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Abstract

In this paper we examine assets price deviation in a multi-market system with

heterogeneous investors in each market. Coupled map lattices (CML) is introduced

to the market maker framework. It results in market cluster sharing the same sign

of deviation in the chaotic interval. Distribution plots are applied to understand the

deviation persistence enhancement from the coupling e¤ect. Besides that, external

disturbance is employed to the system to examine the market pattern stability and

the propagation of the disturbance. The goal of the paper is to introduce coupling

e¤ect as a bridge for multi-market interactions with heterogeneous agents.
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1 Introduction

In 1981, Kaneko discovered the spatiotemporal pattern of coupled map lattices

(CML) when he started a simulation in which a chain of logistic maps is

utilized. In the chaotic regions, each logistic map couples to nearby ones. The

discrete time evolvements display spatiotemporal pattern in which values of

logistic maps are either greater or less than �xed point value. CML has been

expanded into �elds of spatiotemporal chaos and pattern formation, biology,

mathematics, engineering and so on. For further understanding of CML, we

cite here in particular, Kaneko [10-14] and Ouchi and Kaneko [15].

Heterogeneous agents models have managed to replicate some of the stylized

facts of �nancial markets, such as bubbles and crashes, randomly switching

bear and bull market episodes, excess volatility, volatility clustering and fat

tails for returns distribution [1-4, 6,7]. Huang and Chen [9] further contribute

to stylized facts matching in terms of cross-correlation. Based on the market

maker framework of Day and Huang [5] and two-market model of Westerho¤

and Dieci [16], Huang and Chen [9] model a two-market system with free

movement of capital and apply coupling in market maker�s price updating by

weighting excess demand of di¤erent markets. The market system displays

market pooling phenomena and strong cross-correlation.

This paper extends the framework of Huang and Chen [9] to multiple markets

through CML e¤ect. To segregate and investigate the e¤ect from coupling,

investors can only invest in their home market while coupling of market makers
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is still adopted. Market makers update price based on the weighted excess

demand of domestic and adjacent markets. With this setup, market cluster

or enhancement on persistence of asset price deviation is observed. The e¤ect

becomes prominent in the chaotic interval, where market cluster with the

same sign of deviation is formed in the spatio-temporal diagram. The market

clusters can regroup if market member is hit by shock in asset price. During

this regrouping process, coupling e¤ect can stabilize market member with

small �uctuation compared to the isolated counterpart.

This paper is structured as follows. Section 2 describes the details of model

setup and proposes an coupling market maker framework in a multi-market

system. In section 3, with numerical bifurcation study as reference, deviation

spatio-temporal diagrams are plotted to demonstrate the deviation enhance-

ment e¤ect. To understand this enhancement phenomena, phase diagram and

Lorenz plot are utilized. Also, external shocks are employed to investigate

the market cluster pattern stability. Lastly, section 4 concludes the paper and

suggests possible future research direction.

2 Model Setup

For the isolated market i, asset price at time t is denoted by Pi;t. The funda-

mental value is treated as constant and is denoted by Fi. For convenience, we

de�ne the price deviation xi;t = Pi;t � Fi. For a chartist (c) or a fundamen-

talist (f) in market i, their excess demand for the asset i is Dic;t and Dif;t,

respectively. These excess demands are linear functions of price deviation, for

simplicity.

Dic;t = bcxi;t; Dif;t = bf (�xi;t)
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where bc and bf are the strength of demand of chartist and fundamentalist.

Chartists purchase over-valued asset and sell under-value one while funda-

mentalists behave in an opposite way. The distribution composites of chartists

and fundamentalists in market i are Wic;t and Wif;t, respectively. When the

price deviation is larger, more investors will become fundamentalists and the

proportion of fundamentalists is larger. Investors distribution composites are

determined according to:

Wic;t =
h exp (� jxi;tj)

exp (jxi;tj) + h exp (� jxi;tj)
;Wif;t =

exp (jxi;tj)
exp (jxi;tj) + h exp (� jxi;tj)

where h � 1 is chartist distribution parameter, proportional to the con�dence

level of chartist. A large h indicates that chartists are more con�dent.

With the individual excess demand and investor compositions, the excess de-

mand to market i, Di;t, can be derived:

Di;t = Wif;tDif;t +Wic;tDic;t

In response to the excess demand, market maker of market i updates next

period�s price.

Pi;t+1 = Pi;t + aDi;t

where a is the price adjustment coe¢ cient.

Expressed in the price deviation form, the price updating process can be ex-

pressed as:
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xi;t+1 = xi;t + aDi;t (1)

= xi;t +
ah exp(� jxi;tj)bcxi;t

exp(jxi;tj) + h exp(� jxi;tj)
� a exp(jxi;tj)bfxi;t
exp(jxi;tj) + h exp(� jxi;tj)

Above is the price dynamics for individual market i in isolation. To model

dynamics of multi-market system, we concentrate on the behavior of market

makers. In a connected market system, price movements of market members

are correlated to each other. Price dynamics of market i is in�uenced by other

markets. Realizing the existence of market correlation, each market maker

adopts the coupling parameter g so that activities of two most adjacent mar-

kets are taken into account. The coupled market model for price updating is

introduced:

xi;t+1 = xi;t + a
�
(1� g)Di;t + g(

Di+1;t +Di�1;t

2
)
�

(2)

where 0 � g � 0:5. The market maker i puts weight (1� g) on the excess de-

mand from market i and g on the average excess demand of adjacent markets.

3 Result

If we ignore deviation magnitude and focus on the sign of deviation, the de-

viations can be categorized into four types: persistent positive deviation, per-

sistent negative deviation, alternate deviations, and diminishing to zero (the

fundamental value). If the deviations �uctuate within the positive value do-

main or the negative value domain, the signs of the deviations do not change.
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They are de�ned as persistent positive deviations or persistent negative de-

viations, respectively. Once the deviations �uctuate alternately between the

positive and negative domains, they are not persistent and are de�ned as al-

ternate deviations. In contrast, there are cases where deviation can diminish

to zero�the fundamental value state. We are interested with the deviation per-

sistence under cases of isolation and coupling e¤ect�market correlation. The

persistence of the deviation is related to the price deviation dynamics, which

involves dynamical stability and bifurcation study such as switching between

positive and negative regions. Hence, stability of the isolated market is investi-

gated, followed by bifurcation illustration and other numerical demonstrations

for multi-market cases.

3.1 Isolated market

For the isolated stock market i (1),

xi;t+1 = xi;t +
ah exp(� jxi;tj)bcxi;t

exp(jxi;tj) + h exp(� jxi;tj)
� a exp(jxi;tj)bfxi;t
exp(jxi;tj) + h exp(� jxi;tj)

the steady state and stabilities properties is derived:

Proposition 1 (a) There exists a unique fundamental steady state �xi = 0,

which is stable if and only if maxf1� 2(h+ 1)= (abf ) ; 0g < bc � h=bf < 1;

(b) There are two nonfundamental steady states: �xi = � ln
q
bc � h=bf if bc �

h=bf > 1, and bc � h=bf < 
, where 
 = exp
�
2(bc+bf)
a�bc�bf

�
.

We concentrate on the bifurcation diagram as it relates the sign of deviation

to parameter region. For all the numerical simulations, a common set of para-
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meters is de�ned: a = 2:131, bf = 1, and h = 1. Fig. 1 reports the bifurcation

diagram, in which bc is the bifurcation parameter. The diagrams report the

attractors corresponding to two di¤erent initial conditions, one below and one

above the fundamental value (Fig. 1.a and 1.b). When bc < 1, fundamental

steady state is stable. By increasing bc, the attractors experience nonfunda-

mental steady state and a sequence of period-doubling bifurcations to chaos

states. Depending on the initial conditions, the chaotic intervals locate either

above or below the fundamental state. In other words, When bc < 5:051,

deviations take place either in the positive or negative region�persistent devi-

ations in our de�nition. After that, the deviations start to wander across both

positive and negative regions. These regions are characterized by intrinsic �uc-

tuations and erratic switching between positive and negative regions�alternate

deviations. These alternate deviation regions demonstrate the market clusters

under coupling e¤ect in the sequel. In addition, the attractors experience a

transition from chaotic state to 4-orbit state across positive and negative re-

gions, followed by chaotic �uctuation again. The interval of this 4-orbit is

5:97 < bc < 6:225. In a short summary, an increase of the chartist strength

destabilizes the market.

Fig. 1. Bifurcation curves of isolated market deviation xi based on bc.

(a). initial value of xi < 0. (b). initial value of xi > 0.
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3.2 Multi-markets

To investigate the e¤ect of coupling on deviation persistence, we study a sys-

tem with 200 markets with price dynamics 2. The market system is close

such that markets 2 and 200 are adjacent to market 1. After randomization,

deviation evolvements of each market are plotted in the deviation sign spatio-

temporal plots. The y axis is market i up to 200 and the x axis is the time step

of the evolvement. Colors of green, violet and red represent positive, zero and

negative deviation, respectively, regardless of the magnitudes. In this numeri-

cal demonstration, bc and g are changed to study their e¤ect on the deviation

persistence. The demonstration is divided into two portions by the region-

crossing point bc = 5:051. Fig. 2 shows the deviation persistence for cases

where bc < 5:051. In this range, deviations converge to zero or are persistent

in either the disjointed deviation regions. When bc < 1, all the markets eventu-

ally converge to the fundamental steady states. The introduction of coupling

e¤ect, g = 0:4, prolongs the time needed to return to the fundamental states.

The time steps taken to converge to fundamental steady state under isolation

and coupling e¤ect are around 130 and 650, respectively (Fig. 2.a and 2.b). In

case of 1 < bc < 5:051, deviations locate in the persistent regions. The signs of

deviations follow the ones determined by initial randomization. It seems the

spatio-temporal plots under coupling e¤ect are not signi�cantly di¤erent from

the isolated counterparts as persistence is observed visually for both cases

(Fig. 2.c-2.f). However, if the same initial randomized values are evaluated

with di¤erent values of g, both of the signs and magnitudes of deviations can

be changed. That will be discussed in the subsequent subsection of deviation

distribution study.
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Fig. 2. Coupling e¤ect before the region-crossing point. (a) bc = 0:9,

g = 0, deviations diminish to zero at time step 130. (b) bc = 0:9,

g = 0:4, deviations diminish to zero with a prolonged time at step

650. (c) bc = 3:33, g = 0, deviations converge to the non-fundamental

steady states. (d) bc = 3:33, g = 0:4, deviations converge to the non-

fundamental steady states, the sign and magnitude of the deviation

might be changed. (e) bc = 3:4, g = 0, deviations converge to two-

period orbit in either the disjointed regions. (f) bc = 3:4, g = 0:4,

deviations converge to two-period.

The coupling e¤ect becomes apparent when bc is larger than the region-crosing

point 5:051(Fig. 3). Before bc exceeds 5:97 , the isolated markets are in turbu-

lent states with varying deviation signs. In these markets, the duration that

deviation remains in the same domain decreases with bc (Fig. 3.a, 3.c and
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3.e). The introduction of coupling e¤ect enhances the deviation persistence.

Market clusters with the same deviation sign are formed. Each cluster is de-

viation persistent. The coupling e¤ect is not always dominant as some of the

clusters become unstable with "defect" emerging when bc increases (Fig. 3.b,

3.d and 3.f). When 5:97 < bc < 6:225, the isolated markets enter the state of

4-period orbit; the spatio-temporal plot shows a regular sign-switching pat-

tern. The coupling e¤ect still boosts the deviation persistence by increasing

the duration of deviation in the same region. It disturbs the regular pattern

into a turbulent state, with some intermittent market clusters growing and

diminishing (Fig. 3.g and 3.h).
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Fig. 3. Coupling e¤ect after the region-crossing point. (a) bc =

5:0533333, g = 0, market system is in turbulent state. (b) bc =

5:0533333, g = 0:4, market clusters are formed with deviation per-

sistence. (c) bc = 5:2, g = 0, market system is in turbulent state with

medium duration in the same deviation region. (d) bc = 5:2, g = 0:4,

market clusters are formed with deviation persistence. (e) bc = 5:3,

g = 0, market system is in turbulent state with short duration. (f)

bc = 5:3, g = 0:4, market system forms cluster patten with some "de-

fect". (g) bc = 6:0, g = 0, each isolated market is in the state of regular

4-period orbit. (h) bc = 6:0, g = 0:4, duration of deviation in the same

region is enhanced; market system shows turbulent state with intermit-

tent market clusters.

After demonstrating the deviation persistence enhancement e¤ect from the

coupling parameter g, the coupling e¤ect is further investigated by varying

g in the region-crossing chaotic state, given bc = 5:0533333. Without any
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coupling e¤ect, g = 0, the isolated markets are in turbulent state (Fig. 4.a).

The turbulent state transforms into a less turbulent one after a small coupling

e¤ect g = 0:005 is introduced into the system. Under the in�uence of weak

coupling e¤ect, there is a continual process in which clusters are destroyed

by growing "defect" and new clusters emerge. (Fig. 4.b). By increasing g to

0:04825, more stable clusters are formed. The size of each cluster changes

slightly with time (�g. 4.c). Further increasing g to 0:4 and eventually 0:5, the

clusters are stable with small �xed sizes (Fig. 4.d and 4.e). By varying the

strength of coupling e¤ect, di¤erent spatio-temporal patterns appear. When

the coupling e¤ect is weak, market clusters are unstable. The unstable clusters

can display a dynamic process of "defect" creation or cluster size change.

In case the coupling e¤ect is strong, coupling e¤ect dominates the regions

switching chaotic process; stable market clusters with persistent deviation

signs appear.
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Fig. 4. E¤ect of g given bc = 5:0533333. (a) g = 0, the market systen

with isolated markets is in turbulent state. (b) g = 0:005, the market

system is less turbulent, with "defect" growing in the clusters and new

clusters emerging. (c)g = 0:04825, more stable clusters are formed; but

the size of each cluster change with time. Contrast between periods

270 and 670 shows changes in the size of clusters. (d) g = 0:4, small

�xed size clusters are formed. (e) g = 0:5, small �xed size clusters are

formed.

3.3 Deviation Lorenz plot study

It has been shown that coupling e¤ect tends to form clusters with same sign

of deviation. Enquiries about the magnitude of deviation arise. Will the mag-

nitude of deviation be constant? If not, is there any distribution pattern? To
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answer these questions, we plot Lorenz plots: xi;t+1 vs xi;t. One common set

of initial random numbers is created to generate the 200 markets data. 50,000

iterations of evolvement are computed. The last 1000 iterations data from

markets 4, 5, and 6 are used to plot the Lorenz distribution diagrams, where

blue, red and green colors represent markets 4, 5, and 6, respectively. In Fig. 5,

sub-�gures of column one are phase diagrams of isolated market for di¤erent

chartist strengths bc. Consistent to column one, column two is the correspond-

ing Lorenz plots of isolated markets 4, 5, and 6. Loci of the Lorenz plots match

to the orbits in the corresponding phase diagrams. In contrast, column three

plots the same Lorenz plots under coupling e¤ect. When bc = 4:2, each isolated

market experiences 4-period orbit dynamics within the disjointed deviation re-

gions. The introduction of coupling e¤ect g = 0:4 does not alter the periods of

the orbit dynamics. However, the distribution loci have been changed slightly,

besides the reversal of deviation sign of green-colored market 6 (Fig. 5.a.2 and

5.a.3). When bc = 5:2, in the region where the spatio-temporal plot shows

turbulent state for isolated market as deviations wander across positive and

negative regions, distributions of the isolated markets converge to strange at-

tractors. Once coupling e¤ect g = 0:4 is applied, the shapes of the strange

attractors are changed and data points of individual markets are segregated

within either disjointed regions. This explains why the coupling e¤ect can en-

hance the deviation persistence (Fig. 5.b.2 and 5.b.3). In case bc is increased

to 6:0, the isolated markets converge to the 4-period orbit distribution across

positive and negative regions. This 4-period circulation translates into a reg-

ular sign-switching pattern in the deviation spatio-temporal plot Fig. 3.g in

the above demonstration. The application of coupling e¤ect g = 0:4 destroys

the 4-period pattern distribution and creates strange attractors covering all

the four quadrants in the distribution diagram. (Fig. 5.c.2 and 5.c.3). These
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strange attractors justify the turbulent defects pattern in the spatio-temporal

plot Fig. 3.h.
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Fig. 5. Isolated market phase diagrams and Lorenz plots for deviations

distribution: xt+1 vs xt. Column one to three are phase diagrams, iso-

lated market distributions, and distributions with coupling e¤ect. For

the distribution plots, Blue, red and green colors represent markets 4, 5,

and 6, respectively. (a.1) bc = 4:2, 4-period orbit phase diagram. (a.2)

bc = 4:2, g = 0, 4-point attractors locate in either quadrant I or III.

(a.3) bc = 4:2, g = 0:4, the green market attractor appears in quad-

rant III, instead of quadrant I. Besides that, the loci of distribution

are also changed. (b.1) bc = 5:2, phase diagram with region-crossing.

(b.2) bc = 5:2, g = 0, strange attractors covering four quadrants. (b.3)

bc = 5:2; g = 0:4, the shape of strange attractors are changed and loci

are segregated into either quadrant I or III. (c.1) bc = 6:0, phase dia-

gram of 4-period orbit circulating across positive and negative regions.

(c.2) bc = 6:0; g = 0, 4-period circulation on four quadrants. (c.3)

bc = 6:0; g = 0:4, loci of 4-period orbit change to strange attractors

covering four quadrants. 16



3.4 Single disturbance

Coupling e¤ect enhances the formation of market clusters especially in chaotic

intervals where deviation wanders across positive and negative regions. The

stability of the resulted market structure is still ambiguous. To address this

concern, we simulate by introducing a shock s to one of the markets and check

the clusters activities. Given market conditions bc = 5:08 and g = 0:4, a single

shock s hits the 100th market site at time step t such that x100;t = s. The

corresponding deviation spatio-temporal diagrams are plotted in Fig. 6. If the

shock s is not large enough, it seems only the adjacent markets are a¤ected.

The a¤ected markets may change the sign of deviation or result in new clusters.

After adjustment for some periods, the whole market system again shows

stable cluster pattern. With a larger shock, more markets are involved in

adjustment with a longer adjusting time required (Fig. 6.a-6.c). Once s reaches

certain strength, coupling e¤ect no longer stabilize the cluster pattern. Instead,

market-collapse in which prices diverge and are out of bound spreads from the

impacted market to the whole market system through coupling e¤ect and

eventually all markets collapse. An avalanche appears. (Fig. 6.d).
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Fig. 6. Cluster pattern upon external shocks s hitting the 100th market

site given bc = 5:08 and g = 0:4. (a) s = �10, after a short adjust-

ment, a new cluster is formed. Adjustment is highlighted by circle. (b)

s = �12; a new stable cluster is formed. Also, there is an adjustment in

cluster below the impacted market. (c) s = �14; more markets adjust

and the adjustment time is longer. (d) s = �16, coupling e¤ect cannot

stabilize the cluster pattern. Market-collapse spreads to the whole mar-

ket system. A contagion e¤ect is observed from the impacted market

to the rest of the market system.

Based on the above disturbance analysis, when a shock is not large enough,

it seems market members far away from the shock originating market are not

a¤ected as their signs of deviation do not change. To verify whether these

market members are a¤ected or not, investigation in terms of magnitude is
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necessary. We conduct the magnitude analysis with procedure: First, create a

common set of initial random numbers for the 200-market system at condition

bc = 5:08. Second, after 50,000 rounds of evolvement, the last time step values

are denoted as step 1 xi;1 for analysis. A small shock s = 0:001 is introduced

to the 100th market site such that

x100;1 = x100;1 + s

Third, deviations of the respective original and disturbed market system are

recorded down for the next 400 periods. Denote the original and perturbed

deviations as xoi;t and x
p
i;t. Next, Subtract x

o
i;t from xpi;t to get the di¤erence

pattern di;t with �lter s = 0:001. di;t can be expressed as below:

di;t =

8>>>>>><>>>>>>:
xpi;t � xoi;t if

���xpi;t � xoi;t��� � s
0 if

���xpi;t � xoi;t��� < s

������������
(3)

Lastly, plot di;t in spatio-temporal diagrams, in which green , white and red

colors represent positive, zero and negative di¤erence. Fig. 7 reports the dif-

ference patterns for di¤erent coupling strength g. Based on Fig. 7, the shock

propagation can be categorized into two modes: di¤usion and localization. Fig.

7 row one shows the di¤usive shock propagation when coupling strength g is

small. The di¤usive propagation speed increases with coupling strength since

the corresponding time required for the disturbance to reach the whole sys-

tem decreases. If coupling strength is increased, the other propagation mode

�localization �emerges: the disturbance is con�ned in a zone and does not

disappear with time (Fig. 7.b.1). Row two shows a mixture of the two modes.

The localized zones can be observed visually. The di¤erence pattern shows an
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irregular mixtures of propagation modes. Our simulation results are similar to

the �nding of Kaneko [10] except the irregular propagation patterns in Fig.

7.b.2.
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Fig. 7. Shock propogation upon a shock s = 0:001 hitting the 100th

market site given bc = 5:08. When g is in very small range, disturbance

di¤uses with speed increasing with coupling strength g. (a.1) g = 0:01.

(a.2) g = 0:06. Increasing g value, disturbance propagation has a local-

ization mode and irregular pattern. (b.1) g = 0:08, localization mode.

(b.2) g = 0:47, irregular pattern.

When a shock s has magnitude less than the avalanche level, the coupling

market system can absorb the shock and disperses to other markets. In this

sense, it can be conjectured that coupling has stabilizing e¤ect. To verify this

conjecture, set bc = 5:08, a common set of initial random numbers for the

200-market is adopted to the market system with and without coupling e¤ect,

that is g = 0 and g = 0:4 respectively. At time step 40, a shock s hits 100th

market such that its deviation x100;40 = �2:29198. Time series data of the
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adjacent markets are plotted. Without coupling, each market is isolated with

price deviation switching randomly between positive and negative values. At

time step 40, market 100 is hit by a shock and �uctuates dramatically. It takes

around 20 time steps for market 100 to recover to its normal �uctuation path.

As there is no market connection, other markets are not a¤ected (Fig. 8.a).

For the case of coupling, each market evolves in a way such that the price

deviation is always positive or negative. At time step 40, market 100 is hit

such that x100;40 = �2:29198. It takes market 100 less than 5 time steps to

stabilize to normal �uctuation in the region of negative values. The adjacent

markets 99 and 101 are impacted by the shock, especially market 101, which

takes a similar time steps of market 100 to recover from the shock (Fig. 8.b).
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Fig. 8. Shock response comparison for coupling e¤ect. (a) no coupling e¤ect. (b)

coupling e¤ect g = 0:4.

4 Conclusion

This paper examines an asset market system consisting of multi-markets. Each

market has a market maker and heterogeneous investors. An coupling market
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maker framework is proposed: market maker updates market price based on

a weighted excess demand: including both domestic and abroad factors. The

weight of excess demand is coupling parameter g. With the introduction of

coupling e¤ect g, duration of deviation remaining in either the "disjointed"

positive or negative regions increases and persistent deviation appears. Market

cluster sharing the same sign of deviation becomes apparent in the original

chaotic interval characterized by erratic switching between positive and nega-

tive regions.

Check the isolated market phase diagram and distribution plots, it is found

that coupling e¤ect tends to segregate the distribution into quadrant I or III,

that is, either the "disjointed" regions. This explains why the duration of devi-

ation is enhanced. After the market cluster is established with coupling e¤ect,

enquiry about its stability arises. A series of disturbances are introduced to

one of the markets. From the point of deviation persistence, when the distur-

bance is weak, only the adjacent markets are a¤ected for adjustment and a

new market cluster pattern is formed; if the disturbance is large enough, mar-

ket system avalanche is generated from the initially impacted market. Next,

we investigate the deviation magnitude di¤erence created by the disturbance.

Even if the disturbance is weak, disturbance can propagate to the market sys-

tem with propagation modes of di¤usion or localization, or the mixture of the

two modes. Lastly, time series data of shock response shows ability of coupling

e¤ect to stabilize market member hit by shock.

The goal of this paper is to introduce coupling e¤ect as a bridge for heteroge-

neous agents multi-market interactions. Numerical experiments have demon-

strated the deviation persistence enhancement e¤ect, which can also be found

by using the agent composition function of He and Westerho¤ [8]. More ef-
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forts of both numerical and theoretical works are still needed to further explore

this area. Possible directions can be the application of coupling in �nancial

markets.
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