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Abstract

Tests for classi�cation as endogenous or predetermined of arbitrary subsets of
regressors are formulated as signi�cance tests in auxiliary IV regressions and their
relationships with various more classic test procedures are examined. Simulation
experiments are designed by solving the data generating process parameters from
salient econometric features, namely: degree of simultaneity and multicollinearity
of regressors, and individual and joint strength of external instrumental variables.
Thus, for various test implementations, a wide class of relevant cases is scanned
for �aws in performance regarding type I and II errors. Substantial size distortions
occur, but these can be cured remarkably well through bootstrapping, except when
instruments are weak. The power of the subset tests is such that they establish
an essential addition to the well-known classic full-set DWH tests in a data based
classi�cation of individual explanatory variables.

1. Introduction

In this study various test procedures are derived and examined for the classi�cation of
arbitrary subsets of explanatory variables as either endogenous or predetermined with
respect to a single adequately speci�ed structural equation. Correct classi�cation is
highly important because misclassi�cation leads to either ine¢ cient or inconsistent esti-
mation. The derivations, which in essence are based on employing Hausman�s principle
of examining the discrepancy between two alternative estimators, formulate the various
tests as joint signi�cance tests of additional regressors in auxiliary IV regressions. Their
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relationships are demonstrated with particular forms of classic tests such as Durbin-
Wu-Hausman orthogonality tests, Revankar-Hartley covariance tests and Sargan-Hansen
overidenti�cation restriction tests. Various di¤erent and some under the null hypothesis
asymptotically equivalent implementations follow. The latter vary only regarding de-
grees of freedom adjustments and the type of disturbance variance estimator employed.
We run simulations over a wide class of relevant cases, to �nd out which versions have
best control over type I error probabilities and to get an idea of the power of these tests.
This should help to use these tests e¤ectively in practice when trying to avoid both evils
of inconsistency and ine¢ ciency. To that end a simulation approach is developed by
which relevant data generating processes (DGPs) are designed by deriving the values for
their parameters from chosen salient features of the system, namely: degree of simultane-
ity of individual explanatory variables, degree of multicollinearity between explanatory
variables, and individual and joint strength of employed external instrumental variables.
This allows scanning the relevant parameter space of wide model classes for �aws in
performance regarding type I and II errors of all implementations of the tests and their
bootstrapped versions. We �nd that testing orthogonality by standard methods is im-
peded for weakly identi�ed regressors. Like bootstrapped tests require resampling under
the null, we �nd here that testing for orthogonality by auxiliary regressions bene�ts from
estimating variances under the null, as in Lagrange multiplier tests, rather than under
the alternative, as in Wald-type tests. However, after proper size correction we �nd that
the Wald-type tests exhibit the best power properties.
Procedures for testing the orthogonality of all possibly endogenous regressors regard-

ing the error term have been developed by Durbin (1954), Wu (1973), Revankar and
Hartley (1973), Revankar (1978) and Hausman (1978). Mutual relationships between
these are discussed in Nakamura and Nakamura (1981) and Hausman and Taylor (1981).
This test problem has been put into a likelihood framework under normality by Holly
(1982) and Smith (1983). Most of the papers just mentioned, and in particular Davidson
and MacKinnon (1989, 1990), provide a range of implementations for these tests that can
easily be obtained from auxiliary regressions. Although this type of inference problem
does address one of the basic fundaments of the econometric analysis of observational
data, relatively little evidence on the performance of the available tests in �nite samples
is available. Monte Carlo studies on the performance of some of the implementations
in static linear models can be found in Wu (1974), Meepagala (1992), Chmelarova and
Carter Hill (2010), Jeong and Yoon (2010) and Hahn et al.(2011), whereas such results
for linear dynamic models are presented in Kiviet (1985).
The more subtle problem of deriving a test for the orthogonality of subsets of the

regressors not involving all of the possibly endogenous regressors has also received sub-
stantial attention over the last three decades. Nevertheless, generally accepted rules for
best practice on how to approach this problem do not seem available yet, or are confus-
ing as we shall see, and not yet supported by any simulation evidence. Self-evidently,
though, the situation where one is convinced of the endogeneity of a few of the regressors,
but wants to test some other regressors for orthogonality, is of high practical relevance.
If orthogonality is established, this permits to use these regressors as instrumental vari-
ables, which (if correct) improves the e¢ ciency and the identi�cation situation, because
it makes the analysis less dependent on the availability of external instruments. This
is important in particular when available external instruments are weak or of doubt-
ful exogeneity status. Testing the orthogonality of subsets of the possibly endogenous
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regressors was addressed �rst by Hwang (1980) and next by Spencer and Berk (1981,
1982), Wu (1983), Smith (1984, 1985), Hwang (1985) and Newey (1985), who all suggest
various test procedures, some of them asymptotically or even algebraically equivalent.
So do Pesaran and Smith (1990), who also provide theoretical arguments regarding an
ordering of the power of the various tests, although they are asymptotically equivalent
under the null and under local alternatives. Various of the possible sub-set test im-
plementations are paraphrased in Ruud (1984, 2000), Davidson and MacKinnon (1993)
and in Baum et al. (2003), and occasionally their relationships with particular forms
of Sargan-Hansen (partial) overidenti�cation test statistics are examined. As we shall
show, a few particular situations still call for further analysis and formal proofs and
sometimes results from the studies mentioned above have to be corrected. As far as we
know, there are no published simulation results yet on the actual qualities of tests for
the exogeneity for arbitrary subsets of the regressors in �nite samples.
In this paper we shall try to elucidate the various forms of available test statistics

for the endogeneity of subsets of the regressors, demonstrate their origins and their
relationships, and also produce solid Monte Carlo results on their performance in single
static linear simultaneous models with IID disturbances. That yet no simulation results
are available on sub-set tests may be due to the fact that it is not straight-forward
how one should design a range of appealing and representative experiments. We believe
that in this respect the present study, which closely follows the rules set out in Kiviet
(2012), may claim originality. Besides exploiting some invariance properties, we choose
the remaining parameter values for the DGP indirectly from the inverse relationships
between the DGP parameter values and fundamental orthogonal econometric notions.
The latter constitute an insightful base for the relevant nuisance parameter space. The
present design can easily be extended to cover cases with a more realistic degree of
overidenti�cation and number of jointly dependent regressors. Other obvious extensions
would be: to include recently developed tests which are specially built to cope with weak
instruments, to consider non Gaussian and non IID disturbances, to include tests for
the validity (orthogonality) of instruments which are not included in the regression, etc.
Regarding all these aspects the present study just o¤ers an initial reference point.
The structure of the paper is as follows. In Section 2, we �rst de�ne the model�s

maintained properties and the hypothesis to be tested. Next, in a series of subsections,
various routes to develop test procedures are followed and their resulting test statistics
are discussed and compared analytically. Section 3 reviews earlier Monte Carlo designs
and results regarding orthogonality tests. In Section 4 we set out our approach to obtain
DGP parameter values from chosen basic econometric characteristics. A simulation de-
sign is obtained to parametrize a synthetic single linear static regression model including
two possibly endogenous regressors with an intercept and involving two external instru-
ments. For this design Section 5 presents simulation results for a selection of practically
relevant parametrizations. Section 6 produces similar results for bootstrapped versions
of the tests, Section 7 provides an empirical case study and Section 8 concludes.
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2. Testing the orthogonality of subsets of explanatory variables

2.1. The model and setting

We consider the single linear simultaneous equation model

y = X� + u; (2.1)

with IID unobserved disturbances u � (0; �2In); K-element unknown coe¢ cient vector
�, an n�K regressor matrix X and n� 1 regressand y: We also have an n� L matrix
Z containing sample observations on identifying instrumental variables, so

E(Z 0u) = 0; rank(Z) = L; rank(X) = K and rank(Z 0X) = K: (2.2)

In addition, we make asymptotic regularity assumptions to guarantee asymptotic iden-
ti�cation of all elements of � and consistency of its IV (or 2SLS) estimator

�̂ = (X 0PZX)
�1X 0PZy; (2.3)

where PZ = Z(Z 0Z)�1Z 0: Hence, we assume that

plimn�1Z 0Z = �Z0Z and plimn�1Z 0X = �Z0X (2.4)

are �nite and have full column rank, and �̂ has limiting normal distribution

n1=2(�̂ � �) d! N
�
0; �2[�0Z0X�

�1
Z0Z�Z0X ]

�1� : (2.5)

The matrices X and Z may have some (but not all) columns in common and can
therefore be partitioned as

X = (Y Z1) and Z = (Z1 Z2); (2.6)

where Zj has Lj columns for j = 1; 2: Because the number of columns in Y is K�L1 > 0
we �nd from L = L1 + L2 � K that L2 > 0; but we allow L1 � 0; so Z1 may be void.
Throughout this paper the model just de�ned establishes the maintained unrestrained
hypothesis, which allows Y to contain endogenous variables. Below we will examine
particular further curbed versions of the maintained hypothesis and develop tests to
verify these further limitations. These are not parametric restraints regarding � but
involve orthogonality conditions in addition to the Lmaintained orthogonality conditions
embedded in E(Z 0u) = 0. All these extra orthogonality conditions concern regressors
and not further external instrumental variables. Therefore, we consider a partitioning
of Y in Ke and Ko columns

Y = (Ye Yo); (2.7)

where the variables Ye are maintained as possibly e¯
ndogenous, whereas for the Ko vari-

ables Yo their possible o¯
rthogonality will be examined, i.e. whether E(Y 0ou) = 0 seems

to hold. We de�ne the n� (L+Ko) matrix

Zr = (Z Yo); (2.8)
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which relates to all the orthogonality conditions in the r
¯
estrained model. Note that (2.2)

implies that Zr has full column rank, provided n � L+Ko: Now the null and alternative
hypotheses that we will examine can be expressed as

H0 : y = X� + u; u � (0; �2I); E(Z 0ru) = 0; and (2.9)

H1 : y = X� + u; u � (0; �2I); E(Z 0u) = 0; E(Y 0ou) 6= 0:

Hence, H0 assumes E(Y 0ou) = 0.
Under the extended set of orthogonality conditions E(Z 0ru) = 0; i.e. under H

0; the
restrained IV estimator is

�̂r = (X
0PZrX)

�1X 0PZry: (2.10)

If H0 is valid this estimator is consistent and, provided plimn�1Z 0rZr = �Z0rZr exists
and is invertible, its limiting normal distribution has variance �2[�0Z0rX�

�1
Z0rZr

�Z0rX ]
�1;

which involves an asymptotic e¢ ciency gain over (2.5). However, under the alternative
hypothesis H1 estimator �̂r is inconsistent. A test for (2.9) should (as always) have good
control over its type I error probability1 and preferably also have high power, in order
to prevent the acceptance of an inconsistent estimator.

2.2. The source of an estimator discrepancy

A test based on the Hausman principle focusses on the discrepancy vector

�̂ � �̂r = (X 0PZX)
�1X 0PZy � (X 0PZrX)

�1X 0PZry

= (X 0PZX)
�1X 0PZ [I �X(X 0PZrX)

�1X 0PZr ]y

= (X 0PZX)
�1(PZX)

0ûr

= (X 0PZX)
�1(PZYe PZYo Z1)

0ûr; (2.11)

where ûr = y � X�̂r denotes the IV residuals obtained under H0: Although testing
whether the discrepancy between these two coe¢ cient estimators is signi�cantly di¤erent
from zero is not equivalent to testing H0; its outcome could be interpreted as evidence
on the validity of H0. Because (X 0PZX)

�1 is non-singular �̂ � �̂r is close to zero if and
only if the K � 1 vector (PZYe PZYo Z1)0ûr is. So, we will examine now when its three
sub-vectors

Y 0ePZ ûr; Y
0
oPZ ûr and Z

0
1ûr (2.12)

will jointly be close to zero.
For the IV residuals ûr we have X 0PZr ûr = 0; and since PZrX = (PZrYe Yo Z1); this

yields
Y 0ePZr ûr = 0; Y

0
o ûr = 0 and Z

0
1ûr = 0: (2.13)

Note that the third vector of (2.12) is always zero according to the third equality from
(2.13). Upon using the well-known result that for a full column rank matrix C = (A B)
one has PC = PA+PMAB; whereMA = I�PA; we �nd for the �rst vector of (2.12) -also
using the �rst equality of (2.13)- that

Y 0ePZ ûr = Y
0
e (PZr � PMZYo)ûr = �Y 0ePMZYo ûr:

1An actual type I error probability much larger than the chosen nominal value would more often
than intended lead to using an ine¢ cient estimator. A much lower actual type I error than the nominal
level would deprive the test from its power hampering the detection of estimator inconsistency.
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Hence,
Y 0ePZ ûr = �Y 0eMZYo(Y

0
oMZYo)

�1Y 0oMZ ûr: (2.14)

This Ke element vector will be close to zero when the Ko element vector Y 0oMZ ûr is.
However, due to the occurrence of the Ke �Ko matrix Y 0eMZYo as a �rst factor in the
right-hand side of (2.14), there are also particular circumstances possible under which
Y 0ePZ ûr will be close to zero while Y

0
oMZ ûr may not be. For the second vector of (2.12)

we �nd, upon using the second equality of (2.13), that

Y 0oPZ ûr = �Y 0oMZ ûr: (2.15)

Hence, the second vector of (2.12) will be close to zero if and only if the vector Y 0oMZ ûr
is zero.
The above shows that for all three vectors of (2.12) to be jointly close to zero, it is

required that Y 0oMZ ûr should be close to zero. This corresponds to examining to what
degree the variablesMZYo do obey the orthogonality conditions, while using ûr as a proxy
for u; which is asymptotically valid under the extended set of orthogonality conditions.
Note that by focussing on MZYo the tested variables Yo have been purged from their
components spanned by the columns of Z: These are maintained to be orthogonal with
respect to u; and so indeed should better be excluded from the test.
From the above it follows that Y 0oMZ ûr being close to zero is su¢ cient for the full

discrepancy vector (2.11) to be small. It is also necessary, since the inverse matrix in
the right-hand side of (2.11) is positive de�nite.

2.3. Testing based on the source of any discrepancy

Next we examine the implementation of testing closeness to zero of Y 0oMZ ûr in an aux-
iliary regression. Consider

y = X� + PZYo� + u
�; (2.16)

where u� = u� PZYo�: Its estimation by IV employing the instruments Zr yields coe¢ -
cients that can be obtained by applying OLS to the second-stage regression

y = PZrX� + PZrPZYo� + u
��: (2.17)

Using PZrPZYo = PZYo we �nd for � the estimator

�̂ = (Y 0oPZMPZrX
PZYo)

�1Y 0oPZMPZrX
y;

where Y 0oPZMPZrX
y = Y 0oPZ [I�X(X 0PZrX)

�1X 0PZr ]y = Y
0
oPZ ûr: Thus, by testing � = 0

in (2.16) we in fact examine whether Y 0oPZ ûr = �Y 0oMZ ûr di¤ers signi�cantly from a zero
vector, which is indeed what we aim for. This procedure provides the explicit solution
to the exercise posed in Davidson and MacKinnon (1993, p.242).
Alternatively, consider the auxiliary regression

y = X� +MZYo� + v
�; (2.18)

where v� = u�MZYo�: Using the instruments Zr involves here applying OLS to

y = PZrX� + PZrMZYo� + v
��

= PZrX� +MZYo� + v
��; (2.19)
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because PZrMZYo = PZrYo � PZrPZYo = Yo � PZYo =MZYo: This yields

�̂ = (Y 0oMZMPZrX
MZYo)

�1Y 0oMZMPZrX
y; (2.20)

where

Y 0oMZMPZrX
y = Y 0oMZ [I � PZrX(X 0PZrX)

�1X 0PZr ]y

= Y 0o [I �X(X 0PZrX)
�1X 0PZr ]y � Y 0oPZ [I �X(X 0PZrX)

�1X 0PZr ]y

= Y 0oMZ ûr: (2.21)

Thus, like testing � = 0 in (2.16), testing � = 0 in auxiliary regression (2.18) examines
the magnitude of Y 0oMZ ûr: This IV regression yields as the estimator for � the expression

�̂
�
r = (X

0PZrMMZYoPZrX)
�1X 0PZrMMZYoy:

Because PZrMMZYo = PZr�PZrPMZYo = PZr� (PZ+PMZYo)PMZYo = PZr�PMZYo = PZ ;

we �nd �̂
�
r = �̂: Hence, the IV estimator of � exploiting the extended set of instruments

in the auxiliary model (2.18) equals the unrestrained IV estimator �̂:
From the above it follows that testing whether included possibly endogenous variables

Yo can actually be used e¤ectively as valid extra instruments, can be done as follows:
Add them to Z; so use Zr as instruments, and add at the same time the regressorsMZYo
(the reduced form residuals of the alleged endogenous variables Yo in the maintained
model) to the model, and then test their joint signi�cance. When testing � = 0 in
(2.18) by a Wald-type statistic, and assuming for the moment that �2 is known, the test
statistic is

��2y0PMPZr
XMZYoy = �

�2y0(MA �MC)y; (2.22)

where A = PZrX; B = MZYo and C = (A B): Hence, y0PMPZr
XMZYoy is equal to the

di¤erence between the OLS residual sums of squares of the restricted (by � = 0) and
the unrestricted second stage regressions (2.19). One easily �nds that testing � = 0 in
(2.16) by a Wald-type test yields in the numerator

y0PMPZr
XPZYoy = y

0(MA �MC�)y;

with again A = PZrX = (PZrYe Yo Z1); but C
� = (A B�) with B� = PZYo: Although

C� 6= C, both span the same sub-space, so MC = MC� and thus the two auxiliary
regressions lead to numerically equivalent Wald-type test statistics.
Of course, �2 is in fact unknown and should be replaced by an estimator that is

consistent under the null. This is where we have various options. Two rather obvious
choices would be �̂2 = û0û=n or �̂2r = û0rûr=n; giving rise to two under the null (and
also under local alternatives) asymptotically equivalent test statistics, both with �2(Ko)
asymptotic null distribution. Further asymptotically equivalent variants can be obtained
by employing some kind of degrees of freedom correction in the estimation of �2 and/or
by dividing the test statistic by Ko and then confronting it with critical values from an
F distribution with Ko and n� l degrees of freedom with l some �nite number.
Testing the orthogonality of Yo and u; while maintaining the endogeneity of Ye; by a

simple �2-form statistic and using as in a Wald-type test the estimate �̂2 (without any
degrees of freedom correction) from the unrestrained model, will be indicated by Wo:
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When using the uncorrected restrained estimator �̂2r; the statistic will be denoted here
as Do: So we have the two archetype test statistics

Wo = y
0PMPZr

XMZYoy=�̂
2 and Do = y

0PMPZr
XMZYoy=�̂

2
r: (2.23)

Using the restrained �2 estimator, as in a Lagrange-multiplier-type test under normality,
was already suggested in Durbin (1954, p.27), where Ke = L1 = 0 and Ko = L2 = 1:
Before we discuss further options for estimating �2 in general sub-set tests, we shall

�rst focus on the special case Ke = 0; where the full set of endogenous regressors is
tested. Then �̂2r = y0MXy=n =

n�K
n
s2 stems from OLS. Wu (1973) suggested for this

case four test statistics, indicated as T1; :::; T4; where

T4 =
n� 2Ko � L1

n

1

Ko

Do and T3 =
n� 2Ko � L1

n

1

Ko

Wo: (2.24)

On the basis of his simulation results Wu recommended to use the monotonic transfor-
mation of T4 (or Do)

T2 =
T4

1� Ko

n�2Ko�L1T4
=
n� 2Ko � L1

n

1

Ko

Do

1�Do=n
: (2.25)

He showed that under normality of both structural and reduced form disturbances the
null distribution of T2 is F (Ko; n� 2Ko�L1) in �nite samples. Because Ke = 0 implies
MPZrX

=MX we �nd from (2.22) that in this case

Do

1�Do=n
= n

y0PMXMZYoy

y0(MX � PMXMZYo)y
= n

y0PMXMZYoy

y0M(X MZYo)y
=
y0PMXMZYoy

��2
:

Hence, from the �nal expression we see that T2 uses as a �2 estimate the OLS resid-
ual variance of auxiliary regression (2.18). Like �̂2 and �̂2r; ��

2 is consistent under
the null, because it follows from substituting (2.21) in (2.20) that plim �̂ = 0 because
plimn�1Y 0oMZ ûr = 0 under the null.
Pesaran and Smith (1990) show that under the alternative

plim �̂2 � plim �̂2r � plim ��2

and then invoke arguments due to Bahadur to expect that T2 (which uses ��2) has better
power than T4 (which uses �̂

2
r), whereas both T2 and T4 are expected to outperform T3

(which uses �̂2). However, they did not verify this experimentally. Moreover, because
T2 is a simple monotonic transformation of T4 when Ke = 0; we also know that after a
fully successful size correction both should have equivalent power.
Next, following the same lines of thought for cases where Ke > 0; we expect (after

proper size correction) Do to do better than Wo; but Pesaran and Smith (1990) suggest
that an even better result may be expected from formally testing � = 0 in the auxil-
iary regression (2.18) while exploiting instruments Zr: This amounts to the �2(Ko) test
statistic To, which generalizes Wu�s T2 for cases where Ke � 0; which is given by

To = y
0PMPZr

XMZYoy=��
2 = y0(MA �MC)y=��

2; (2.26)

with
��2 = (y �X�̂ �MZYo�̂)

0(y �X�̂ �MZYo�̂)=n: (2.27)
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Actually it seems that Pesaran and Smith (1990, p.49) employ a slightly di¤erent esti-
mator for �2; namely

(y �X�̂ �MZYo�̂
�
)0(y �X�̂ �MZYo�̂

�
)=n (2.28)

with
�̂
�
= (Y 0oMZYo)

�1Y 0oMZ(y �X�̂): (2.29)

However, because OLS residuals are orthogonal to the regressors we have Y 0oMZ(y �
X�̂ �MZYo�̂) = 0; from which it follows that �̂ = �̂

�
; so their test is equivalent with To:

WhenKe > 0 the three testsWo; Do and To are not simple monotonic transformations
of each other, so they may have genuinely di¤erent power properties. In particular, we
�nd that for

Do

1�Do=n
=

y0PCy � y0PAy
(û0rûr � y0PCy + y0PAy)=n

;

the denominator in the right-hand expression di¤ers from ��2 (unless Ke = 0):2 Using
that �̂ is given by (2.29) we �nd from (2.27) that ��2 = û0MMZYo û=n � �̂2; so

Wo � To; (2.30)

whereas Do can be at either side of Wo and To:
Wu�s T1 test for case Ke = 0, which under normality has a F (Ko; L2 �Ko) distrib-

ution, has a poor reputation in terms of power. The above considerations induce that
regarding tests based on the source of estimator discrepancy we will only consider the
three alternative archetypical test statistics Wo; Do and To; which just di¤er in the �2

estimate that they use.3

2.4. Testing based on the discrepancy as such

Direct application of the Hausman (1978) principle yields the test statistic

Ho = (�̂ � �̂r)0[�̂2(X 0PZX)
�1 � �̂2r(X 0PZrX)

�1]�(�̂ � �̂r); (2.31)

which uses a generalized inverse for the matrix in square brackets. When �2 were known
the matrix in square brackets would certainly be singular though semi-positive de�nite.
Using two di¤erent �2 estimates might lead to nonsingularity but could yield negative
test statistics. As is obvious from the above, (2.31) will not converge to a �2K distribution
under H0; but in our framework to one with Ko degrees of freedom, cf. Hausman and
Taylor (1981). Some further analysis leads to the following.

2Therefore, the test statistic (54) suggested in Baum et al. (2003, p.26), although asymptotically
equivalent to the tests suggested here, is built on an inappropriate analogy with the Ke = 0 case. More-
over, in their formulas (53) and (54) Q� should be the di¤erence between the residual sums of squares
of second-stage regressions, precisely as in (2.23). The line below (54) suggests that Q� is a di¤er-
ence between squared IV residuals (which would mean that Q� could be negative) of the (un)restricted
auxiliary regressions, although their footnote 25 seems to suggest otherwise.

3It is not obvious why Pesaran and Smith (1990, p.49,55) mention that they �nd To a computationally
more attractive statistic than Wo: All three test statistics are very easy to compute. However, To is the
only one that strictly applies a standard procedure (Wald) to testing zero restrictions in an auxiliary
regression, which eases its use by standard software packages. On the other hand Baum et al. (2003,
p.26) characterize tests like To as "computationally expensive and practically cumbersome", which we
�nd far fetched.
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Let � contain components as follows from the decompositions

X� = Ye�e + Yo�o + Z1�1 = Y �eo + Z1�1; (2.32)

whereas (X 0PZX)
�1 has blocks Ajk; j; k = 1; 2; where A11 is a Keo � Keo matrix with

Keo = Ke +Ko: Then we �nd from (2.11) and (2.13) that

�̂ � �̂r = (X 0PZX)
�1
�
Y 0PZ ûr
0

�
=

�
A11
A21

�
Y 0PZ ûr;

�̂eo � �̂eo;r = A11Y 0PZ ûr:

(2.33)

Hence, the discrepancy vector of the two coe¢ cient estimates of just the regressors in
Y; but also of the full regressor matrix X; are both linear transformations of rank Keo of
the vector Y 0PZ ûr: Therefore it is obvious that the Hausman-type test statistic (2.31)
can also be obtained from

Ho = (�̂eo � �̂eo;r)0[�̂2(Y 0PMZ1
Z2Y )

�1 � �̂2r(Y 0PMZ1
(Z2 Yo)Y )

�1]�(�̂eo � �̂eo;r): (2.34)

Both test statistics are algebraically equivalent, because of the unique inverse relation-
ship

�̂ � �̂r =
�

IKeo

A21A
�1
11

�
(�̂eo � �̂eo;r):

Calculating (2.34) instead of (2.31) just mitigates the numerical problems.
One now wonders whether an equivalent Hausman-type test can be calculated on the

basis of the discrepancy between the estimated coe¢ cients for just the regressors Yo: This
is not the case, because an inverse relationship of the form (�̂eo � �̂eo;r) = G(�̂o � �̂o;r);
where G is a Keo �Ko matrix, cannot be found4.
Since (2.20) and (2.21) give (Y 0oMZMPZrX

MZYo)�̂ = Y 0oMZ ûr we can establish the
linear transformation

�̂eo � �̂eo;r = A11Y
0PZ ûr

= A11

�
Y 0eMZYo(Y

0
oMZYo)

�1

IKo

�
(Y 0oMZMPZrX

MZYo)�̂

which indicates that test Ho can be made equivalent to the three distinct tests of the
foregoing subsection, provided similar �2 estimates are being used5.

4Note that Wu (1983) and Hwang (1985) start o¤ by analyzing a test based on the descripancy
�̂o � �̂o;r: Both Wu (1983) and Ruud (1984, p.236) wrongly suggest equivalence of such a test with
(2.31) and (2.34).

5This generalizes the equivalence result mentioned below (22.27) in Ruud (2000, p.581), which just
treats the case Ke = 0: Note, however, that because Ruud starts o¤ from the full discrepancy vector, the
transformation he presents is in fact singular and therefore the inverse function mentioned in his footnote
24 is non-unique (the zero matrix may be replaced with any other matrix of the same dimensions). To
obtain a unique inverse transformation, one should start o¤ from the coe¢ cient discrepancy for just the
regressors Y; and this is found to be nonsingular for Ke = 0 only.
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2.5. Testing based on covariance of structural and reduced form disturbances

In line with auxiliary regression (2.18), we can examine independence between u and Yo
or its reduced form disturbances directly, instead of proxying the latter by the residuals
MZYo. Consider regression (2.1) augmented by the actual reduced form disturbances

y = X� + (Yo � Z�o)�+ w�; (2.35)

where w� = u� (Yo � Z�o)� with � a Ko � 1 vector. Let Z�o = Z1�o1 + Z2�o2; then
(2.35) can be written as

y = Ye�e + Yo(�o + �) + Z1(�1 � �o1�)� Z2�o2�+ w�

= X�� + Z2�
� + w� (2.36)

in which we may assume that E(Z 0w�) = 0; though E(Y 0ew
�) 6= 0: However, testing

�� = 0; which corresponds to � = 0 in (2.35), through estimating (2.36) consistently is
not an option, unless Ke = 0. For Ke > 0; which is the case of our primary interest
here, (2.36) contains all available instruments as regressors, so we cannot instrument Ye:
For the case Ke = 0 the test of �� = 0 yields the test of Revankar and Hartley

(1973), which is an exact test under normality. When Ko = L2 (just identi�cation) it
specializes to Wu�s T2.6 When L2 > Ko (overidenti�cation) Revankar (1978) argues that
testing the Ko restrictions � = 0 by testing the L2 restrictions �

� = 0 is ine¢ cient. He
then suggests to test � = 0 by a quadratic form in the di¤erence of the least-squares
estimator of �o + � in (2.36) and the IV estimator of �o:

7

From the above we see that the tests on the covariance of disturbances do not have a
straight-forward generalization for the case Ke > 0: However, a test that comes close to
it replaces the L�L1 columns of Z2 in (2.36) by a set of L�K regressors Z�2 which span
a subspace of Z2; such that (PZYe Z1 Z�2) spans the same space as Z: This yields the
familiar Sargan-Hansen test for testing the overidenti�cation restrictions of model (2.1).
It is well-known that this test has power for alternatives in which some of the variables in
Z2 are actually omitted regressors (or are correlated with u). In practical situations this
type of test, and also Hausman type tests for the orthogonality of particular instruments
not included in the speci�cation8, are very useful. However, we do not consider them
here, because right from the beginning we have chosen a context in which all instruments
Z are assumed to be uncorrelated with u:

2.6. Testing by an incremental Sargan test

The test of overidentifying restrictions initiated by Sargan (1958) does not enable to in-
fer directly on the orthogonality of individual instrumental variables, but an incremental

6This is proved as follows: Both tests have regressors X under the null, and under the alternative
the full column rank matrices (X PZYo) and (X Z2) respectively. These matrices span the same space
when X = (Yo Z1) and Z = (Z1 Z2) have the same number of columns.

7Meepagala (1992) produces numerical results indicating that the descripancy based tests have lower
power than the Revankar and Hartley (1973) test when instruments are weak and than the Revankar
(1978) test when the instruments are strong.

8See Hahn et al. (2011) for a study on its behaviour under weak instruments.
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Sargan test builds on the maintained hypothesis E(Z 0u) = 0 and can test the orthogo-
nality of additional potential instrumental variables. Choosing for these the regressors
Yo yields a test statistic for the hypotheses (2.9) which is given by

So =
û0rPZr ûr

�̂2r
� û

0PZ û

�̂2
: (2.37)

When using for both separate Sargan statistics the same �2 estimate the numerator
would be

û0rPZr ûr � û0PZ û = y0(PZr � PPZrX � PZ + PPZX)y
= y0(PMZYo + PPZX � PPZrX)y
= y0(P(PZX MZYo) � PPZrX)y;

whereas that of (2.22) is given by y0(P(PZrX MZYo)�PPZrX)y:We shall prove equivalence
9

by using the general results for the full column rank matrices C = (A B) and C� = (A
B�); where B� = B +AD and D is an arbitrary matrix of appropriate dimensions, that
not only (i) PC = P(A MAB) = PA+PMAB; but also (ii) PC� = PA+PMAB� = PA+PMAB =
PC : Using (i) we have PZrX = PZX + PMZY0X; which gives

P(PZrX MZYo) = P(PZX+PMZY0
X MZYo) = P(PZX+MZY0X� MZYo);

where X� = (Y 00MZY0)
�1Y 00MZX: Next by (ii) we obtain

P(PZX+MZY0X� MZYo) = P(PZX MZYo);

which completes the proof.

2.7. Preliminary selection

The foregoing subsections demonstrate that all available statistics Wo; Do; To; H0 and
So for testing the orthogonality of a subset of the potentially endogenous regressors
basically just di¤er regarding the estimation of �2: Both So and Ho show a hybrid
nature in this respect, because their most natural implementations require two di¤erent
�2 estimates, which may lead to negative test outcomes. In addition to that Ho has the
drawback that it involves a generalized inverse. Similar di¤erences and correspondences
carry over to more general models, which would require GMM estimation, see Newey
(1985) and Ahn (1997). Although of no concern asymptotically, these di¤erences may
have major consequences in �nite samples, thus practitioners are in need of clues which
implementations should be preferred. Therefore, in the remainder of this study, we will
examine the performance in �nite samples of the three archetypical tests Wo, Do and
To. Because So and Ho are in fact hybridly weighted versions of these we do not expect
them to have unique qualities that deserve substantial attention.

9Ruud (2000, p.582) proves this just for the special case Ke = 0: Newey (1985, p.238), Baum et al.
(2003, p.23 and formula 55) and Hayashi (2002) mention equivalence for Ke � 0, but do not provide a
proof.
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3. Earlier Monte Carlo designs and results

In the literature the actual rejection frequencies of tests on the independence between
regressors and disturbances have been examined by simulation only for situations where
all possibly endogenous regressors are tested jointly, hence Ke = 0. To our knowledge,
sub-set tests have not been examined yet.
Wu (1974) was the �rst to design a simulation study in which he examined the four

tests suggested in Wu (1973). He made substantial e¤orts, both analytically and exper-
imentally, to assess the parameters and model characteristics which actually determine
the distribution of the test statistics and their power curves. His focus is on the case
where there is one possibly endogenous regressor (Ko = 1), an intercept and one other
included exogenous regressor (L1 = 2) and two external instruments (L2 = 2), giving
a degree of overidenti�cation of 1. All disturbances are assumed normal, all exogenous
regressors are mutually orthogonal and all consist of elements equal to either 1, 0, or
-1, whereas all instruments have coe¢ cient 1 in the reduced form. Wu demonstrates
that all considered test statistics are functions of statistics that follow Wishart distrib-
utions which are invariant with respect to the values of the structural coe¢ cients of the
equation of interest. The e¤ects of changing the degree of simultaneity and of chang-
ing the joint strength of the external instruments are examined. Because the design is
rather in�exible regarding varying the explanatory part of the reduced form, no sepa-
rate attention is paid to the e¤ects of multicollinearity of the regressors on the rejection
probabilities, nor to the e¤ects of weakness of individual instruments. Although none
of the tests examined is found to be superior under all circumstances, test T2; which is
exact under normality and generalized as To in (2.26), is found to be the preferred one.
Its power increases with the absolute value of the degree of simultaneity, with the joint
strength of the instruments and with the sample size.
Nakamura and Nakamura (1985) examine a design where Ke = 0; Ko = 1; L1 = 2;

L2 = 3 and all instruments are mutually independent standard normal. The struc-
tural equation disturbances u and the reduced form disturbances v are IID normal with
variances �2u and �

2
v respectively and correlation �. They focus on the case where all

coe¢ cients in the structural equation and in the reduced form equation for the possibly
endogenous regressor are unity. Given the �xed parameters the distribution of the test
statistic T2 now depends only on the values of �2; �2u and �

2
v: Attention is drawn to the

fact that the power of an endogeneity test and its interpretation di¤ers depending on
whether the test is used to signal: (a) the degree of simultaneity expressed as �, (b) the
simultaneity expressed as the covariance � = ��u�v, or (c) the extent of the asymptotic
bias of OLS (which in their design is also determined just by �; �2u and �

2
v). When

testing (a) a natural choice of the nuisance parameters (which are kept �xed when � is
varied to obtain a power curve) are �u and �v: However, when testing (b) or (c) �; �u
and �v cannot all be chosen independently. The study shows that, although the power
of test T2 does increase for increasing values of �2 while keeping �u and �v constant, it
may decrease for increasing asymptotic OLS bias. Therefore, test T2 is not very suitable
for signaling the magnitude of OLS bias. In this design �2v = 5(1�R2)=R2; where R2 is
the population coe¢ cient of determination of the reduced form equation for the possibly
endogenous regressor. The joint strength of the instruments is a simple function of R2

and hence of �v: Again, due to the �xed values of the reduced form coe¢ cients the e¤ects
of weakness of individual instruments or of multicollinearity cannot be examined from
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this design.
The study by Kiviet (1985) demonstrates that in models with a lagged dependent

explanatory variable the actual type I error probability of test T2 may deviate sub-
stantially from the chosen nominal level. Then high rejection frequencies under the
alternative have little or no meaning.10 In the present study we will stick to static
cross-section type models.
Thurman (1986) performs a small scale Monte Carlo simulation of just 100 replica-

tions on a speci�c two equation simultaneous model using empirical data for the exoge-
nous variables from which he concludes that Wu-Hausman tests may have substantial
power under particular parametrizations and none under others.
Chmelarova and Hill (2010) focus on pre-test estimation based on test T2 (forKo = 1;

L1 = 2; L2 = 1) and two other forms of contrast based tests which use an improper
number of degrees of freedom11. Their Monte Carlo design is very restricted, because
the possibly endogenous regressor and the exogenous regressor (next to the constant)
are uncorrelated, so multicollinearity does not occur, which makes the DGP unrealistic.
Moreover, all coe¢ cients in the equation of interest are kept �xed and are such that the
signal to noise ratio is always 1. Therefore, the inconsistency of OLS is relatively large
(and in fact equal to the simultaneity correlation coe¢ cient �). Because the sample size
is not varied and neither is the instrument strength parameter12 the results do not allow
to form an opinion on how e¤ective the T2 test is to diagnose simultaneity.
Jeong and Yoon (2010) present a study in which they examine by simulation what

the rejection probability of the Hausman test is when an instrument is employed which
is actually correlated with the disturbances. Also for the sub-set tests to be examined
here the situation seems of great practical relevance that they might be implemented
while using some variable(s) as instruments which are in fact endogenous. In our Monte
Carlo experiments we will cover such situations, but we do not �nd the design as used
by Jeong and Yoon, in which the endogeneity/exogeneity status of variables depends on
the sample size very useful.

4. A more comprehensive Monte Carlo design

To examine the di¤erences between the various sub-set tests regarding their type I and II
error probabilities in �nite samples we want to lay out a Monte Carlo design which is less
restrictive than those just reviewed. It should allow to represent the major characteristics
of data series and their relationships as faced in empirical work, while avoiding the
imposition of awkward restrictions on the nuisance parameter space. Instead of picking
particular values for the coe¢ cients and further parameters in a simple DGP, and check
whether or not this leads to covering empirically relevant cases, we choose to approach
this design problem from the opposite direction.

10Because we could not replicate some of the presented �gures for the case of strong instruments, we
plan to re-address the analysis of DWH type tests in dynamic models in future work.
11This may occur when standard software is employed based on a naive implementation of the Haus-

man test. Practitioners should be adviced never to use these standard options but always perform tests
based on estimator contrasts by running the relevant auxiliary regression.
12If the e¤ects of a weaker instrument had been checked the simulation estimates of the moments of

IV (which do not exist, because the model is just identi�ed) would have gone astray.
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4.1. The simulated data generating process

Model (2.1) is specialized in our simulations to

y = �1�+ �2y
(2) + �3y

(3) + u, (4.1)

y(2) = �21�+ �22z
(2) + �23z

(3) + v(2), (4.2)

y(3) = �31�+ �32z
(2) + �33z

(3) + v(3), (4.3)

where � is an n� 1 vector consisting of ones. So, K = 3; L1 = 1 and L2 = 2; with Ko +
Ke = 2; Y = (y

(2) y(3)); Z1 = � and Z = (� z(2) z(3)): Since K = L; at this stage we only
investigate the case in which under the unrestrained alternative hypothesis the single
simultaneous equation (4.1) is just identi�ed according to the order condition. Because
the statistics to be analyzed will be invariant regarding the values of the intercepts, these
are all set equal to zero, thus �1 = �21 = �31 = 0. Ful�llment of the rank condition for
identi�cation then implies that the inequality

�22�33 6= �23�32 (4.4)

has to be satis�ed.
The vectors z(2) and z(3) will be generated as mutually independent IID(0; 1) series.

They have been drawn only once and then were kept �xed over all replications. In fact
we drew two arbitrary series and next rescaled them such that their sample mean and
variance, and also their sample covariance correspond to the population values 0, 1 and
0 respectively.
To allow for simultaneity of both y(2) and y(3); as well as for any value of the cor-

relation between the reduced form disturbances v(2) and v(3); these disturbances have
components

v(2) = �(2) + 2u and v
(3) = �(3) + ��(2) + 3u, (4.5)

where the series ui, �
(2)
i and �(3)i will be generated as mutually independent zero mean

IID series (for i = 1; :::; n). Without loss of generality, we may choose �2u = 1: Scaling
the variances of the potentially endogenous regressors simpli�es the model even further,
again without loss of generality. This scaling is innocuous, because it can be compensated
by the chosen values for �2 and �3: We will realize �

2
y(2)

= �2
y(3)

= 1 by choosing
appropriate values for �2

�(2)
> 0 and �2

�(3)
> 0 as follows. For the variance of the IID

series for the reduced form disturbances and for the possibly endogenous explanatory
variables we �nd

�2
v(2)

= �2
�(2)
+ 22; �2

y(2)
= �222 + �

2
23 + �

2
v(2)

= 1;

�2
v(3)

= �2
�(3)
+ �2�2

�(2)
+ 23; �2

y(3)
= �232 + �

2
33 + �

2
v(3)

= 1:
(4.6)

This requires

�2�(2) = 1� �
2
22 � �223 � 22 > 0 and �2�(3) = 1� �

2
32 � �233 � �2�2�(2) � 

2
3 > 0: (4.7)

In addition to (4.4), (4.7) implies two further inequality restrictions on the nine para-
meters of the data generating process, which are

f2; 3; �; �22; �23; �32; �33; �2; �3g: (4.8)

However, more restrictions should be respected as we will see, when we consider further
consequences of a choice of particular values for these DGP parameters.
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4.2. Simulation design parameter space

Assigning a range of reasonable values to the nine DGP parameters is cumbersome as
it is not immediately obvious what model characteristics they imply. Therefore, we now
�rst de�ne econometrically meaningful design parameters. These are functions of the
DGP parameters, and we will invert these functions in order to �nd solutions for the
parameters of the DGP in terms of the chosen design parameter values. Since the DGP is
characterized by nine parameters, we should de�ne nine variation free design parameters
as well. However, their relationships will be such, that this will not automatically imply
the existence nor the uniqueness of solutions.
Two obvious design parameters are the degree of simultaneity in y(2) and y(3); given

by
�j = Cov(y

(j)
i ; ui)=(�y(j)�u) = j; j = 2; 3: (4.9)

Hence, by choosing �2
y(2)

= �2
y(3)

= 1, the degree of simultaneity in y(j) is directly
controlled by j for j = 2; 3; and it implies two more inequality restrictions, namely��j�� < 1; j = 2; 3: (4.10)

Another design parameter is a measure of multicollinearity between y(2) and y(3)

given by the correlation

�23 = �22�32 + �23�33 + �(1� �222 � �223 � 22) + 23; (4.11)

implying yet another restriction���22�32 + �23�33 + �(1� �222 � �223 � 22) + 23�� < 1: (4.12)

Further characterizations relevant from an econometric perspective are the marginal
strength of instrument z(2) for y(j) and the joint strength of z(2) and z(3) for y(j); which
are established by the (partial) population coe¢ cients of determination

R2j;z2 = �
2
j2 and R

2
j;z23 = �

2
j2 + �

2
j3; j = 2; 3: (4.13)

In the same vain, and completing the set of nine design parameters, are two similar
characterizations of the �t of the equation of interest. Because the usual R2 gives
complications under simultaneity, we focus on its reduced form equation

y = (�2�22 + �3�32) z
(2) + (�2�23 + �3�33) z

(3)

+(�2 + �3�) �
(2) + �3�

(3) + (1 + �22 + �33)u: (4.14)

This yields

�2y = (�2�22 + �3�32)
2 + (�2�23 + �3�33)

2

+(�2 + �3�)
2 �2�(2) + �

2
3�
2
�(3) + (1 + �22 + �33)

2 , (4.15)

and in line with (4.13) we then have

R21;z2 = (�2�22 + �3�32)
2 =�2y and

R21;z23 = [(�2�22 + �3�32)
2 + (�2�23 + �3�33)

2]=�2y:
(4.16)

16



The 9-dimensional design parameter space is given now by

f�2; �3; �23; R22;z2; R22;z23; R23;z2; R23;z23; R21;z2; R21;z23g: (4.17)

The �rst three of these parameters have domain (�1;+1) and the six R2 values have to
obey the restrictions

0 � R2j;z2 � R2j;z23 < 1; j = 1; 2; 3: (4.18)

However, without loss of generality we can further restrict the domain of the nine design
parameters, due to symmetry of the DGP with respect to: (a) the two regressors y(2)

and y(3) in (4.1), (b) the two instrumental variables z(2) and z(3); and (c) implications
which follow when all random variables are drawn from distributions with a symmetric
density function.
Due to (a) we may just consider cases where

�22 � �23: (4.19)

So, if one of the two regressors will have a more severe simultaneity coe¢ cient, it will
always be y(2): Due to (b) we will limit ourselves to cases where �222 � �223: Hence, if one
of the instruments for y(2) is stronger than the other, it will always be z(2): On top of
(4.18) this implies

R22;z2 � 0:5R22;z23: (4.20)

If (c) applies, we may restrict ourselves to cases where next to particular values for
(2; 3); we do not also have to examine (�2;�3). This is achieved by imposing
�2 + �3 � 0: In combination with (4.19) this leads to

1 > �2 � j�3j � 0: (4.21)

Solving the DGP parameters in terms of the design parameters can now be achieved
as follows. In a �rst stage we can easily solve 7 of the 9 parameters, namely

j = �j

�j2 = dj2
��(R2j;z2)1=2�� ; dj2 = �1;+1

�j3 = dj3
��(R2j;z23 �R2j;z2)1=2�� ; dj3 = �1;+1

9>>>>=>>>>; j = 2; 3: (4.22)

With (4.11) these give

� = (�23 � �22�32 � �23�33 � 23)=(1� �222 � �223 � 22): (4.23)

Thus, for a particular case of chosen design parameter values, obeying the inequalities
(4.18) through (4.21), we may obtain 24 solutions from (4.22) and (4.23) for the DGP
parameters. However, some of these may be inadmissible, if they do not ful�ll the
requirements (4.4) and (4.7). Moreover, we will show that not all of these 24 solutions
necessarily lead to unique results on the distribution of the test statistics Wo; Do and
To.
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Finally, the remaining two parameters �2 and �3 can be solved from the pair of
nonlinear equations

(1�R21;z2) (�2�22 + �3�32)
2 = R21;z2[(�2�23 + �3�33)

2

+(1 + �22 + �33)
2 + �23�

2
�(3)
+ (�2 + �3�)

2 �2
�(2)
];

(1�R21;z23)[(�2�22 + �3�32)
2 + (�2�23 + �3�33)

2] = R21;z23[(1 + �22 + �33)
2

+�23�
2
�(3)
+ (�2 + �3�)

2 �2
�(2)
]:

9>>>>>=>>>>>;
(4.24)

Both these equations represent particular conic sections, specializing into either ellipses,
parabolas or hyperbolas, implying that there may be zero up to eight solutions. However,
it is easy to see that the three sub-set test statistics are all invariant with respect to
�: Note that û = [I � X(X 0PZX)

�1X 0PZ ](X� + u) = [I � X(X 0PZX)
�1X 0PZ ]u and

ûr = [I � X(X 0PZrX)
�1X 0PZr ]u are invariant with respect to �; thus so are �̂

2 and
�̂2r: And ��

2 is too, because y � X�̂ �MZYo�̂ = û �MZYo�̂ is, as follows from (2.20)
and (2.21). Moreover, because �̂ is invariant with respect to � also is the numerator of
the three test statistics.13 Therefore, R21;z2 and R

2
1;z23 do not really establish nuisance

parameters, reducing the dimensionality of the nuisance parameter space to 7. Without
loss of generality we may always set �2 = �3 = 0 in the simulated DGP�s.
When (c) applies, not all 16 permutations of the signs of the four reduced form

coe¢ cients lead to unique results for the test statistics, because of the following. If
the sign of all elements of y(2) and (or) y(3) is changed, this means that in the general
formulas the matrix X is replaced by XJ; where J is a K � K diagonal matrix with
diagonal elements +1 or �1; for which J = J 0 = J�1: It is easily veri�ed that such
a transformation has no e¤ect on the quadratic forms in y which constitute the test
statistics Wo; Do and To; because it does not alter the space spanned by the matrices A
and C of (2.22) nor that of the projection matrices used in the three di¤erent estimators
of �2: So, when changing the sign of all reduced form coe¢ cients, and at the same time
the sign of all the elements of the vectors u; �(2) and �(3); the same test statistics are
found, whereas the simultaneity and multicollinearity are still the same. This reduces
the 16 possible permutations to 8, which we achieve by choosing d22 = 1. From the
remaining 8 permutations four di¤erent couples yield similar �23 and � values. We keep
the four permutations which genuinely di¤er by choosing d23 = 1, and will give explicit
attention to the four distinct cases

(d22; d23; d32; d33) =

8>><>>:
(1; 1; 1; 1)
(1; 1;�1; 1)
(1; 1; 1;�1)
(1; 1;�1;�1);

(4.25)

when we generate the disturbances from a symmetric distribution, which at this stage
we will.
For the design parameters we shall choose various interesting combinations from

13Wu (1974) �nds this invariance result too, but his proof suggests that it is a consequence of normality
of all the disturbances, whereas it holds more generally.
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�2 2 f0; :2; :5g
�3 2 f�:5;�:2; 0; :2; :5g
�23 2 f�:5;�:2; 0; :2; :5g

R2j;z2 2 f:01; :1; :2; :3g
R2j;z23 2 f:02; :1; :2; :4; :5; :6g

9>>>>>>=>>>>>>;
(4.26)

in as far as they satisfy the restrictions (4.18) through (4.21), provided they obey also
the admissibility restrictions given by (4.4), (4.7) and (4.12).

5. Simulation �ndings on rejection probabilities

In each of the R replications in the simulation study, new independent realizations are
drawn on u; �(2) and �(3). The three test statistics Wo; Do and To will be calculated for
both y(2) (then denoted as W 2; D2; T 2) and for y(3) (denoted W 3; D3; T 3) assuming the
other regressor to be endogenous. These genuine sub-set tests will be compared with
tests on the endogeneity of the full set. The latter are denoted W 23; D23; T 23 (these are
tests involving 2 degrees of freedom), W 2

3 ; D
2
3; T

2
3 (when y

(3) is treated as exogenous)
and W 3

2 ; D
3
2; T

3
2 (when y

(2) is treated as exogenous). The behavior under both the null
and the alternative hypothesis will be investigated. These full-set tests are included to
better appreciate the special nature of the more subtle sub-set tests under investigation
here.
Every replication it is checked whether or not the null hypothesis is rejected by test

statistic �; where � is any of the tests indicated above. From this we obtain the Monte
Carlo estimate

�!p � =
1

R

PR
r=1 I

�
�(r) > �c (�)

�
: (5.1)

Here I (:) is the indicator function that takes value one when its argument is true and
zero when it is not. We take the standard form of the test statistics in which �c(�) is
the �-level critical value of the �2 distribution (with either 1 or 2 degrees of freedom)
and in which �2 estimates have no degrees of freedom correction.
The Monte Carlo estimator �!p � estimates the actual rejection probability of asymp-

totic test procedure �. When H0 is true it estimates the actual type I error probability
(at nominal level �) and when H0 is false 1��!p � estimates the type II error probability,
whereas �!p � is then a (naive, when there are size distortions) estimator of the power
function of the test in one particular argument (de�ned by the speci�c case of values of
the design and matching DGP parameters). Estimator �!p � follows the binomial distri-
bution and has standard errors given by SE(�!p �) = [�!p �(1 � �!p �)=R]1=2: For R large,
a 99:75% con�dence interval for the true rejection probability is

CI99:75% = [
�!p � � 3 � SE(�!p �), �!p � + 3 � SE(�!p �)]: (5.2)

We choose R = 10000; examine all endogeneity tests at the nominal signi�cance
level of 5%, and take the sample size equal to n = 40 (mostly). Note that the boundary
values for determining whether the actual type I error probability of these asymptotic
tests di¤ers at this particular small sample size signi�cantly (at the very small level of
:25%) from the nominal value 5% are :043 and :057 respectively.
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5.1. At least one exogenous regressor

In this subsection we examine cases where either both regressors y(2) and y(3) are actu-
ally exogenous or just y(3) is exogenous. Hence, for particular implementations of the
sub-set and full-set tests on endogeneity the null hypothesis is true, but for some it is
false. In fact, it is always true for the sub-set tests on y(3) in the cases of this subsec-
tion. We present a series of tables containing estimated rejection probabilities and each
separate table focusses on a particular setting regarding the strength of the instruments.
Every case consists of potentially four subcases; "a" stands for (d32; d33) = (1; 1) , "b"
for (d32; d33) = (�1; 1), "c" for (d32; d33) = (1;�1) and "d" for (d32; d33) = (�1;�1).
When both instruments have similar strength for y(2) and also (but probably stronger
or weaker) for y(3) the identi�cation condition requires d32 6= d33: Then only two of the
four combinations (4.25) are feasible so that every case just consists of the two subcases
"b" and "c".
In Table 1 we consider cases with mildly strong instruments. In the �rst �ve cases

both y(2) and y(3) are exogenous whereas the degree of multicollinearity changes. So in
the �rst ten rows of the table, for all �ve distinct implementations of the three di¤erent
test statistics examined, the null hypothesis is true. Because y(2) and y(3) are para-
metrized similarly here, the two sub-set test implementations are actually equivalent.
The minor di¤erences in rejection probabilities stem from random variation, both in the
disturbances and in the single realizations of the instruments. The same holds for the
two full-set implementations with one degree of freedom. For all implementations over
the �rst �ve cases (both "b" and "c") Do shows acceptable size control, whereas Wo

tends to underreject, whilst To overrejects. The sub-set version of Wo gets worse under
multicollinearity (irrespective of the sign of �23), whereas multicollinearity increases the
type I error probability of the full-set Wo tests. Both Do and To seem una¤ected by
multicollinearity for these cases.
When y(2) is made mildly endogenous, as in cases 6-10, the null hypothesis is still

true for the sub-set tests W 3; D3 and T 3: Their type I error probability seems virtually
una¤ected by the actual values of �2 and �23: For the sub-set tests W

2; D2 and T 2

the null hypothesis is false. Due to their di¤erences in type I error probability we
cannot conclude much about power yet, but that they have some and that it is virtually
una¤ected by �23 is clear. The next three columns demonstrate that it is essential that a
full-set test exploits genuinely exogenous regressors, because if it does not it may falsely
diagnose endogeneity of an exogenous regressor (but by a reasonably low probability
when the regressors are uncorrelated). However, the next tests reported, which exploit
the genuine exogeneity of y(3); demonstrate that in this case they do a much better
job in detecting the endogenous nature of y(2) than the sub-set tests, provided there is
(serious) multicollinearity. Here the full-set tests have the advantage of using an extra
valid instrument. The e¤ects of multicollinearity can be explained as follows. Using the
notation of the more general setup and auxiliary regression (2.16), the sub-set (full-set)
tests test here the signi�cance of the regressors PZYo (PZ�Yo) in a regression already
containing PZrX (PZ�rX = X), where Z� = (Z Ye) and Z�r = (Zr Ye): Regarding the
sub-set test it is obvious that, because the space spanned by PZrX = (PZrYe Yo Z1) does
not change when Ye and Yo are more or less correlated, the signi�cance test of PZYo
is not a¤ected by �23: However, PZ�Yo is a¤ected (positively in a matrix sense) when
Yo and Ye are more (positively or negatively) correlated, which explains the increasing

20



probability of detecting endogeneity by the present full-set tests. Finally the two degrees
of freedom full-set tests demonstrate power, also when the null hypothesis tested is only
partly false. One would expect lower rejection probability here than for the full-set test
which correctly exploits orthogonality of y(3); but comparison is hampered again due to
the di¤erences between type I error probabilities. Note though that the �rst �ve cases
show larger type I error probabilities for T 23 than for T 23 ; whereas cases 6-10 show fewer
correct rejections, which fully conforms to our expectations.
For a higher degree of simultaneity in y(2) (cases 11-13) we �nd for the sub-set

tests that W 3 still underrejects substantially but an e¤ect of multicollinearity is no
longer established, which is probably because DGP�s with a similar �2 and �3 but higher
�23 are not feasible. Here D

3 does no longer outperform T 3: For the other tests the
rejection probabilities that should increase with j�2j do indeed, and we �nd that the
probability of misguidance by the full-set tests exploiting an invalid instrument is even
more troublesome now.
These results already indicate that sub-set tests are indispensable in a comprehensive

sequential strategy to classify regressors as either endogenous or exogenous. Because,
after a two degrees of freedom full-set test may have indicated that at least one of the two
regressors is endogenous, neither of the one degree of freedom full-set tests will be capable
of indicating which one is endogenous if there is one endogenous and one exogenous
regressor, unless these two regressors are mutually orthogonal. However, the two sub-
set tests demonstrate that they can be used to diagnose the endogeneity/exogeneity of
the regressors, especially when the endogeneity is serious, irrespective of their degree
of multicollinearity. We shall now examine how these capabilities are a¤ected by the
strength of the instruments.
The results in Table 2 stem from similar DGP�s which di¤er from the previous ones

only in the increased strength of both the instruments, which forces further limitations
on multicollinearity, due to (4.7). Note that the size properties have not really im-
proved. Due to the limitations on varying multicollinearity its e¤ects can hardly be
assessed from this table. The rejection probabilities of false null hypotheses are larger
when the maintained hypothesis is valid, whereas the tests which impose an invalid or-
thogonality condition become even more confusing when the genuine instruments are
stronger. Multicollinearity still has an increasing e¤ect on the rejection probability of
all the full-set tests, which is very uncomfortable for the implementations which impose
a false exogeneity assumption.
Staiger and Stock (1997) found that full-set tests have correct asymptotic size, al-

though being inconsistent under weak instrument asymptotics. The following three
tables illustrate cases in which the instruments are weak for one of the two potentially
endogenous variables or for both.
In the DGP�s used to generate Table 3, the instruments are weak for y(2) but strong for

y(3). So now the two sub-set tests examine di¤erent situations (even when �2 = �3 = 0)
and so do the two one degree of freedom full-set tests. Especially the sub-setWo tests and
the two degrees of freedom W 23 test are seriously undersized. When the endogeneity of
the weakly instrumented regressor is tested byW 2

3 the type I error probability is seriously
a¤ected by (lack of) multicollinearity. All full-set To tests are oversized. Only the Do

tests would require just a (mostly) moderate size correction. However, the probability
that sub-set testD2 will detect the endogeneity is small, whereas that ofD2

3 is better only
under multicollinearity. D3

2 will again provide confusing evidence, unless the regressors
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are orthogonal.
The situation is reversed in Table 4, where the instruments are weak for y(3) and

strong for the possibly endogenous y(2). Cases 23 and 24 are mirrored in cases 29 and
30. The Wo tests are seriously undersized, except W 2

3 (building on exogeneity of y
(3);

it is not a¤ected by its weak instruments) and W 3
2 (provided the multicollinearity is

substantial). The full-set To tests are again oversized. All Do implementations show
mild size distortions. Sub-set test D2 has power especially when the regressors show
little multicollinearity, but after size correction it seems likely that W 2 or especially
T 2 would do much better. Also the tests W 2

3 ; D
2
3 and T

2
3 show power for detecting

endogeneity of y(2) when the instruments are weak for exogenous regressor y(3); and
their power increases with multicollinearity.
Finally we construct DGP�s in which the instruments are weak for both regressors.

Because we found mixed results when the instruments are weak for one of the two
regressors, not much should be expected when both are a¤ected. The results in Table
5 do indeed illustrate this. The Wo tests underreject severely, To gives a mixed picture,
but Do would require only a minor size correction, although it will yield very modest
power.
In addition to cases in which the two instruments have similar strength for y(2) and

y(3), we present a couple of cases in which this di¤ers. Note that the inequality (4.4) is
now satis�ed by all four combinations in (4.25). The reason that not every case in Table
6 consists of four subcases is that not every subcase satis�es the second part of (4.7).
The results for the sub-set tests di¤er greatly between the four subcases. Subcases "a"
and "d" show lower rejection probabilities for Wo and To; whereas Do seems una¤ected
under the null hypothesis. This suggests that the estimate �̂r (and hence �̂

2
r) is probably

less a¤ected by (d23; d33) in these subcases than �̂
2 and ��2:

The sub-set tests on y(2) and y(3) behave similar although the (joint) instrument
strength is a little higher for the former. Whereas the results between the subcases are
quite di¤erent for the sub-set tests and the two degrees of freedom full-set tests, the one
degree of freedom full-set test seem less dependent on the choice of (d23; d33).
When y(2) is endogenous D2 has substantially less power in subcases "a" and "d"

even though under the null hypothesis it rejects less often in subcases "c" and "d".
For the full-set test things are di¤erent. These reject far more often in subcases "a"
and "d" when there is little or no multicollinearity. However, when multicollinearity is
more pronounced the tests reject less often in subcases "a" and "d" than in "b" and
"c". From these results we conclude that the relevant nuisance parameters for these
asymptotic tests are not just simultaneity, multicollinearity and instrument strength,
but also the actual signs of the reduced form coe¢ cients.

5.2. Both regressors endogenous

The rejection probabilities of the sub-set tests estimated under the alternative hypothesis
in the previous subsection are only of secondary interest, because the sub-set that was
treated as endogenous was actually exogenous. In such cases application of the one-
degree of freedom full-set test is more appropriate. Now the not tested sub-set which
is treated as endogenous will actually be endogenous, so we will get crucial information
on the practical usefulness of the sub-set tests, and further evidence on the possible
misguidance by the here inappropriate one degree of freedom full-set tests. Similar
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cases in terms of instrument strength have been chosen to keep comparability with the
previous subsection.
The DGP�s used for Table 7 mimic those of Table 1 in terms of instrument strength.

In most cases the sub-set tests behave roughly the same as when the maintained regressor
was actually exogenous, although multicollinearity is now found to have a small though
clear asymmetric impact on the rejection probabilities. When multicollinearity is of the
same sign as the simultaneity in y(3), test statisticsWo and To reject less often than when
these signs di¤er. This is not caused by the �xed nature of the instruments, because
simulations (not reported) in which the instruments are random show the same e¤ect.
On the other hand, the di¤erences between subcases diminish when the instruments
are random. Multicollinearity decreases the rejection probabilities, but less so when
the endogeneity of the maintained regressor is more severe. The full-set tests with one
degree of freedom are a¤ected more by multicollinearity than the sub-set tests. As is to
be expected, the two degrees of freedom full-set tests reject more often now that both
regressors are endogenous. The rejection probabilities of these full-set tests, Do included,
decrease dramatically if �23 and �3 are of the same sign, and they do that much more
than for the sub-set tests. Note that the cases in which �3 takes on a negative value are
very similar to cases in which �3 is positive and the sign of �23 is changed, or those of
(d32; d33). More speci�cally, case 63b corresponds with case 59c and case 63c with case
59b. Therefore, we will exclude cases with negative values for �3 from future tables and
stick to their positive counterparts.
In Table 8 we examine stronger instruments. Comparing with Table 2 we �nd that the

rejection probabilities seem virtually una¤ected by choosing �3 6= 0. As we found before
the rejection probabilities are a¤ected in a positive manner by the increased strength of
the instruments. The sub-set tests reject almost every time if the corresponding degree
of multicollinearity is .5. The e¤ect of having �23 and �3 both positive seems less severe.
As long as this is not the case, the two one degree of freedom full-set tests reject more
often than the sub-set tests. If �23 and �3 do not di¤er in sign Wo and Do reject more
often when applied to a sub-set than for their one degree and two degrees of freedom
full-set versions.
Because Table 3 and 4 are very similar and now both regressors are endogenous we

only need to consider the equivalent table of the latter. In Table 9 the instruments are
weak for y(3) but strong for y(2). Obviously the sub-set tests for y(3) lack power now, as
was already concluded from Table 3. However, sub-set tests for y(2) show power also in
the presence of a maintained endogenous though weakly instrumented regressor. Note
that when �3 is increased all sub-set tests for y

(2) reject more often. This dependence
was not apparent under non-weak instruments.
As we found in Table 5 the sub-set tests perform badly when the instruments are

weak for both regressors. From the results on the sub-set test for y(3) we expect the
same for the case in which �3 6= 0. This we found to be true in further simulations,
though we do not present a table on these as it is not very informative.
These simulations demonstrate that the sub-set tests are indispensable when there

is more than one regressor in a model that might be endogenous. Using only full-
set tests will not enable to classify the individual variables as either endogenous or
exogenous. However, all tests examined here show substantial size distortions in �nite
samples. Moreover, these size distortions are found to be determined in a complex way
by the model characteristics. In fact the various tables illustrate that it are not just
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the design parameters simultaneity, multicollinearity and instrument strength which
determine the size of these tests. The di¤erences between the subcases illustrate that
the size also depends on the actual reduced form coe¢ cients and therefore in fact on
the degree by which the multicollinearity stems from correlation between the reduced
form disturbances (�): Trying to mitigate the size problems by simple degrees of freedom
adjustments or by transformations to F statistics seems therefore a dead-end.

6. Results for bootstrapped tests

Because all the test statistics that are under investigation here are based on appropriate
�rst order asymptotics, it should be feasible to mitigate the size problems by bootstrap-
ping.

6.1. A bootstrap routine for sub-set DWH test statistics

Bootstrap routines for testing the orthogonality of all possibly endogenous regressors
have previously been discussed by Wong (1996). Implementation of these bootstrap
routines is relatively easy due to the fact that no regressors are assumed to be endogenous
under the null hypothesis. This in contrast to the test of sub-sets where some regressors
are endogenous also under the null hypothesis. Their presence complicates matters as
bootstrap realizations have to be generated on both the dependent variable and the
maintained set of endogenous regressors. We discuss two routines; �rst a parametric
and next a semiparametric bootstrap. For the former routine we have to assume a
distribution for the disturbances, which we choose to be the normal.
Consider the n � (1 + Ke) matrix U = (u Ve): Its elements can be estimated by:

ûr = y � X�̂r and V̂er = Ye � Zr�̂er, where �̂er = (Z 0rZr)
�1Z 0rYe. Under the null

hypothesis �̂r and �̂er are consistent estimators and it follows that Ûr = (ûr V̂er) is
consistent for U , and hence �̂ = n�1Û 0rÛr is a consistent estimator of the variance of its
rows. The following illustrates the steps that are required for the bootstrap procedure.

1. Draw pseudo disturbances of sample size n from the N(0; �̂) distribution and
collect them in U (b) = (u(b) V (b)e ) . Obtain bootstrap realizations on the endogenous
explanatory variables and the dependent variable through: Y (b)e = Zr�̂er + V

(b)
e

and y(b) = X(b)�̂r + u
(b), where X(b) = (Y

(b)
e Yo Z1). Calculate the test statistic of

choice � and store its value �̂(b).

2. Repeat step (1) B times resulting in the B� 1 vector �̂B = (�̂(1):::�̂(B))0 of which
the elements should be sorted in increasing order.

3. The null hypothesis should be rejected if for the empirical value �̂; calculated on
the basis of y; X and Z; one �nds �̂ > �̂bc� , the (1 � �)(B + 1)-th value of the
sorted vector.

Applying the semiparametric bootstrap is very similar as it only di¤ers from the
parametric one in step (1). Instead of assuming a distribution for the disturbances we
resample by drawing rows with replacement from Ûr.
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6.2. Simulation results for bootstrapped test statistics

Wong (1996) concludes that bootstrapping the full-set test statistics yields an improve-
ment over using �rst order asymptotics, especially in the case where the (in his case
external) instrument is weak. In this subsection we will discuss simulation results for
the bootstrapped counterparts of the various test statistics. Again all results are ob-
tained with R = 10000 and n = 40, additionally we choose the number of bootstrap
replications to be B = 199. To mimic as closely as possible the way the bootstrap would
be employed in practice, for each case and each test statistic we calculated the bootstrap
critical value �̂bc� again in each separate replication.
Table 10 is the bootstrapped equivalent of Table 1. Whereas we found that the

crude asymptotic version of Wo underrejects while To overrejects, bootstrapping these
test statistics results in a substantial improvement14 of their size properties. In fact,
in this respect all three tests perform now equally well with mildly strong instruments,
because the estimated actual signi�cance level lies always inside the 99.75% con�dence
interval for the nominal level. Not only the sub-set tests pro�t from being bootstrapped,
the one degree and two degrees of freedom full-set tests do as well. In terms of power we
�nd that the bootstrapped versions ofWo; To andDo perform almost equally well. We do
�nd minor di¤erences in rejection frequencies under the alternative, but often these seem
still to be the results of minor di¤erences in size. Nevertheless, on a few occasions testDo

seems to fall behind. Now we establish more convincingly that exploiting correctly the
exogeneity of y(2) in a full-set test provides more power, especially when multicollinearity
is present, than not exploiting it in a sub-set test. Of course, the unfavorable substantial
rejection probability of the exogeneity of the truly exogenous y(3); caused by wrongly
treating y(2) as exogenous in a full-set test, cannot be healed by bootstrapping. Similar
conclusions can be drawn from Table 11 which contains results for stronger instruments.
On the other hand, we �nd in Table 12 that bootstrapping does not achieve satis-

factory size control for most of the sub-set tests, when the instruments are weak for one
regressor. Only D2 shows reasonable type I error probabilities, but when testing the
endogeneity of y(2); the regressor for which the instruments are weak, there is hardly
any power. The full-set tests do not show substantial size distortions and the one degree
of freedom full-set test on y(2) and the two degrees of freedom test demonstrate power
provided the regressors show multicollinearity. The results in Table 13 indicate that the
sub-set test is of more use when weakness of instruments does not concern the variable
under test. We can conclude thatWo and To have more power than Do; since they reject
less often under the null hypothesis but more often under the alternative. Because we
were unable yet to properly size correct the sub-set test on the strongly instrumented
regressor in Tables 12 and 13, we know that we will be unable to do so too when all
regressors are weakly instrumented. This is supported by the results summarized in
Table 14. Again the results are slightly better for Wo and To but there is almost no
power.
For DGP�s in which both regressors are endogenous we again construct three tables.

From subsection 5.2 we learned that under the alternative hypothesis the tests behave
similar to cases in which only y(2) is endogenous. This is found here too as can be seen
from Table 15. We �nd further evidence that the sub-set version of Do performs less

14Although the current implementation of the bootstrap already performs quite well, even better
results may be obtained by rescaling the reduced form residuals.
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than Wo and To. New in comparison with Table 7 is that the two degrees of freedom
full-set tests generally exhibit more power than the one degree of freedom full-set tests
when the instruments are mildly strong. However, this was already found for cases with
stronger instruments without bootstrapping. Increasing the instrument strength raises
the rejection probabilities as before as can be seen from Table 16. That our current
implementation of the bootstrap does not o¤er satisfactory size control for most sub-set
tests when y(3) is weakly instrumented was already demonstrated in Table 12 and we
conclude the same for the case when both regressors are endogenous as is obvious from
the results in Table 17.

7. Empirical case study

A classic application involving more than one possibly endogenous regressor is Griliches
(1976), which studies the e¤ect of education on wage. It is often used to demonstrate
instrumental variable techniques. Both education and IQ are presumably endogenous
due to omitted regressors. However, testing this assumption is often overlooked. Here
we shall examine the exogeneity status of both regressors jointly and individually by
means of the full-set tests and the sub-set tests. The same data are used as in Hayashi
(2000, p.236). We have the wage equation and reduced form equations

logWi = �1Si + �2IQi + Z1i1 + ui (7.1)

Yi = Z1i�1 + Z2i�2 + Vi; (7.2)

where W is the hourly wage rate, S is schooling in years and IQ is a test score. All re-
gressors that are assumed to be predetermined or exogenous are included in Z1; these are
an intercept (CONS), years of experience (EXPR), tenure in years (TEN), a dummy
for southern states (RNS) and a dummy for metropolitan areas (SMSA). Addition-
ally Z2 includes instruments age, age squared, mother education, KWW test score and
a marital status dummy. In accordance with our previous notation both potentially
endogenous regressors are included in Y .
Table 18 presents the results of four regressions. OLS treats both schooling and IQ

as exogenous, whereas they are assumed to be endogenous in the IV regression. In IV1
only IQ is treated as endogenous whereas in IV2 only schooling is treated as endogenous.
Next, in Table 19, we test various hypotheses regarding the exogeneity of one or both

potentially endogenous regressors. Joint exogeneity of schooling and IQ is rejected.
Hence, at least one of these regressors is endogenous and we should use the sub-set
tests to �nd out whether it is just one or both. However, �rst we examine the e¤ect
of using the full-set test on the individual regressors. In both cases the null hypothesis
is rejected. From the Monte Carlo simulation results we learned that the full-set tests
are inappropriate for correctly classifying individual regressors in the presence of other
endogenous regressors. Therefore, we better employ the sub-set tests. Again we reject
the null hypothesis that schooling is exogenous, but the null hypothesis that IQ is
exogenous should not be rejected. Bootstrapping these two test statistics does not lead
to di¤erent conclusions. Based on these results one should greet regression IV2 instead
of IV , resulting in reduced standard errors and a less controversial result on the e¤ect
of IQ, as can be seen from Table 18.
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8. Conclusions

In this study various tests on the orthogonality of arbitrary subsets of explanatory vari-
ables are motivated and their performance is compared in a series of Monte Carlo experi-
ments. We �nd that genuine sub-set tests play an indispensable part in a comprehensive
sequential strategy to classify regressors as either endogenous or exogenous. Full-set
tests have a high probability to classify an exogenous regressor wrongly as endogenous
if it is merely correlated with an endogenous regressor.
Regarding type I error performance we �nd that sub-set tests bene�t from estimating

variances under the null hypothesis (Do), as in Lagrange multiplier tests. Estimating
the variances under the alternative (Wo), as in Wald-type tests, leads to underrejection
when the instruments are not very strong. However, bootstrapping results in good
size control for all test statistics as long as the instruments are not weak for one of
the endogenous regressors. When the various tests are compared in terms of power
the bootstrapped Wald-type tests behave often more favorable. This falsi�es earlier
theoretical presumptions on the better power of the To type of test. The outcome is
such that we do not expect that a better performance could have been obtained by the
computationally more involved implementations that result from strictly employing the
Hausman or the Hansen-Sargan principles.
Even when the instruments are weak for the maintained endogenous regressor but

strong for the regressor under inspection we �nd that the auxiliary regression tests
exhibit power, but there is insu¢ cient size control, also when bootstrapped. This is in
contrast to situations in which the instruments are not weak. Then, when bootstrapped,
the sub-set and full-set tests can jointly be used fruitfully to classify individual explana-
tory variables and groups of them as either exogenous or endogenous.
It must be noted though that the conclusions obtained from the experiments in this

study are limited, as they only deal with static linear models with Gaussian disturbances,
which are just identi�ed by genuinely exogenous external instruments. Apart from re-
laxing some of these limitations in future work, we plan to look further into e¤ects due to
weakness of instruments. Furthermore, tests on the orthogonality of sub-sets of external
instruments and joint tests on the orthogonality of included and excluded instruments
deserve further examination.
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Table 1: One endogenous regressor and mildly strong instruments:
R22;z2 = :2, R22;z23 = :4, R23;z2 = :2, R23;z23 = :4
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

1b 0 0 0 .033 .054 .064 .030 .050 .061 .040 .050 .070 .040 .046 .068 .021 .044 .088
1c 0 0 0 .036 .056 .069 .030 .053 .063 .042 .050 .073 .037 .047 .069 .023 .046 .086
2b 0 0 -.2 .032 .055 .064 .029 .055 .064 .044 .050 .069 .043 .047 .067 .023 .044 .090
2c 0 0 -.2 .034 .057 .067 .031 .053 .062 .044 .050 .074 .040 .048 .068 .024 .047 .086
3b 0 0 .2 .034 .056 .065 .028 .051 .061 .045 .049 .069 .041 .046 .068 .023 .044 .087
3c 0 0 .2 .035 .057 .069 .029 .053 .063 .047 .052 .073 .041 .046 .068 .023 .044 .086
4b 0 0 -.5 .024 .058 .069 .024 .057 .068 .057 .052 .073 .058 .052 .073 .027 .046 .090
4c 0 0 -.5 .024 .056 .067 .023 .056 .066 .059 .052 .076 .054 .050 .072 .029 .047 .090
5b 0 0 .5 .026 .060 .070 .023 .056 .067 .054 .048 .071 .053 .048 .071 .027 .045 .083
5c 0 0 .5 .025 .057 .066 .023 .056 .067 .057 .052 .075 .055 .049 .070 .028 .047 .086

6b .2 0 0 .033 .056 .064 .122 .177 .199 .039 .047 .074 .134 .161 .208 .067 .128 .200
6c .2 0 0 .036 .058 .067 .125 .180 .203 .043 .051 .074 .135 .157 .205 .067 .128 .202
7b .2 0 -.2 .032 .057 .064 .120 .174 .198 .068 .076 .108 .172 .186 .239 .083 .147 .228
7c .2 0 -.2 .032 .059 .067 .122 .174 .198 .075 .085 .117 .177 .192 .243 .088 .148 .233
8b .2 0 .2 .034 .058 .064 .117 .168 .197 .076 .085 .116 .177 .195 .246 .090 .150 .231
8c .2 0 .2 .034 .059 .067 .122 .173 .198 .072 .082 .112 .172 .190 .243 .090 .150 .230
9b .2 0 -.5 .025 .059 .067 .103 .155 .192 .701 .682 .743 .759 .744 .798 .609 .644 .747
9c .2 0 -.5 .026 .058 .066 .092 .143 .183 .705 .687 .744 .763 .745 .800 .609 .645 .748
10b .2 0 .5 .027 .060 .071 .093 .144 .182 .709 .691 .754 .767 .751 .804 .614 .651 .755
10c .2 0 .5 .025 .058 .066 .102 .154 .192 .707 .690 .748 .763 .746 .800 .612 .646 .753

11b .5 0 0 .028 .063 .059 .816 .865 .885 .041 .051 .075 .825 .848 .886 .634 .782 .861
11c .5 0 0 .031 .065 .064 .810 .865 .888 .042 .052 .075 .822 .846 .884 .638 .783 .858
12b .5 0 -.2 .028 .064 .060 .768 .818 .862 .322 .344 .410 .929 .933 .952 .814 .895 .939
12c .5 0 -.2 .030 .065 .064 .763 .809 .850 .333 .355 .421 .930 .934 .954 .820 .898 .941
13b .5 0 .2 .031 .065 .062 .762 .808 .852 .335 .358 .425 .934 .938 .958 .818 .898 .944
13c .5 0 .2 .030 .066 .063 .771 .816 .859 .321 .343 .406 .932 .936 .956 .815 .900 .943

Table 2: One endogenous regressor and stronger instruments:
R22;z2 = :3, R22;z23 = :6, R23;z2 = :3, R23;z23 = :6
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

14b 0 0 0 .048 .058 .068 .042 .052 .065 .052 .051 .070 .046 .046 .068 .039 .044 .089
14c 0 0 0 .052 .061 .072 .045 .056 .068 .055 .053 .076 .048 .047 .070 .042 .047 .086
15b 0 0 -.2 .045 .058 .068 .045 .057 .070 .054 .050 .071 .052 .048 .070 .042 .045 .092
15c 0 0 -.2 .048 .059 .070 .045 .055 .068 .056 .052 .076 .051 .046 .070 .042 .047 .087
16b 0 0 .2 .048 .060 .070 .042 .054 .065 .053 .049 .070 .050 .047 .069 .040 .044 .087
16c 0 0 .2 .046 .058 .072 .044 .056 .068 .057 .053 .076 .051 .045 .066 .042 .046 .088

17b .2 0 0 .049 .058 .068 .328 .358 .392 .047 .046 .066 .329 .325 .387 .224 .241 .348
17c .2 0 0 .051 .061 .072 .329 .356 .391 .049 .047 .067 .328 .324 .388 .229 .247 .353
18b .2 0 -.2 .045 .058 .069 .306 .331 .372 .213 .202 .258 .482 .468 .535 .363 .372 .491
18c .2 0 -.2 .046 .059 .071 .304 .329 .370 .220 .210 .260 .485 .471 .536 .361 .367 .488
19b .2 0 .2 .047 .061 .070 .303 .326 .370 .225 .212 .270 .478 .464 .538 .361 .368 .488
19c .2 0 .2 .046 .059 .071 .307 .334 .375 .219 .208 .259 .480 .464 .534 .359 .365 .483

20b .5 0 0 .045 .063 .066 1 1 1 .023 .023 .037 1 1 1 .999 .999 1
20c .5 0 0 .048 .066 .069 1 1 1 .025 .024 .039 1 1 1 .999 .999 1
21b .5 0 -.2 .043 .065 .067 .994 .992 .996 .978 .975 .987 1 1 1 1 1 1
21c .5 0 -.2 .041 .061 .065 .994 .993 .995 .981 .978 .988 1 1 1 1 1 1
22b .5 0 .2 .043 .061 .065 .994 .993 .996 .980 .977 .987 1 1 1 1 1 1
22c .5 0 .2 .040 .061 .064 .994 .992 .996 .980 .976 .987 1 1 1 1 1 1
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Table 3: One endogenous regressor and weak instruments for y(2):
R22;z2 = :01, R22;z23 = :02, R23;z2 = :3, R23;z23 = :6
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

23a 0 0 0 .013 .031 .021 .001 .054 .051 .051 .050 .072 .001 .048 .070 .005 .044 .086
23b 0 0 0 .014 .032 .023 0 .054 .050 .055 .055 .076 .002 .047 .070 .005 .046 .089
24a 0 0 .5 .001 .052 .012 .001 .054 .056 .056 .050 .071 .047 .049 .071 .008 .045 .084
24b 0 0 .5 .001 .054 .016 .001 .055 .057 .060 .053 .076 .051 .052 .075 .007 .047 .087

25a .2 0 0 .013 .032 .021 .001 .057 .053 .050 .048 .071 .001 .047 .072 .005 .047 .089
25b .2 0 0 .011 .033 .021 0 .058 .054 .052 .052 .075 .002 .049 .070 .006 .047 .092
26a .2 0 .5 .003 .053 .026 .001 .059 .061 .345 .321 .389 .317 .324 .390 .083 .248 .353
26b .2 0 .5 .004 .056 .026 0 .060 .062 .337 .317 .381 .309 .316 .383 .083 .238 .342

27a .5 0 0 .012 .039 .019 .002 .089 .080 .049 .047 .069 .002 .062 .090 .005 .061 .113
27b .5 0 0 .012 .040 .020 .002 .087 .081 .050 .048 .069 .003 .059 .086 .005 .063 .114
28a .5 0 .5 .023 .060 .126 .002 .091 .103 1 1 1 1 1 1 .694 1 1
28b .5 0 .5 .023 .062 .122 .002 .091 .109 1 1 1 1 1 1 .696 1 1

Table 4: One endogenous regressor and weak instruments for y(3):
R22;z2 = :3, R22;z23 = :6, R23;z2 = :01, R23;z23 = :02
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

29b 0 0 0 .001 .058 .054 .012 .032 .020 .002 .045 .067 .048 .046 .069 .004 .044 .088
29c 0 0 0 .001 .058 .055 .011 .031 .021 .001 .049 .074 .049 .046 .070 .004 .044 .088
30b 0 0 .5 .001 .057 .060 .002 .056 .012 .047 .047 .070 .053 .047 .069 .007 .044 .087
30c 0 0 .5 .001 .060 .062 .001 .058 .013 .046 .048 .069 .054 .047 .068 .006 .045 .088

31b .2 0 0 .001 .059 .056 .100 .137 .141 .006 .156 .201 .328 .324 .386 .068 .242 .347
31c .2 0 0 .001 .059 .057 .101 .141 .145 .005 .156 .197 .329 .325 .384 .070 .244 .349
32b .2 0 .5 .001 .058 .069 .017 .072 .086 .867 .869 .904 .891 .880 .912 .428 .810 .881
32c .2 0 .5 .001 .061 .069 .016 .072 .094 .866 .868 .901 .892 .880 .910 .433 .809 .878

33b .5 0 0 .001 .063 .074 .572 .460 .643 .068 .600 .630 1 1 1 .667 .999 1
33c .5 0 0 .001 .064 .075 .570 .460 .637 .068 .593 .626 1 1 1 .658 .999 1
34b .5 0 .2 .001 .063 .074 .414 .298 .536 .429 .870 .883 1 1 1 .699 1 1
34c .5 0 .2 .001 .064 .081 .420 .311 .543 .430 .868 .884 1 1 1 .700 1 1

Table 5: One endogenous regressor and weak instruments:
R22;z2 = R

2
3;z2 = :01, R22;z23 = R23;z23 = :02

Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 32 W 2
3 D2

3 T 23 W 23 D23 T 23

35b 0 0 0 0 .033 .016 0 .032 .017 .002 .046 .068 .002 .047 .068 0 .043 .084
35c 0 0 0 0 .034 .016 0 .031 .016 .002 .047 .070 .002 .047 .067 0 .044 .083
36b 0 0 .5 0 .035 .020 .001 .037 .018 .003 .046 .069 .002 .046 .065 0 .044 .086
36c 0 0 .5 0 .033 .017 0 .034 .017 .002 .048 .068 .002 .048 .070 0 .044 .083

37b .2 0 0 0 .033 .017 0 .033 .016 .002 .050 .071 .001 .047 .068 0 .046 .089
37c .2 0 0 0 .033 .016 0 .032 .017 .002 .050 .071 .001 .049 .070 0 .047 .090
38b .2 0 .5 0 .037 .019 0 .036 .018 .003 .049 .074 .002 .050 .075 0 .050 .095
38c .2 0 .5 0 .038 .018 0 .036 .017 .002 .052 .076 .002 .054 .079 0 .049 .092

39b .5 0 0 0 .037 .018 0 .042 .022 .002 .058 .086 .003 .063 .088 0 .060 .112
39c .5 0 0 0 .038 .017 .001 .041 .021 .002 .057 .084 .003 .061 .089 0 .059 .112
40b .5 0 .5 0 .051 .026 0 .054 .032 .005 .086 .118 .007 .095 .125 0 .093 .157
40c .5 0 .5 0 .050 .024 .001 .057 .031 .005 .082 .115 .005 .091 .125 0 .092 .152
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Table 6: One endogenous regressor and asymmetric instrument strength:
R22;z2 = :3, R22;z23 = :5, R23;z2 = :1, R23;z23 = :4
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

1a 0 0 0 .001 .059 .036 .001 .057 .028 .057 .051 .072 .057 .050 .073 .008 .048 .090
1b 0 0 0 .034 .056 .066 .037 .053 .063 .041 .050 .069 .045 .048 .070 .026 .045 .089
1c 0 0 0 .033 .059 .071 .036 .052 .064 .043 .052 .073 .044 .047 .068 .027 .043 .086
1d 0 0 0 .002 .060 .036 .001 .059 .028 .054 .048 .069 .054 .049 .070 .008 .047 .089
2b 0 0 -.2 .030 .059 .069 .031 .058 .066 .049 .050 .073 .050 .048 .069 .027 .045 .093
2c 0 0 -.2 .037 .057 .070 .038 .053 .064 .043 .051 .073 .045 .047 .071 .028 .045 .086
2d 0 0 -.2 .002 .058 .024 .002 .057 .018 .043 .047 .069 .047 .047 .069 .006 .044 .089
3a 0 0 .2 .002 .058 .025 .003 .056 .018 .044 .049 .073 .048 .048 .071 .008 .045 .088
3b 0 0 .2 .037 .056 .068 .036 .049 .061 .041 .051 .071 .044 .046 .073 .027 .044 .088
3c 0 0 .2 .033 .059 .068 .030 .055 .063 .049 .050 .073 .047 .045 .067 .025 .045 .088
4c 0 0 -.5 .032 .055 .069 .033 .054 .066 .056 .052 .075 .054 .048 .071 .033 .046 .089
4d 0 0 -.5 .004 .054 .023 .006 .050 .022 .020 .047 .070 .035 .048 .071 .006 .044 .088
5a 0 0 .5 .005 .054 .026 .007 .047 .022 .022 .050 .071 .032 .046 .068 .007 .044 .089
5b 0 0 .5 .034 .060 .071 .030 .054 .066 .054 .049 .069 .054 .048 .069 .031 .043 .085

6a .2 0 0 .002 .059 .044 .005 .073 .073 .703 .684 .742 .714 .693 .753 .304 .590 .701
6b .2 0 0 .033 .057 .066 .190 .233 .264 .050 .059 .087 .224 .231 .289 .123 .177 .265
6c .2 0 0 .034 .059 .069 .192 .234 .265 .053 .062 .087 .224 .230 .288 .128 .179 .267
6d .2 0 0 .003 .059 .046 .005 .072 .074 .710 .692 .751 .721 .700 .758 .310 .596 .706
7b .2 0 -.2 .030 .060 .068 .161 .206 .245 .186 .189 .246 .349 .343 .410 .207 .258 .370
7c .2 0 -.2 .035 .059 .069 .203 .240 .272 .053 .062 .090 .231 .239 .301 .134 .185 .275
7d .2 0 -.2 .004 .058 .033 .010 .079 .056 .249 .265 .322 .285 .287 .348 .080 .223 .325
8a .2 0 .2 .003 .059 .032 .009 .080 .057 .246 .264 .322 .284 .286 .349 .082 .220 .317
8b .2 0 .2 .036 .058 .067 .202 .239 .272 .055 .066 .093 .232 .239 .298 .134 .182 .275
8c .2 0 .2 .031 .060 .068 .162 .206 .245 .188 .192 .246 .343 .337 .406 .217 .266 .369
9c .2 0 -.5 .031 .056 .068 .166 .200 .250 .615 .599 .665 .724 .708 .763 .586 .604 .710
9d .2 0 -.5 .005 .056 .032 .030 .104 .076 .056 .115 .151 .134 .172 .218 .037 .139 .214
10a .2 0 .5 .008 .056 .031 .035 .107 .077 .055 .114 .147 .130 .167 .215 .038 .135 .211
10b .2 0 .5 .033 .061 .072 .164 .198 .248 .622 .608 .670 .729 .715 .771 .589 .607 .720

11b .5 0 0 .032 .062 .064 .954 .958 .972 .145 .165 .208 .979 .979 .987 .937 .960 .981
11c .5 0 0 .032 .064 .066 .955 .959 .973 .147 .165 .213 .980 .979 .987 .942 .963 .983
12b .5 0 -.2 .030 .065 .064 .853 .848 .911 .930 .930 .951 1 1 1 .996 1 1
12c .5 0 -.2 .032 .064 .066 .960 .963 .973 .156 .176 .219 .986 .986 .990 .960 .971 .987
12d .5 0 -.2 .014 .063 .089 .100 .201 .330 .989 .991 .995 .997 .997 .998 .701 .995 .998
13a .5 0 .2 .013 .064 .089 .102 .197 .328 .991 .992 .995 .997 .996 .998 .699 .994 .998
13b .5 0 .2 .032 .063 .063 .961 .963 .975 .159 .179 .228 .986 .986 .992 .963 .973 .987
13c .5 0 .2 .030 .063 .063 .850 .843 .912 .930 .930 .951 1 1 1 .996 1 1
14d .5 0 -.5 .025 .066 .074 .302 .432 .498 .438 .619 .674 .867 .909 .934 .495 .872 .926
15a .5 0 .5 .022 .067 .074 .300 .427 .497 .443 .627 .681 .871 .910 .934 .493 .873 .926
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Table 7: Two endogenous regressors and mildly strong instruments:
R22;z2 = :2, R22;z23 = :4, R23;z2 = :2, R23;z23 = :4
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

57b .2 -.2 0 .135 .192 .213 .120 .181 .203 .154 .177 .225 .142 .167 .215 .138 .231 .336
57c .2 -.2 0 .125 .179 .202 .126 .183 .203 .142 .163 .212 .143 .168 .211 .132 .229 .327
58b .2 -.2 -.2 .113 .182 .197 .109 .176 .186 .076 .085 .121 .073 .083 .113 .076 .154 .238
58c .2 -.2 -.2 .106 .172 .184 .109 .177 .189 .073 .081 .113 .076 .086 .116 .072 .148 .231
59b .2 -.2 .2 .139 .182 .217 .130 .171 .207 .390 .414 .483 .383 .408 .478 .338 .433 .553
59c .2 -.2 .2 .130 .172 .204 .135 .176 .208 .382 .405 .474 .380 .405 .475 .335 .426 .546
60b .2 -.2 -.5 .078 .156 .172 .079 .158 .173 .057 .051 .071 .057 .052 .075 .044 .108 .177
60c .2 -.2 -.5 .072 .149 .165 .071 .146 .163 .056 .050 .072 .055 .050 .074 .045 .101 .170
61b .2 -.2 .5 .118 .150 .208 .116 .145 .202 1 1 1 1 1 1 .999 1 1
61c .2 -.2 .5 .111 .142 .201 .125 .156 .212 1 1 1 1 1 1 .999 1 1

62b .2 .2 0 .120 .174 .195 .126 .181 .199 .139 .163 .208 .143 .168 .215 .124 .218 .329
62c .2 .2 0 .131 .185 .207 .126 .182 .201 .149 .173 .221 .143 .166 .214 .132 .234 .332
63b .2 .2 -.2 .124 .164 .196 .135 .178 .208 .376 .400 .471 .384 .409 .477 .330 .426 .544
63c .2 .2 -.2 .134 .177 .214 .131 .175 .208 .391 .417 .485 .378 .402 .473 .342 .431 .547
64b .2 .2 .2 .102 .171 .183 .104 .173 .187 .072 .080 .111 .073 .081 .115 .065 .145 .227
64c .2 .2 .2 .112 .176 .192 .110 .176 .187 .075 .086 .117 .074 .084 .114 .068 .154 .239
65b .2 .2 -.5 .111 .141 .194 .127 .155 .210 1 1 1 1 1 1 .999 1 1
65c .2 .2 -.5 .120 .148 .212 .114 .145 .203 1 1 1 1 1 1 .999 1 1
66b .2 .2 .5 .069 .145 .162 .070 .146 .162 .054 .048 .070 .053 .046 .070 .041 .096 .164
66c .2 .2 .5 .075 .159 .173 .078 .158 .173 .059 .052 .077 .056 .049 .073 .045 .103 .177

67b .5 -.2 0 .137 .210 .216 .811 .857 .879 .194 .221 .272 .848 .867 .899 .773 .889 .936
67c .5 -.2 0 .127 .196 .205 .808 .860 .884 .181 .209 .255 .853 .872 .902 .773 .884 .934
68b .5 -.2 -.2 .094 .202 .186 .781 .853 .875 .045 .052 .078 .733 .750 .802 .586 .766 .848
68c .5 -.2 -.2 .091 .191 .174 .775 .847 .870 .050 .057 .082 .735 .753 .806 .590 .761 .844
69b .5 -.2 .2 .159 .195 .229 .746 .767 .830 .882 .891 .919 .996 .997 .998 .993 .999 .999
69c .5 -.2 .2 .147 .184 .223 .756 .777 .842 .878 .888 .918 .997 .997 .999 .992 .999 .999
70b .5 -.2 -.5 .047 .172 .141 .598 .686 .769 .995 .995 .997 1 1 1 .987 1 1
70c .5 -.2 -.5 .045 .163 .131 .592 .680 .758 .997 .995 .997 1 1 1 .988 1 1

71b .5 .2 0 .119 .192 .198 .813 .861 .885 .178 .203 .256 .845 .866 .900 .771 .883 .928
71c .5 .2 0 .131 .202 .210 .806 .855 .880 .189 .216 .270 .846 .866 .897 .775 .885 .935
72b .5 .2 -.2 .142 .178 .215 .756 .778 .845 .876 .884 .914 .997 .998 .999 .992 .998 .999
72c .5 .2 -.2 .158 .193 .227 .747 .767 .830 .882 .892 .920 .997 .997 .998 .993 .998 .999
73b .5 .2 .2 .086 .190 .171 .777 .848 .871 .052 .058 .084 .735 .753 .806 .585 .761 .847
73c .5 .2 .2 .094 .196 .177 .779 .853 .873 .049 .056 .081 .734 .753 .802 .586 .762 .846
74b .5 .2 .5 .042 .159 .130 .588 .679 .759 .997 .996 .998 1 1 1 .988 1 1
74c .5 .2 .5 .046 .170 .142 .599 .690 .768 .996 .995 .997 1 1 1 .987 1 1

75b .5 -.5 0 .805 .838 .870 .794 .831 .862 .936 .947 .963 .939 .948 .963 .986 1 1
75c .5 -.5 0 .800 .831 .862 .802 .836 .873 .937 .947 .962 .940 .949 .966 .987 1 1
76b .5 -.5 -.2 .803 .893 .895 .794 .886 .887 .416 .439 .504 .404 .427 .496 .849 .972 .985
76c .5 -.5 -.2 .799 .889 .889 .795 .888 .892 .408 .431 .496 .401 .425 .492 .849 .970 .984
77b .5 -.5 -.5 .603 .804 .820 .599 .803 .816 .061 .055 .078 .061 .054 .081 .342 .683 .783
77c .5 -.5 -.5 .598 .795 .809 .595 .793 .807 .057 .052 .078 .061 .054 .079 .340 .677 .774

78b .5 .5 0 .800 .835 .865 .802 .838 .872 .933 .944 .959 .939 .948 .963 .985 1 1
78c .5 .5 0 .809 .843 .872 .793 .828 .861 .935 .944 .961 .936 .946 .961 .987 1 1
79b .5 .5 .2 .795 .889 .889 .794 .886 .890 .408 .434 .503 .414 .435 .501 .842 .971 .986
79c .5 .5 .2 .804 .892 .892 .793 .887 .887 .416 .440 .507 .407 .431 .496 .844 .975 .987
80b .5 .5 .5 .596 .794 .807 .593 .792 .808 .057 .051 .077 .059 .054 .077 .340 .677 .776
80c .5 .5 .5 .603 .806 .816 .601 .799 .813 .060 .052 .078 .060 .054 .077 .346 .684 .783
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Table 8: Two endogenous regressors and stronger instruments:
R22;z2 = :3, R22;z23 = :6, R23;z2 = :3, R23;z23 = :6
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

81b .2 .2 0 .323 .350 .384 .331 .362 .394 .332 .327 .391 .338 .333 .400 .479 .497 .618
81c .2 .2 0 .334 .361 .393 .330 .359 .391 .337 .332 .399 .336 .331 .397 .481 .502 .619
82b .2 .2 -.2 .305 .314 .368 .318 .326 .380 .934 .928 .948 .937 .932 .951 .951 .948 .970
82c .2 .2 -.2 .319 .328 .383 .317 .324 .378 .935 .930 .949 .936 .931 .952 .954 .950 .974
83b .2 .2 .2 .290 .333 .358 .293 .339 .363 .100 .093 .129 .106 .098 .133 .232 .272 .384
83c .2 .2 .2 .296 .343 .367 .296 .343 .368 .105 .098 .137 .105 .097 .133 .244 .282 .390

84b .5 .2 0 .327 .360 .389 .999 .999 .999 .402 .395 .475 1 1 1 1 1 1
84c .5 .2 0 .342 .375 .404 .999 .999 1 .408 .403 .483 1 1 1 1 1 1
85b .5 .2 .2 .273 .357 .349 .999 .999 1 .200 .189 .250 .998 .998 .999 .999 1 1
85c .5 .2 .2 .283 .366 .360 .999 .999 .999 .192 .179 .240 .997 .997 .998 .999 .999 1

86b .5 .5 .2 1 1 1 1 1 1 .635 .613 .699 .640 .622 .702 1 1 1
86c .5 .5 .2 .999 .999 1 1 1 1 .637 .619 .700 .631 .610 .692 1 1 1

Table 9: Two endogenous regressors and weak instruments for y(3):
R22;z2 = :3, R22;z23 = :6, R23;z2 = :01, R23;z23 = :02
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

87b .2 .2 0 0 .060 .058 .105 .147 .147 .004 .162 .206 .338 .335 .398 .071 .256 .361
87c .2 .2 0 .001 .063 .060 .105 .146 .146 .005 .161 .203 .340 .334 .398 .072 .258 .364
88b .2 .2 -.2 0 .060 .060 .107 .136 .157 .089 .380 .443 .547 .537 .602 .158 .435 .556
88c .2 .2 -.2 .001 .064 .065 .105 .131 .158 .092 .390 .450 .546 .535 .605 .157 .438 .553
89b .2 .2 .2 .001 .061 .059 .045 .099 .077 .032 .172 .218 .259 .252 .311 .051 .194 .285
89c .2 .2 .2 .001 .064 .061 .047 .102 .081 .030 .169 .213 .258 .250 .309 .050 .193 .285
90b .2 .2 -.5 .001 .062 .074 .042 .078 .195 1 1 1 1 1 1 .735 1 1
90c .2 .2 -.5 .001 .067 .084 .041 .075 .182 1 1 1 1 1 1 .731 1 1
91b .2 .2 .5 .001 .060 .062 .006 .071 .038 .272 .280 .340 .311 .293 .353 .074 .224 .326
91c .2 .2 .5 .001 .063 .066 .005 .069 .040 .270 .276 .336 .307 .290 .349 .074 .226 .327

92b .5 .2 0 .001 .065 .074 .584 .466 .655 .075 .613 .644 1 1 1 .676 1 1
92c .5 .2 0 .001 .069 .078 .576 .463 .643 .074 .612 .640 1 1 1 .669 1 1
93b .5 .2 -.2 0 .068 .083 .449 .304 .572 .477 .900 .910 1 1 1 .731 1 1
93c .5 .2 -.2 .001 .070 .092 .451 .295 .570 .483 .906 .916 1 1 1 .737 1 1
94b .5 .2 .2 .001 .066 .077 .407 .317 .526 .388 .829 .851 1 1 1 .668 .999 1
94c .5 .2 .2 .001 .068 .076 .404 .316 .524 .384 .828 .850 .999 .999 1 .662 .999 1

95b .5 .5 0 .001 .093 .110 .615 .477 .682 .102 .679 .706 1 1 1 .702 1 1
95c .5 .5 0 .002 .101 .119 .605 .473 .671 .100 .675 .699 1 1 1 .695 1 1
96b .5 .5 .2 .001 .087 .097 .416 .361 .541 .356 .788 .812 .999 .999 .999 .634 .997 .999
96c .5 .5 .2 .002 .098 .106 .413 .359 .534 .348 .790 .815 .999 .999 .999 .622 .997 .999
97b .5 .5 .5 .001 .088 .102 .068 .156 .273 .998 .998 .999 1 .999 1 .676 .999 .999
97c .5 .5 .5 .001 .092 .104 .071 .168 .285 .997 .997 .998 .999 .999 1 .670 .998 1
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Table 10: Bootstrapped: One endogenous regressor and mildly strong instruments:
R22;z2 = :2, R22;z23 = :4, R23;z2 = :2, R23;z23 = :4
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

1b 0 0 0 .053 .048 .051 .050 .046 .048 .051 .051 .051 .047 .047 .047 .049 .050 .050
1c 0 0 0 .055 .052 .055 .051 .047 .050 .051 .051 .051 .049 .049 .048 .049 .050 .050
2b 0 0 -.2 .053 .051 .052 .052 .049 .050 .052 .052 .052 .049 .049 .049 .050 .050 .050
2c 0 0 -.2 .054 .051 .053 .051 .047 .049 .052 .052 .052 .046 .046 .046 .050 .051 .051
3b 0 0 .2 .052 .050 .052 .049 .046 .048 .052 .052 .052 .048 .048 .048 .048 .048 .048
3c 0 0 .2 .056 .052 .054 .050 .048 .049 .054 .054 .054 .046 .046 .046 .049 .049 .049
4b 0 0 -.5 .053 .051 .052 .049 .049 .050 .053 .053 .053 .054 .054 .054 .051 .049 .049
4c 0 0 -.5 .049 .049 .048 .047 .048 .047 .053 .053 .053 .051 .051 .051 .054 .052 .052
5b 0 0 .5 .052 .050 .052 .048 .048 .048 .050 .050 .050 .049 .049 .049 .047 .050 .050
5c 0 0 .5 .050 .049 .050 .049 .047 .048 .051 .051 .051 .047 .047 .047 .051 .050 .050

6b .2 0 0 .054 .049 .051 .176 .164 .172 .051 .051 .051 .162 .162 .162 .125 .132 .132
6c .2 0 0 .056 .052 .054 .177 .168 .174 .051 .051 .051 .159 .159 .159 .130 .138 .138
7b .2 0 -.2 .052 .051 .051 .173 .162 .169 .079 .079 .079 .191 .191 .191 .150 .153 .153
7c .2 0 -.2 .056 .052 .053 .172 .159 .170 .088 .088 .088 .192 .192 .192 .156 .156 .156
8b .2 0 .2 .053 .051 .052 .169 .155 .166 .088 .088 .088 .195 .195 .195 .158 .160 .160
8c .2 0 .2 .053 .052 .053 .171 .159 .169 .083 .083 .083 .190 .190 .190 .155 .156 .156
9b .2 0 -.5 .051 .051 .052 .159 .138 .159 .680 .680 .680 .740 .740 .740 .697 .652 .652
9c .2 0 -.5 .051 .048 .049 .147 .126 .148 .684 .684 .684 .742 .742 .743 .699 .650 .650
10b .2 0 .5 .051 .051 .052 .150 .128 .150 .692 .692 .692 .750 .750 .750 .710 .657 .657
10c .2 0 .5 .049 .049 .049 .162 .138 .161 .687 .687 .687 .743 .743 .743 .705 .654 .654

11b .5 0 0 .050 .051 .049 .864 .847 .861 .053 .053 .053 .844 .844 .844 .775 .788 .788
11c .5 0 0 .055 .055 .053 .861 .845 .858 .054 .054 .054 .842 .842 .842 .774 .786 .786
12b .5 0 -.2 .050 .053 .048 .833 .788 .833 .342 .342 .342 .932 .932 .932 .896 .896 .896
12c .5 0 -.2 .052 .053 .051 .823 .781 .824 .354 .354 .354 .932 .932 .932 .899 .900 .900
13b .5 0 .2 .051 .054 .050 .827 .777 .825 .356 .356 .356 .938 .938 .938 .902 .901 .901
13c .5 0 .2 .052 .053 .050 .833 .785 .832 .344 .344 .344 .935 .935 .935 .901 .901 .901

Table 11: Bootstrapped: One endogenous regressor and stronger instruments:
R22;z2 = :3, R22;z23 = :6, R23;z2 = :3, R23;z23 = :6
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

14b 0 0 0 .053 .051 .052 0.047 .045 .046 .052 .052 .052 .048 .048 .048 .049 .049 .049
14c 0 0 0 .057 .054 .056 0.050 .049 .049 .053 .053 .053 .048 .048 .048 .050 .051 .051
15b 0 0 -.2 .051 .051 .051 0.051 .050 .050 .052 .052 .052 .051 .051 .051 .050 .050 .050
15c 0 0 -.2 .052 .050 .052 0.050 .049 .049 .054 .054 .054 .048 .048 .048 .051 .051 .051
16b 0 0 .2 .053 .053 .053 0.049 .049 .048 .050 .050 .050 .048 .048 .048 .048 .049 .049
16c 0 0 .2 .053 .051 .053 0.049 .049 .049 .055 .055 .055 .046 .046 .046 .049 .049 .049

17b .2 0 0 .052 .052 .051 0.332 .326 .329 .047 .047 .047 .324 .324 .324 .249 .254 .254
17c .2 0 0 .057 .056 .056 0.333 .328 .331 .047 .047 .047 .323 .323 .323 .255 .258 .258
18b .2 0 .2 .052 .052 .051 0.313 .299 .312 .214 .214 .214 .465 .465 .466 .389 .378 .378
18c .2 0 .2 .051 .050 .050 0.323 .308 .320 .208 .208 .208 .464 .464 .464 .386 .376 .376
19b .2 0 -.2 .051 .051 .050 0.320 .306 .319 .205 .205 .205 .465 .465 .465 .389 .382 .382
19c .2 0 -.2 .053 .052 .053 0.315 .298 .312 .208 .208 .208 .468 .468 .468 .387 .379 .379

20b .5 0 0 .050 .052 .050 1 1 1 .025 .025 .025 1 1 1 .999 .999 .999
20c .5 0 0 .055 .055 .054 1 1 1 .025 .025 .025 1 1 1 .999 .999 .999
21b .5 0 .2 .049 .049 .050 .995 .989 .995 .976 .976 .976 1 1 1 1 1 1
21c .5 0 .2 .049 .049 .048 .995 .989 .994 .976 .976 .976 1 1 1 1 1 1
22b .5 0 -.2 .050 .053 .050 .994 .989 .994 .974 .974 .974 1 1 1 1 1 1
22c .5 0 -.2 .049 .051 .049 .994 .989 .994 .975 .975 .975 1 1 1 1 1 1
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Table 12: Bootstrapped: One endogenous regressor and weak instruments for y(2):
R22;z2 = :01, R22;z23 = :02, R23;z2 = :3, R23;z23 = :6
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

23b 0 0 0 .034 .038 .033 .029 .046 .042 .051 .051 .051 .050 .050 .050 .050 .049 .049
23c 0 0 0 .037 .038 .036 .027 .047 .042 .053 .054 .054 .048 .048 .048 .053 .050 .050
24b 0 0 .5 .014 .046 .024 .029 .047 .045 .051 .051 .051 .050 .050 .050 .050 .049 .049
24c 0 0 .5 .016 .049 .026 .028 .045 .042 .055 .055 .055 .054 .054 .054 .054 .051 .051

25b .2 0 0 .033 .036 .032 .029 .052 .049 .049 .049 .049 .049 .049 .049 .049 .052 .052
25c .2 0 0 .034 .038 .035 .033 .051 .047 .054 .054 .054 .052 .052 .052 .051 .052 .052
26b .2 0 .5 .016 .046 .032 .030 .052 .048 .323 .322 .323 .325 .325 .325 .261 .257 .257
26c .2 0 .5 .018 .049 .033 .033 .052 .050 .316 .316 .316 .315 .315 .315 .259 .248 .248

27b .5 0 0 .034 .044 .034 .047 .079 .069 .049 .049 .049 .064 .064 .064 .046 .068 .068
27c .5 0 0 .034 .044 .034 .046 .079 .071 .050 .050 .050 .060 .060 .060 .050 .069 .069
28b .5 0 .5 .031 .048 .076 .046 .077 .077 1 1 1 1 1 1 .848 1 1
28c .5 0 .5 .033 .050 .072 .048 .077 .083 1 1 1 1 1 1 .847 1 1

Table 13: Bootstrapped: One endogenous regressor and weak instruments for y(3):
R22;z2 = :3, R22;z23 = :6, R23;z2 = :01, R23;z23 = :02
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

29b 0 0 0 .029 .050 .045 .034 .039 .033 .047 .047 .047 .049 .049 .049 .047 .048 .048
29c 0 0 0 .031 .050 .046 .033 .035 .032 .050 .050 .050 .049 .049 .049 .048 .050 .050
30b 0 0 .5 .033 .051 .048 .013 .051 .024 .047 .047 .047 .050 .050 .050 .048 .049 .049
30c 0 0 .5 .032 .052 .050 .013 .052 .024 .049 .049 .049 .048 .048 .048 .047 .050 .050

31b .2 0 0 .031 .051 .047 .177 .141 .178 .157 .157 .157 .320 .320 0.320 .252 .253 .253
31c .2 0 0 .031 .053 .050 .186 .145 .186 .159 .159 .159 .323 .323 0.323 .257 .253 .253
32b .2 0 .5 .030 .050 .051 .038 .062 .074 .867 .867 .867 .876 .876 0.876 .688 .813 .813
32c .2 0 .5 .032 .051 .054 .041 .060 .079 .866 .866 .866 .879 .879 0.879 .692 .813 .813

33b .5 0 0 .030 .050 .054 .592 .399 .616 .599 .599 .599 1 1 1 .844 .999 .999
33c .5 0 0 .031 .052 .057 .590 .404 .613 .594 .594 .594 1 1 1 .842 .999 .999
34b .5 0 .2 .030 .052 .052 .388 .230 .451 .871 .871 .871 1 1 1 .861 1 1
34c .5 0 .2 .030 .053 .059 .392 .239 .455 .866 .866 .866 1 1 1 .861 1 1

Table 14: Bootstrapped: One endogenous regressor and weak instruments:
R22;z2 = R

2
3;z2 = :01, R22;z23 = R23;z23 = :02

Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 32 W 2
3 D2

3 T 23 W 23 D23 T 23

35b 0 0 0 .030 .038 .029 .028 .038 .028 .047 .047 .047 .048 .048 .048 .046 .047 .047
35c 0 0 0 .030 .040 .030 .029 .036 .029 .049 .049 .049 .048 .048 .048 .051 .049 .049
36b 0 0 .5 .031 .040 .032 .027 .043 .028 .048 .048 .048 .046 .046 .046 .045 .049 .049
36c 0 0 .5 .029 .036 .030 .026 .038 .027 .049 .049 .049 .049 .049 .049 .047 .049 .049

37b .2 0 0 .029 .038 .028 .026 .037 .027 .051 .051 .051 .049 .049 .049 .048 .051 .051
37c .2 0 0 .026 .039 .028 .030 .037 .029 .050 .050 .050 .050 .050 .050 .051 .053 .053
38b .2 0 .5 .027 .042 .031 .028 .040 .030 .050 .050 .050 .053 .053 .053 .048 .056 .056
38c .2 0 .5 .030 .043 .030 .026 .040 .028 .055 .055 .055 .056 .056 .056 .052 .054 .054

39b .5 0 0 .029 .042 .031 .033 .048 .036 .059 .059 .059 .065 .065 .065 .053 .065 .065
39c .5 0 0 .032 .043 .032 .034 .046 .036 .059 .059 .059 .060 .060 .060 .056 .067 .067
40b .5 0 .5 .035 .057 .040 .045 .058 .047 .087 .087 .087 .094 .094 .094 .072 .100 .100
40c .5 0 .5 .035 .054 .039 .040 .062 .047 .086 .086 .086 .092 .092 .092 .073 .098 .098
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Table 15: Bootstrapped: Two endogenous regressors and mildly strong instruments:
R22;z2 = :2, R22;z23 = :4, R23;z2 = :2, R23;z23 = :4
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

57b .2 -.2 0 .186 .175 .182 .179 .169 .175 .183 .183 .183 .167 .167 .167 .229 .242 .242
57c .2 -.2 0. .175 .166 .171 .179 .168 .175 .169 .169 .169 .170 .170 .170 .227 .239 .239
58b .2 -.2 -.2 .172 .168 .169 .159 .160 .157 .087 .087 .087 .084 .084 .084 .138 .164 .164
58c .2 -.2 -.2 .159 .160 .157 .162 .162 .160 .083 .083 .083 .085 .085 .085 .135 .158 .158
59b .2 -.2 .2 .191 .164 .189 .183 .155 .179 .414 .414 .414 .408 .408 .408 .469 .447 .447
59c .2 -.2 .2 .179 .154 .176 .183 .159 .179 .405 .405 .405 .408 .408 .408 .453 .438 .438
60b .2 -.2 -.5 .141 .141 .140 .139 .142 .139 .052 .052 .052 .052 .052 .052 .084 .117 .117
60c .2 -.2 -.5 .132 .132 .131 .129 .131 .131 .053 .053 .053 .051 .051 .052 .082 .108 .108
61b .2 -.2 .5 .173 .127 .176 .165 .123 .168 1 1 1 1 1 1 1 1 1
61c .2 -.2 .5 .163 .120 .162 .176 .134 .177 1 1 1 1 1 1 1 1 1

62b .2 .2 0 .171 .160 .167 .176 .167 .173 .165 .165 .165 .169 .169 .169 .220 .233 .233
62c .2 .2 0 .182 .172 .179 .176 .168 .173 .174 .174 .174 .165 .165 .165 .232 .244 .244
63b .2 .2 -.2 .171 .149 .169 .184 .160 .180 .397 .397 .397 .409 .409 .409 .456 .435 .435
63c .2 .2 -.2 .188 .161 .185 .184 .157 .181 .414 .414 .414 .399 .399 .399 .463 .440 .440
64b .2 .2 .2 .158 .158 .155 .161 .160 .158 .082 .082 .082 .083 .083 .083 .128 .152 .152
64c .2 .2 .2 .166 .165 .164 .164 .163 .161 .086 .086 .086 .083 .083 .083 .138 .164 .164
65b .2 .2 -.5 .161 .119 .163 .175 .135 .179 1 1 1 1 1 1 1 1 1
65c .2 .2 -.5 .176 .128 .178 .167 .123 .170 1 1 1 1 1 1 1 1 1
66b .2 .2 .5 .128 .130 .128 .132 .133 .132 .047 .047 .047 .048 .048 .048 .076 .102 .102
66c .2 .2 .5 .141 .140 .141 .141 .143 .141 .053 .053 .053 .051 .051 .051 .084 .111 .111

67b .5 -.2 0 .198 .183 .193 .861 .835 .859 .219 .219 .219 .861 .861 .861 .883 .891 .891
67c .5 -.2 0 .185 .170 .179 .863 .836 .861 .209 .209 .209 .866 .866 .866 .880 .886 .886
68b .5 -.2 -.2 .158 .179 .156 .847 .833 .845 .054 .054 .054 .750 .750 .750 .732 .768 .768
68c .5 -.2 -.2 .147 .167 .145 .842 .830 .842 .058 .058 .058 .750 .750 .750 .737 .771 .771
69b .5 -.2 .2 .212 .165 .208 .806 .722 .806 .890 .890 .890 .997 .997 .997 .998 .999 .999
69c .5 -.2 .2 .205 .153 .200 .815 .729 .817 .883 .883 .883 .997 .997 .997 .998 .998 .998
70b .5 -.2 -.5 .104 .150 .107 .714 .654 .722 .994 .994 .994 1 1 1 .997 1 1
70c .5 -.2 -.5 .096 .144 .099 .705 .644 .716 .995 .995 .995 1 1 1 .997 1 1

71b .5 .2 0 .181 .167 .176 .870 .842 .866 .205 .205 .205 .864 .864 .864 .874 .883 .883
71c .5 .2 0 .192 .177 .187 .860 .833 .857 .215 .215 .215 .861 .861 .861 .878 .889 .889
72b .5 .2 -.2 .199 .148 .195 .820 .734 .822 .882 .882 .882 .997 .997 .997 .998 .998 .998
72c .5 .2 -.2 .211 .163 .206 .809 .722 .808 .889 .889 .889 .997 .997 .997 .998 .998 .998
73b .5 .2 .2 .147 .166 .145 .842 .828 .840 .060 .060 .060 .749 .749 .749 .734 .769 .769
73c .5 .2 .2 .155 .174 .153 .846 .833 .845 .058 .058 .058 .746 .746 .746 .736 .767 .767
74b .5 .2 .5 .097 .141 .098 .708 .644 .716 .995 .995 .995 1 1 1 .997 1 1
74c .5 .2 .5 .102 .149 .106 .718 .651 .727 .994 .994 .994 .999 .999 .999 .997 1 1

75b .5 -.5 0 .867 .793 .862 .859 .783 .854 .944 .944 .944 .946 .946 .946 .998 1 1
75c .5 -.5 0 .856 .785 .854 .864 .791 .861 .945 .945 .945 .949 .949 .949 .998 1 1
76b .5 -.5 -.2 .875 .873 .874 .863 .860 .862 .440 .440 .440 .427 .427 .427 .945 .972 .972
76c .5 -.5 -.2 .864 .864 .863 .868 .862 .867 .430 .430 .430 .422 .422 .422 .940 .969 .969
77b .5 -.5 -.5 .769 .779 .771 .765 .776 .766 .054 .054 .055 .054 .054 .054 .506 .693 .693
77c .5 -.5 -.5 .759 .769 .762 .757 .766 .757 .052 .052 .052 .055 .055 .055 .501 .685 .685

78b .5 .5 0 .862 .789 .858 .866 .789 .861 .940 .940 .940 .945 .945 .945 .998 1 1
78c .5 .5 0 .867 .797 .865 .856 .781 .852 .944 .944 .944 .944 .944 .944 .998 1 1
79b .5 .5 .2 .865 .864 .865 .867 .862 .867 .431 .431 .431 .432 .432 .432 .938 .970 .970
79c .5 .5 .2 .872 .871 .871 .865 .861 .864 .440 .440 .440 .431 .431 .431 .944 .974 .974
80b .5 .5 .5 .754 .767 .758 .756 .766 .760 .053 .053 .053 .055 .055 .055 .498 .685 .685
80c .5 .5 .5 .765 .775 .767 .761 .771 .763 .054 .054 .054 .055 .055 .055 .510 .694 .694
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Table 16: Bootstrapped: Two endogenous regressors and stronger instruments:
R22;z2 = :3, R22;z23 = :6, R23;z2 = :3, R23;z23 = :6
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

81b .2 .2 0 .331 .322 .329 .339 .332 .337 .324 .324 .324 .336 .336 .336 .506 .510 .510
81c .2 .2 0 .340 .333 .338 .338 .331 .337 .330 .330 .330 .332 .332 .332 .508 .507 .507
82b .2 .2 -.2 .318 .282 .316 .333 .297 .330 .924 .924 .924 .928 .928 .928 .954 .948 .948
82c .2 .2 -.2 .330 .294 .329 .328 .292 .326 .927 .927 .927 .928 .928 .928 .958 .952 .952
83b .2 .2 .2 .304 .308 .303 .308 .311 .306 .097 .097 .097 .099 .099 .099 .260 .283 .283
83c .2 .2 .2 .308 .312 .308 .312 .315 .309 .102 .102 .102 .099 .099 .099 .272 .293 .293

84b .5 .2 0 .345 .325 .343 .999 .998 .999 .395 .395 .395 1 1 1 1 1 1
84c .5 .2 0 .357 .333 .354 .999 .999 .999 .403 .403 .403 1 1 1 1 1 1
85b .5 .2 .2 .298 .324 .294 .999 .998 .999 .189 .189 .189 .998 .998 .998 .999 .999 .999
85c .5 .2 .2 .307 .331 .305 .999 .998 .999 .181 .181 .181 .996 .996 .996 .999 .999 .999

86b .5 .5 .2 .999 .999 .999 1 1 1 .609 .609 .608 .618 .618 .618 1 1 1
86c .5 .5 .2 .999 .999 .999 1 1 1 .618 .618 .618 .603 .603 .603 1 1 1

Table 17: Bootstrapped: Two endogenous regressors and weak instruments for y(3):
R22;z2 = :3, R22;z23 = :6, R23;z2 = :01, R23;z23 = :02
Case �2 �3 �23 W 3 D3 T 3 W 2 D2 T 2 W 3

2 D3
2 T 32 W 2

3 D2
3 T 23 W 23 D23 T 23

87b .2 .2 0 .031 .053 .050 .187 .149 .187 .165 .165 .165 .334 .334 .334 .260 .268 .268
87c .2 .2 0 .031 .055 .050 .186 .148 .189 .162 .162 .162 .335 .335 .335 .269 .266 .266
88b .2 .2 -.2 .032 .052 .049 .159 .125 .171 .378 .378 .378 .535 .535 .535 .415 .447 .447
88c .2 .2 -.2 .032 .056 .053 .158 .119 .168 .389 .389 .389 .534 .534 .534 .418 .446 .446
89b .2 .2 .2 .031 .053 .049 .089 .097 .095 .175 .175 .175 .254 .254 .254 .204 .202 .202
89c .2 .2 .2 .031 .056 .050 .095 .099 .101 .168 .169 .169 .252 .251 .251 .203 .203 .203
90b .2 .2 -.5 .031 .051 .054 .056 .062 .127 1 1 1 1 1 1 .876 1 1
90c .2 .2 -.5 .035 .056 .059 .051 .060 .117 1 1 1 1 1 1 .877 1 1
91b .2 .2 .5 .034 .053 .048 .028 .062 .048 .281 .281 .281 .292 .292 .293 .237 .230 .230
91c .2 .2 .5 .035 .055 .051 .027 .063 .049 .279 .279 .279 .288 .288 .289 .232 .236 .236

92b .5 .2 0 .032 .055 .057 .599 .399 .626 .611 .611 .611 1 1 1 .846 1 1
92c .5 .2 0 .032 .056 .058 .584 .401 .613 .611 .611 .611 1 1 1 .837 1 1
93b .5 .2 -.2 .032 .051 .060 .404 .223 .487 .898 .898 .898 1 1 1 .877 1 1
93c .5 .2 -.2 .033 .056 .067 .408 .215 .484 .906 .906 .906 1 1 1 .878 1 1
94b .5 .2 .2 .031 .056 .058 .392 .250 .451 .829 .829 .829 .999 .999 .999 .843 .999 .999
94c .5 .2 .2 .033 .057 .055 .389 .252 .450 .827 .827 .827 .999 .999 .999 .839 .999 .999

95b .5 .5 0 .041 .076 .082 .613 .399 .648 .678 .678 .678 1 1 1 .856 1 1
95c .5 .5 0 .046 .084 .089 .602 .397 .635 .674 .674 .674 1 1 1 .847 1 1
96b .5 .5 .2 .042 .072 .073 .411 .296 .468 .788 .788 .788 .998 .998 .998 .811 .997 .997
96c .5 .5 .2 .045 .082 .080 .407 .294 .464 .789 .789 .789 .999 .999 .999 .801 .997 .997
97b .5 .5 .5 .044 .075 .076 .097 .132 .198 .998 .998 .998 .999 .999 .999 .837 .998 .998
97c .5 .5 .5 .045 .078 .078 .102 .142 .213 .997 .997 .997 .999 .999 .999 .831 .998 .998
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Table 18: Regression results for Griliches data, n = 758

OLS IV IV1 IV2

logW Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.
S .0928 .0067 .1783 .0186 .1289 .0162 .1550 .0113
IQ .0033 .0011 -.0099 .0052 -.0088 .0050 -.0017 .0013
EXPR .0393 .0063 .0461 .0076 .0348 .0070 .0495 .0068
RNS -.0745 .0288 -.1014 .0358 -.1096 .0341 -.0771 .0304
TEN .0342 .0077 .0398 .0090 .0394 .0086 .0363 .0082
SMSA .1367 .0279 .1291 .0321 .1475 .0305 .1212 .0296
CONS 3.8952 .1091 4.1049 .3552 4.6600 .3285 3.5641 .1244

Table 19: DWH tests for Griliches data

Variables Test Statistics Critical values

Test type Tested Instruments W D T �2:05 Ŵ bc
:05 D̂bc

:05 T̂ bc:05
Full-set S, IQ Z1,Z2 46.87 59.42 65.13 5.99 6.27 6.66 6.78
Full-set S Z1, Z2, IQ 50.56 55.90 60.96 3.84 4.69 4.70 4.77
Full-set IQ Z1, Z2, S 6.28 7.24 7.38 3.84 3.12 3.32 3.37
Sub-set S Z1, Z2 41.16 45.24 46.74 3.84 4.46 4.64 4.52
Sub-set IQ Z1, Z2 2.72 3.12 2.88 3.84 3.28 3.32 3.54
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