 small subplants, given their median number of employees

is three times as large as that of the whole sample.

The empirical results indicate that in terms of non-convex adjustment costs, large

�rms face a combination of larger irreversibility and smaller �xed adjustment costs,

while small �rms face the opposite combination. However, in terms of convex adjust-

ment costs, the estimate for large �rms is substantially lower than that of the small

�rms. If one thinks irreversibility and �xed adjustment costs are two alternative forms

of non-convex adjustment costs, the signi�cant di¤erence in the quadratic adjustment

costs implies that larger �rms face much smaller investment frictions. This �nding is

consistent with the conventional observation that in developing countries large �rms

have a more favorable investment climate than small �rms, as is well documented in

Tybout (2000).

To further examine whether di¤erences in capital adjustment costs are informative

about the investment environments, we report empirical results for �rms in Beijing

and Shanghai in column (5) and �rms in Guiyang and Lanzhou in column (6). The

subnational Doing Business survey on China has highlighted substantial variation in

the ease of doing business across geographic regions. Cities in eastern coastal area

(such as Beijing and Shanghai) are much more advanced than cities in western inland

area (such as Guiyang and Lanzhou), with respect to their �nancial development,

investment infrastructure, and business regulations among others. Therefore one would

expect a much better investment climate in Beijing and Shanghai, compared with that

in Guiyang and Lanzhou.

The estimates for these two subsamples are indeed consistent with this prior be-

lief. With similar size of irreversibility, the estimates for both quadratic and �xed

adjustment costs are substantially larger for �rms in Guiyang and Lanzhou than for

�rms in Beijing and Shanghai. On average, �rms in Guiyang and Lanzhou are paying

a quadratic adjustment cost which is 9.43% of their capital stock and a �xed adjust-

ment cost which is 2.6% of their operating pro�t. In contrast, the corresponding cost

proportions are only 2.8% and 0.48% for �rms in Beijing and Shanghai.
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5.5 Counterfactual Simulations

The estimated structural model provides a useful framework to quantify the e¤ects of

adjustment costs on forgone aggregate output. Table 5.1 simulates these e¤ects for

the whole sample according to equation (12). Recall that there are heterogeneities in

both � and �, and the heterogeneity in � implies the heterogeneity in  by equation

(3). These e¤ects are therefore simulated for di¤erent types of �rms along 1� , the
capital coe¢ cient in the sales or pro�t function, and �, the growth rate of the revenue

TFP.

On average the actual aggregate capital stock is 61.3% lower than the frictionless

level. Given that on average the log capital stock counts for 51.2% in the log output,

the actual aggregate output is 31.4% lower than the frictionless benchmark. Across

di¤erent types of �rms, for a given level of growth rate, the losses in aggregate capital

stock increase with the capital coe¢ cient. For a given level of capital coe¢ cient, the

losses in aggregate capital stock increase with the growth rate. Both of them are

consistent with the economic intuition implied by the investment model.

To further study the relative importance of di¤erent forms of adjustment costs,

Table 5.2 reports the average losses across di¤erent types of �rms when there are only

quadratic adjustment costs, irreversibility and �xed adjustment costs, respectively.

As highlighted in Table 5.2, although irreversibility and �xed adjustment costs also

generate a sizeable loss, it is the presence of the quadratic adjustment costs that

contributes most to the losses, as is seen in Table 5.1. To check the validity of the

�rst-order approximation derived in section 2.5, consider �rms which have a median

level of  and �. Since the average investment rate is 0.151 and bq is estimated at 1.532

for the full sample, equation (15) predicts an aggregate output loss of around 0.225.

This is very close to the magnitude simulated in the 5th row of Table 5.1. Recall

from the speci�cation tests, had we not allowed for unobserved heterogeneities or

measurement error, the model would have estimated even larger quadratic adjustment

costs, and hence even more substantial losses.

Taking the estimated structural model as a laboratory, controlled experiments can

be conducted to investigate hypothetical questions. For example, how would the ag-

gregate output losses di¤er, if Chinese �rms faced the same level of frictions as U.S.

�rms? Table 5.3 thus simulates the e¤ects of adjustment costs for China by imposing

its bq, bi and bf to be the corresponding values estimated from Bloom (2009), keeping

all other factors constant. Table 5.4 reports gains from the improvement by comparing

the quantitative e¤ects in Table 5.1 with those in Table 5.3. Averaging across di¤erent

types of �rms, a reduction in frictions down to the U.S. level would generate a 25.2%

increase in China�s aggregate output.

Tables 5.5 and 5.6 report the gains for small �rms and �rms located in Guiyang
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and Lanzhou, using large �rms and �rms in Beijing and Shanghai respectively as a

benchmark. Within China, if the small �rms had operated in a better environment

as implied by the lower level of adjustment costs faced by their large counterparts,

their aggregate output would be 34.2% higher. Aggregate output gain would also be

substantial, as large as 24.8%, had �rms in Guiyang and Lanzhou faced the lower

frictions that their counterparts in Beijing and Shanghai enjoyed.

6 Conclusion and Discussion

Over the past decade, China has been consistently ranked only around 90th out of 180

economies in terms of the overall ease of doing business (World Bank, 2007). Even

within China, the ease of doing business varies greatly across cities (World Bank, 2008).

Using an investment-capital adjustment costs framework, this paper indirectly infers

the aggregate output loss in China caused by a poor investment climate. The estimated

substantial output gain by improving the investment climate to the U.S. benchmark

gives a quantitative measure of "how bad the investment climate is in China". The

subsample estimates also �nd much higher quadratic adjustment costs in cities with

lower Doing Business ranking than those with higher ranking. Although investment

frictions and capital adjustment costs are abstract and not observable directly, the

Doing Business ranking is constructed based on speci�c indicators and is easily avail-

able. Therefore, the consistency between the estimates of capital adjustment costs

and the Doing Business ranking implies the importance of improving lagged indicators

identi�ed in the Doing Business ranking in order to reduce aggregate output loss.

Although this empirical exercise quanti�es the signi�cant e¤ects of investment fric-

tions on aggregate output loss, there are some limitations that need further investiga-

tion. First, instead of making a one-to-one correspondence between capital adjustment

costs and the speci�c factors in the Doing Business ranking, this paper takes capital

adjustment costs as a generic representation of various investment frictions, so as to

quantify their overall e¤ects. This complements other researches which aim to give

more detailed policy advice, by estimating the impact of particular frictions. For ex-

ample, Bond, Söderbom and Wu (2007) study how costly external �nance may a¤ect

capital accumulation for �rms in Brazil and China.

Second, there has been a recent debate in the development and economic growth

literature, for example, Easterly and Levine (2001), on whether it is factor accumula-

tion or TFP that is more important for economic growth. The �nding of this paper is

in line with a vast literature emphasizing the importance of capital accumulation, for

China as in Ding and Knight (2011) and for many economies in general as in Bond,

Leblebicioglu, and Schiantarelli (2010). However, this does not necessarily imply the
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insigni�cance of TFP. The high growth rate of revenue TFP estimated from the model

is taken as exogenous in this paper. Estimating an investment model with endogenous

TFP growth will be an interesting task for future research.

Finally, like most researches on capital adjustment costs, the analysis in this paper

is partial equilibrium in nature. Therefore the magnitudes estimated in this paper are

subject to potential general equilibrium e¤ects. To fully address the aggregate output

loss in a general equilibrium framework, one has to develop a dynamic stochastic

general equilibrium model to re�ect the complex interaction between TFP shocks,

endogenous factor prices and capital adjustment dynamics. Furthermore, the choice

of production technology may be endogenous and the market structure may evolve in

a more general setup. Such analysis is certainly important but is beyond the scope of

this paper.
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Appendix 1: Selected Indicators for the Doing Business Ranking 

 
U.S. 

China 
 national Beijing/ 

Shanghai 
Guiyang/ 
Lanzhou 

Starting a business 
Days to open a business (days) 5 35 37/35 50/47 
Cost to open a business (% of income per capita) 0.7 9.3 3.2/3.1 26.6/14.1 
Registering property 
Days to register property (days) 12 32 59/29 77/78 
Cost to register property (% of property value) 0.5 3.1 3.1/3.6 12.6/7.8 
Getting credit 
Strength of legal rights index (0-10) 7 2 n.a. n.a. 
Depth of credit information index (0-6) 6 4 n.a. n.a. 
Days to create and register collateral (days) n.a. n.a. 15/8 17/20 
Cost to create and register collateral (% of loan value) n.a. n.a. 2.7/2.9 6.9/8 
Enforcing contract 
Days to enforce contracts (days) 300 292 340/292 397/440 
Cost to enforce contracts (% of claim value) 7.7 26.8 9.6/9 23/29.9 

 

Note:  

1. The data for U.S. and China national level are from pages 150 and 105 of World Bank (2007). 
And the data for cities Beijing, Shanghai, Guiyang and Lanzhou are from pages 38 and 39 of 
World Bank (2008). See website: www.doingbusiness.org for more information on the Doing 
Business ranking.  

2. n.a.= not applicable. The time and cost of registering collateral were not reported in the global 
Doing Business study. The strength of legal rights index and depth of credit information were not 
reported in the Doing Business in China 2008. 

http://www.doingbusiness.org/�


29 
 

Appendix 2: Data 
 

1. Sampling 
 The Chinese dataset used in this paper was collected in year 2001 and 2003 under the 
Investment Climate Surveys by the World Bank. These surveys cover more than 26,000 firms in 
53 developing countries, and aim to understand how investment climates vary around the world 
and how they influence growth and poverty.  The sample of firms in each country is stratified by 
size, sector and location.  
 The original Chinese samples provide annual observations for up to 3 years in the period 
1998-2000 for 1548 firms distributed across 5 cities (Beijing, Chengdu, Guangzhou, Shanghai 
and Tianjin), and in the period 2000-2002 for 2400 firms distributed across 18 cities (Dalian, 
Benxi,  Changchun,  Ha’erbin,  Hangzhou, Wenzhou, Nanchang,  Zhengzhou,  Wuhan, 
Changsha, Shenzhen, Jiangmen, Nanning, Chongqing, Guiyang, Kunming, Xi’an and Lanzhou). 
Overall these 3948 firms were distributed across 10 manufacturing industries (auto and auto 
parts, biotech products and Chinese medicine, electronic equipment, chemical products and 
medicine, electronic parts making, food processing, garment and leather products,  household 
electronics, metallurgical products, and transportation equip) and 4 services industries 
(accounting and non-banking financial service, advertisement and marketing, business services, 
and information technology). 
 

2. Data Cleaning 
Firms with number of permanent employees less than 10 or larger than 1000 are dropped 

to rule out extremely small or large observations. Using information from China Statistical 
Yearbook, we then deflate investment and capital stock data using province-specific price indices 
of investment in fixed assets and deflate profit and sales data using province-specific ex-factory 
price indices of industrial products. After calculating the five key variables in ratio or growth rate 
according to definition in Section 3.1, we trim the top and bottom 5% observations to rule out 
extreme values. The final sample used for estimation is a three-year panel of 3618 firms, with 
median number of employees 112.  

 

3. Macroeconomic Background over Sample Period 
Table A. Macroeconomic Indicators for China: 1998-2002 (%) 

 1998 1999 2000 2001 2002 
GDP (PPP) share of world total  10.2 10.6 10.9 11.5 12.1 
real GDP growth rate (secondary industry) 8.9 8.1 9.4 8.4 9.8 
real GDP growth rate (tertiary industry) 8.3 7.7 8.1 8.4 7.5 
inflation rate, GDP deflator -0.8 -1.4 0.4 0.7 -0.8 
fixed capital formation as share of GDP 37.1 36.7 35.1 36.3 37.9 
Sources: World Economic Outlook, IMF; World Development Indicator, World Bank; China 
Statistical Yearbook; National Bureau of Statistics of China. 
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Figure 1a: Investment Policy for Quadratic Adjustment Costs 

 

 
Figure 1b: Investment Policy for Irreversibility 

 

 
Figure 1c: Investment Policy for Fixed Adjustment Costs 
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Figure 2a: Empirical Distribution for Investment Rate Figure 3a: Investment Rate versus proxy for MRPK 

  

Figure 2b: Empirical Distribution for Sales Growth Rate Figure 3b: Sales Growth Rate versus proxy for MRPK 

  

Figure 2c: Empirical Distribution for Capital Intensity Figure 3c: Investment Rate versus Sales Growth Rate  
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col (1) col (2) col (3) col (4) col (5)
Definition for Parameters Parameters Estimate            s.e.
quadratic adjustment costs b q 1.532 0.122
irreversibility b i 0.370 0.082
fixed adjustment costs b f 0.011 0.005
demand elasticity ε 13.953 0.892
mean of log capital share μ logβ -2.498 0.022
std. dev. of log capital share σ logβ 1.386 0.017
mean of growth rate μ μ 0.087 0.001
std. dev.  of growth rate σ μ 0.089 0.005
std. dev.  of measurement errors σ meK 0.522 0.003
std. dev.  of TFPR shocks (inferred) σ 0.569

Definition for Moments Moments Empirical         s.e. Simulated
mean of profit to sales ratio mean(π/Y) 0.211 0.002 0.218
mean of capital intensity mean(log(Y/Khat)) 0.533 0.020 0.554
mean of invetment rate mean(I/K) 0.139 0.003 0.151
mean of sales growth rate mean(∆logY) 0.092 0.005 0.088
std. dev.  of capital intensity sd(log(Y/Khat)) 1.233 0.011 1.278
std. dev. of invetment rate sd(I/K) 0.256 0.005 0.190
std. dev.  of sales growth rate sd(∆logY) 0.353 0.004 0.338
skewness of capital intensity skew(log(Y/Khat)) 0.042 0.023 0.189
skewness of invetment rate skew(I/K) 2.540 0.065 2.553
skewness of sales growth rate skew(dlogY) 0.052 0.027 0.048
serial correlation of capital intensity scorr(log(Y/Khat)) 0.852 0.006 0.843
serial correlation of invetment rate scorr(I/K) 0.428 0.021 0.492
serial correlation of sales growth rate scorr(∆logY) 0.078 0.023 0.014
how investment rate responds to MRPK corr(I/K, log(Y/K)) 0.191 0.012 0.407
how sales growth rate responds to MRPK corr(∆logY, log(Y/K)) 0.163 0.014 0.213
how investment rate responds to sales growth corr(I/K, ∆logY) 0.159 0.013 0.446
proportion of investment spikes Prop(I/K>0.2) 0.253 0.006 0.286
proportion of investment inaction Prop(I/K=0) 0.295 0.006 0.289
proportion of disinvestment Prop(I/K<0) 0.002 0.000 0.002
over-identifying restriction test statistics OI 1051

Table 1. Empirical Results 
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col (1) col (2) col (3) col (4) col (5) col (6) col (7) col (8) col (9)
Parameters full b q = 0 b i  = 0 b f  = 0 σ logβ =0 σ μ  = 0 σ meK =0 free γ free σ

b q 1.532 0.000 1.964 1.142 3.405 1.730 2.592 2.121 2.623
b i 0.370 0.211 0.000 0.428 0.295 0.236 0.446 0.282 0.248
b f 0.011 0.000 0.077 0.000 0.019 0.060 0.045 0.029 0.047
ε 13.953 10.164 15.459 13.591 13.509 17.657 24.980 15.099 18.376

μ logβ -2.498 -2.496 -2.448 -2.494 -2.345 -2.387 -2.201 -2.484 -2.446
σ logβ 1.386 1.265 1.346 1.376 0.000 1.381 1.263 1.350 1.393
μ μ 0.087 0.091 0.086 0.090 0.089 0.090 0.082 0.088 0.089
σ μ 0.089 0.000 0.044 0.092 0.141 0.000 0.063 0.089 0.087
σ meK 0.522 0.580 0.517 0.525 0.500 0.494 0.000 0.546 0.595
σ 0.569 0.285 0.585 0.555 0.639 0.655 1.160 0.580 0.629

Simulated Moments
mean(π/Y) 0.218 0.227 0.215 0.218 0.163 0.222 0.225 0.211 0.213
mean(log(Y/Khat)) 0.554 0.657 0.712 0.509 0.433 0.607 0.171 0.602 0.600
mean(I/K) 0.151 0.171 0.148 0.156 0.168 0.153 0.122 0.152 0.157
mean(∆logY) 0.088 0.091 0.086 0.091 0.095 0.091 0.080 0.088 0.088
sd(log(Y/Khat)) 1.278 1.238 1.272 1.261 1.047 1.277 1.064 1.267 1.311
sd(I/K) 0.190 0.310 0.181 0.204 0.200 0.182 0.131 0.189 0.199
sd(∆logY) 0.338 0.213 0.330 0.332 0.320 0.349 0.472 0.333 0.334
skew(log(Y/Khat)) 0.189 0.005 0.155 0.172 -0.249 0.166 0.641 0.190 0.188
skew(I/K) 2.553 4.223 2.394 2.768 1.838 2.369 1.277 2.529 2.795
skew(dlogY) 0.048 0.461 0.049 0.062 0.025 0.059 0.077 0.043 0.050
scorr(log(Y/Khat)) 0.843 0.817 0.846 0.839 0.786 0.857 0.921 0.827 0.813
scorr(I/K) 0.492 0.091 0.360 0.484 0.592 0.345 0.740 0.474 0.432
scorr(∆logY) 0.014 0.001 -0.015 0.025 0.088 -0.021 -0.021 0.014 0.012
corr(I/K, log(Y/K)) 0.407 0.275 0.402 0.406 0.756 0.414 0.549 0.412 0.418
corr(∆logY, log(Y/K)) 0.213 0.164 0.204 0.218 0.407 0.216 0.324 0.207 0.198
corr(I/K, ∆logY) 0.446 0.675 0.508 0.469 0.379 0.530 0.533 0.419 0.384
Prop(I/K>0.2) 0.286 0.264 0.285 0.291 0.346 0.296 0.239 0.291 0.293
Prop(I/K=0) 0.289 0.340 0.306 0.255 0.339 0.292 0.315 0.295 0.292
Prop(I/K<0) 0.002 0.008 0.003 0.002 0.000 0.002 0.004 0.002 0.001

OI 1051 4091 1374 1068 4132 1445 5136 1018 969

Table 2. Specification Tests
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col (1) col (2) col (3) col (4) col (5) col (6) col (7)
Parameters benchmark δ  = 0.02 δ  = 0.04 r = 0.13 r  = 0.15 ρ  = 0.85 ρ  = 0.92

b q 1.532 1.801 1.408 1.840 1.398 1.436 1.728
b i 0.370 0.317 0.400 0.313 0.401 0.349 0.384
b f 0.011 0.026 0.009 0.021 0.009 0.007 0.020
ε 13.953 13.183 15.794 13.199 14.244 13.431 13.142

μ logβ -2.498 -2.498 -2.490 -2.497 -2.499 -2.499 -2.499
σ logβ 1.386 1.371 1.394 1.370 1.387 1.365 1.386
μ μ 0.087 0.094 0.080 0.085 0.084 0.086 0.089
σ μ 0.089 0.083 0.090 0.086 0.085 0.090 0.087
σ meK 0.522 0.523 0.514 0.523 0.521 0.531 0.521
σ 0.569 0.564 0.594 0.563 0.573 0.568 0.540

Simulated Moments
mean(π/Y) 0.218 0.220 0.213 0.220 0.217 0.218 0.222
mean(log(Y/Khat)) 0.554 0.540 0.587 0.535 0.597 0.575 0.548
mean(I/K) 0.151 0.146 0.156 0.147 0.148 0.150 0.153
mean(∆logY) 0.088 0.094 0.081 0.085 0.085 0.087 0.089
sd(log(Y/Khat)) 1.278 1.279 1.273 1.276 1.276 1.272 1.275
sd(I/K) 0.190 0.180 0.197 0.181 0.190 0.187 0.194
sd(∆logY) 0.338 0.338 0.341 0.337 0.338 0.341 0.327
skew(log(Y/Khat)) 0.189 0.190 0.191 0.193 0.185 0.169 0.201
skew(I/K) 2.553 2.425 2.604 2.436 2.680 2.539 2.598
skew(dlogY) 0.048 0.040 0.058 0.040 0.054 0.045 0.051
scorr(log(Y/Khat)) 0.843 0.841 0.846 0.840 0.842 0.835 0.845
scorr(I/K) 0.492 0.482 0.497 0.490 0.489 0.480 0.502
scorr(∆logY) 0.014 0.005 0.019 0.008 0.012 -0.007 0.040
corr(I/K, log(Y/K)) 0.407 0.400 0.412 0.404 0.411 0.398 0.418
corr(∆logY, log(Y/K)) 0.213 0.205 0.219 0.207 0.216 0.206 0.219
corr(I/K, ∆logY) 0.446 0.436 0.459 0.431 0.455 0.433 0.451
Prop(I/K>0.2) 0.286 0.278 0.294 0.281 0.277 0.285 0.290
Prop(I/K=0) 0.289 0.305 0.280 0.296 0.288 0.285 0.292
Prop(I/K<0) 0.002 0.001 0.002 0.002 0.002 0.002 0.002

OI 1051 1052 1094 1046 1072 1028 1125

Table 3. Robustness Tests
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col (1) col (2) col (3) col (4) col (5) col (6) col (7)
Parameters full MANU SERVICE LARGE SMALL BJ&SH GY&LZ

b q 1.532 1.278 3.107 0.785 2.487 0.649 2.520
b i 0.370 0.449 0.103 0.442 0.189 0.437 0.439
b f 0.011 0.004 0.049 0.008 0.077 0.007 0.040
ε 13.953 16.343 10.502 15.581 12.506 18.792 13.970

μ logβ -2.498 -2.499 -2.447 -2.487 -2.430 -2.497 -2.349
σ logβ 1.386 1.341 1.394 1.313 1.335 1.342 1.264
μ μ 0.087 0.077 0.090 0.083 0.094 0.089 0.073
σ μ 0.089 0.068 0.122 0.076 0.100 0.051 0.074
σ meK 0.522 0.494 0.561 0.470 0.573 0.405 0.557
σ 0.569 0.611 0.501 0.541 0.593 0.622 0.622

Simulated Moments
mean(π/Y) 0.218 0.204 0.246 0.205 0.229 0.198 0.226
mean(log(Y/Khat)) 0.554 0.506 0.698 0.331 0.838 0.738 0.088
mean(I/K) 0.151 0.122 0.201 0.128 0.178 0.161 0.131
mean(∆logY) 0.088 0.078 0.091 0.084 0.094 0.091 0.078
sd(log(Y/Khat)) 1.278 1.229 1.344 1.226 1.303 1.206 1.231
sd(I/K) 0.190 0.165 0.237 0.165 0.235 0.200 0.160
sd(∆logY) 0.338 0.340 0.332 0.342 0.358 0.343 0.340
skew(log(Y/Khat)) 0.189 0.220 0.186 0.182 0.190 0.159 0.237
skew(I/K) 2.553 2.843 2.200 2.628 2.560 2.434 2.517
skew(dlogY) 0.048 0.085 0.063 0.043 0.075 0.154 0.101
scorr(log(Y/Khat)) 0.843 0.838 0.848 0.852 0.824 0.888 0.807
scorr(I/K) 0.492 0.497 0.476 0.513 0.429 0.467 0.461
scorr(∆logY) 0.014 -0.012 0.059 -0.027 0.023 0.016 -0.001
corr(I/K, log(Y/K)) 0.407 0.421 0.342 0.402 0.403 0.400 0.389
corr(∆logY, log(Y/K)) 0.213 0.218 0.177 0.217 0.213 0.248 0.201
corr(I/K, ∆logY) 0.446 0.455 0.398 0.472 0.442 0.587 0.350
Prop(I/K>0.2) 0.286 0.219 0.397 0.229 0.347 0.307 0.246
Prop(I/K=0) 0.289 0.297 0.291 0.213 0.366 0.283 0.321
Prop(I/K<0) 0.002 0.002 0.002 0.003 0.001 0.001 0.000

OI 1051 716 290 430 647 240 56
Other Information

estimated Var (∆ξ i,t ) 0.617 0.581 0.672 0.515 0.731 0.436 0.709
imposed δ 0.030 0.020 0.060 0.020 0.050 0.040 0.030
imposed r 0.140 0.150 0.110 0.120 0.160 0.170 0.080
imposed ρ 0.885 0.885 0.885 0.885 0.885 0.885 0.885
number of firms 3618 2404 1214 1806 1812 553 274
median employees 112 158 54 331 43 155 77

Table 4. Empirical Results for Subsamples
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type
1-γ

μ
ΔlogK

ΔlogY
type

1-γ
μ

ΔΔlogK
ΔΔlogY

1
0.210

-0.002
-0.254

-0.054
1

0.210
-0.002

0.182
0.038

2
0.210

0.087
-0.258

-0.054
2

0.210
0.087

0.223
0.047

3
0.210

0.176
-0.392

-0.082
3

0.210
0.176

0.339
0.071

4
0.516

-0.002
-0.440

-0.227
4

0.516
-0.002

0.299
0.154

5
0.516

0.087
-0.442

-0.228
5

0.516
0.087

0.361
0.186

6
0.516

0.176
-0.604

-0.312
6

0.516
0.176

0.523
0.270

7
0.810

-0.002
-0.842

-0.682
7

0.810
-0.002

0.535
0.433

8
0.810

0.087
-0.934

-0.757
8

0.810
0.087

0.780
0.632

9
0.810

0.176
-1.349

-1.092
9

0.810
0.176

1.191
0.965

average
0.512

0.087
-0.613

-0.314
average

0.512
0.087

0.492
0.252

b
q

b
i

b
f

ΔlogK
ΔlogY

type
1-γ

μ
ΔΔlogK

ΔΔlogY
1.532

0.000
0.000

-0.576
-0.295

1
0.211

-0.006
0.477

0.100
0.000

0.370
0.000

-0.096
-0.049

2
0.211

0.094
0.327

0.069
0.000

0.000
0.011

-0.022
-0.011

3
0.211

0.194
0.463

0.097
1.532

0.370
0.011

-0.613
-0.314

4
0.503

-0.006
0.504

0.254
5

0.503
0.094

0.443
0.223

6
0.503

0.194
0.639

0.322
type

1-γ
μ

ΔlogK
  ΔlogY

7
0.794

-0.006
0.849

0.674
1

0.210
-0.002

-0.072
-0.015

8
0.794

0.094
0.986

0.783
2

0.210
0.087

-0.036
-0.007

9
0.794

0.194
1.445

1.147
3

0.210
0.176

-0.053
-0.011

average
0.502

0.094
0.681

0.342
4

0.516
-0.002

-0.141
-0.073

5
0.516

0.087
-0.081

-0.042
6

0.516
0.176

-0.082
-0.042

type
1-γ

μ
ΔΔlogK

ΔΔlogY
7

0.810
-0.002

-0.307
-0.249

1
0.259

-0.001
0.253

0.066
8

0.810
0.087

-0.154
-0.125

2
0.259

0.073
0.257

0.067
9

0.810
0.176

-0.157
-0.127

3
0.259

0.148
0.272

0.071
average

0.512
0.087

-0.120
-0.062

4
0.553

-0.001
0.313

0.173
5

0.553
0.073

0.408
0.226

6
0.553

0.148
0.440

0.244
7

0.814
-0.001

0.391
0.318

8
0.814

0.073
0.813

0.662
9

0.814
0.148

0.963
0.784

average
0.542

0.073
0.456

0.248
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