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Abstract
In dynamic regression models conditional maximum likelihood (least-squares)

coeffi cient and variance estimators are biased. From expansions of the coeffi cient

variance and its estimator we obtain an approximation to the bias in variance es-

timation and a bias corrected variance estimator, for both the standard and a bias

corrected coeffi cient estimator. These enable a comparison of their mean squared

errors to second order. We formally derive suffi cient conditions for admissibility of

these approximations. Illustrative numerical and simulation results are presented

on bias reduction of coeffi cient and variance estimation for three relevant classes

of first-order autoregressive models, supplemented by effects on mean squared er-

rors, test size and size corrected power. These indicate that substantial biases do

occur in moderately large samples, but these can be mitigated substantially and

may also yield mean squared error reduction. Crude asymptotic tests are cursed

by huge size distortions. However, operational bias corrections of both the esti-

mates of coeffi cients and their estimated variance are shown to curb type I errors

reasonably well.
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1. Introduction

Using conditioning on initial observations maximum likelihood estimation corresponds

to least squares estimation in normal dynamic regression models. It is well known that

the resulting estimators of the regression coeffi cients and of the disturbance variance,

and consequently the coeffi cient variance estimator, are all biased in finite samples.

With regard to the estimation of the disturbance variance, asymptotic approximations

can be used to show that deflating the sum of squared residuals not by the sample size

(T ), but by the smaller number known as the degrees of freedom, reduces the order

of its bias by a factor of T−1. Kiviet and Phillips (1998) shows that this bias can be

reduced by another factor T−1 when employing a much more sophisticated expression

for degrees of freedom correction. A natural extension to this work is to examine the

bias in estimators for the variance of the coeffi cient estimates. In addition to this, we

shall also examine the variance and mean squared error of a bias corrected estimator of

the full vector of coeffi cients, from which conclusions can be drawn on the effectiveness

of bias correction and on appropriate variance estimation of (bias corrected) estimators

and their effects on test size in stable normal ARX(1) models. In this class of model the

dependent variable is determined linearly by an arbitrary number of strongly exogenous

stationary or nonstationary regressor variables, the one period lagged dependent variable

with coeffi cient smaller than one in absolute value, and by normally distributed i.i.d.

disturbances.

We obtain our approximations to finite sample moments by extending the approach

followed by Nagar (1959) in such a way that the approximation errors of the results are

of order T−1 or T−2, as in Mikhail (1972), or even smaller. This requires the develop-

ment of a Taylor-type expansion and then the analytical evaluation of the expectation

of expressions which involve terms consisting of products of up to four quadratic forms

in standard normal vectors. In Kiviet and Phillips (2000) this methodology has been

used to show that 2SLS variance estimation in static simultaneous models is upwards

biased. The approximation of the moments of statistical estimators in stable autore-

gressive models by use of asymptotic expansions has already been undertaken for well

over half a century. Most early work is particularly concerned with the estimator of the

serial correlation coeffi cient in a first-order autoregressive Gaussian process, see Bartlett

(1946), Hurwicz (1950), Kendall (1954), Marriott and Pope (1954), White (1961), Shen-

ton and Johnson (1965) and Sawa (1978). In the latter three studies, which focus on

the AR(1) model (with no, a known, or an unknown intercept) an analysis is also given

of the variance of the least-squares coeffi cient estimator. Results on its mean squared

error for the model with unknown intercept and nonnormal errors have recently been

obtained in Bao (2007). No work has been done yet, however, to find out how well the

usual standard deviation estimator estimates the true standard errors in general linear
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dynamic econometric models, and what the options are for bias correction of variance

estimators of (possibly bias corrected) coeffi cient estimators. Nor have we seen a rather

simple proof of the general admissibility of the Nagar approach as presented here in

Appendix A.

Our results concern a more general model than the AR(1), because we allow for any

number of arbitrary exogenous regressors in the autoregressive model. As is usual in

that context, we will condition on the initial value of the dependent variable. In Kiviet

and Phillips (1993, 2012)1 the focus of attention is the bias of ordinary least-squares

(OLS) estimation of all the regression coeffi cients in the first-order normal linear dynamic

regression model. Here the focus is their second moment. The model is

y = λy−1 +Xβ + u, (1.1)

where y = (y1, ..., yT )′ is a T × 1 vector of observations on a dependent variable, y−1 is

the y vector lagged one period, i.e. y−1 = (y0, ..., yT−1)′, and X is a full column-rank

T × K matrix of observations on K fixed or strongly exogenous regressors (such as a

constant, a linear trend, step/impulse/seasonal dummy variables or any other covariates

not affected by feedbacks from the dependent variable). The scalar coeffi cient λ (with

|λ| < 1) andK×1 coeffi cient vector β are unknown, and u is a T×1 vector of independent

Gaussian disturbances with zero mean and constant variance σ2. The approach that we

follow might allow a relaxation of the normality assumption and enable results explicit

in cumulants (up to a certain order, see Bao and Ullah, 2007) of the disturbances to

be obtained, but this would clutter the already quite complex expressions substantially

and is therefore avoided here; the same can be said regarding increasing the order of the

dynamics (including y−2 etc.) or allowing for a random start-up value2. Thus, the present

derivations should be seen as a necessary stepping stone in establishing more general

results. Although for some special cases of the class of models considered presently

exact results are already available, whereas application of the bootstrap may implicitly

achieve some of the purposes of our analytical procedures, we nevertheless think that it

is useful to follow and develop the present approach, because eventually it should enable

a better understanding of the actual nature of finite sample problems especially in cases

where it seems impossible to ever obtain exact results and for situations where the

bootstrap may break down (as for instance, close to the unit circle and in the presence

of further weakly exogenous regressors which would complicate the design of appropriate

resampling schemes).

We first reiterate earlier results on the finite sample bias of OLS and next focus

on the usual estimator of the (asymptotic) variance of the OLS estimator α̂ of the full
1For related work in stable ARX models see also Kiviet and Phillips (1994) and Kiviet et al. (1995).

The finite sample characteristics of the first two moments of the least-squares coeffi cient estimators in

dynamic models with a unit root is analyzed in Kiviet and Phillips (2005).
2Results for variance estimation in ARX(1) models with random y0 can be found in KP (2010).
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coeffi cient vector α = (λ, β′)′ and its bias, and we shall develop a bias corrected variance

estimator. We shall also consider a bias corrected estimator α̌ of α and examine its mean

squared error and compare with α̂, both analytically and experimentally in simulations.

Rewriting (1.1) as

y = Zα + u, (1.2)

where Z = (y−1, X), the OLS estimator of the (K + 1)× 1 vector α is

α̂ = (Z ′Z)−1Z ′y, (1.3)

and, based on regularity conditions and asymptotic and finite sample arguments, its

variance V(α̂) = E[α̂− E(α̂)][α̂− E(α̂)]′ is usually estimated by

V̂ (α̂) = s2 (Z ′Z)
−1
, (1.4)

where

s2 =
(y − Zα̂)′(y − Zα̂)

T −K − 1
. (1.5)

Occasionally the degrees of freedom correction is omitted and σ2 is estimated by the ML

estimator σ̂2 = (y − Zα̂)′(y − Zα̂)/T. The coeffi cient variance estimator σ̂2(Z ′Z)−1 dis-

regards finite sample considerations. Note that in this model the derivation of moments

such as E (α̂) , V (α̂) and E[V̂ (α̂)] is non-trivial, because Z is stochastic and depends

linearly on u, whereas α̂ depends on u and nonlinearly on Z, so these moments involve

expressions which are all highly nonlinear in u.

Below in Section 2 we first rewrite Z in such a way that its dependence on u becomes

fully explicit, and next we produce, for the various moments of interest, expansions

consisting of individual terms whose expectations can be obtained analytically upon

using particular basic results. From these we obtain approximations to the MSE (mean

squared error) and the true variance of α̂ in the general ARX(1) model, and also to

the expectation of estimators of this variance. Even though we do not start off from an

explicit representation for the true variance (but only from a higher-order asymptotic

approximation), these results can be used to develop a bias correction to the standard

asymptotic variance estimator. In Appendix A we prove (which is a novelty in this line

of research) the validity of the claimed order of magnitude of the approximation errors,

and hence the admissibility of the Nagar approach in this model. Next, in Section 3,

we examine the first and second moments of an implementation of a bias corrected

estimator, which is unbiased to order T−1. In Section 4 we specialize the general results

and examine their implications for the specific case of a simple AR(1) model with an

unknown intercept. Here some remarkably simple analytic results on the scope for bias

and mean squared error reduction are obtained. In Section 5 we verify by Monte Carlo

simulation the numerical magnitude of the bias of alternative coeffi cient and variance

estimators and their effects on test size and power for a range of particular cases. Finally,
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in Section 6, we summarize our main conclusions. Proofs are indicated in a series of

Appendices; more detailed proofs can be found in Kiviet and Phillips (2010).

2. Bias of variance estimators in ARX(1) models

The starting point for our analysis is summarized as follows.

Assumption 2.1: In the first-order dynamic regression model y = λy−1 +Xβ+u, where

the scalar λ and the K× 1 vector β are unknown coeffi cients, we have: (i) stability, i.e.

|λ| < 1; (ii) the matrix Z = (y−1, X) is such that Z ′Z = Op(T ); (iii) the T × (K + 1)

matrix Z has rank(Z) = K + 1 with probability one and E(Z ′Z) is nonsingular; (iv) the

regressors in X are strongly exogenous; (v) the disturbances follow u ∼ N(0, σ2IT ).

For the derivations to follow the assumption (ii), which excludes a linear trend or

any I(1) regressors, yields a worst case analysis. The approximations we obtain can be

shown to be valid as well when some of the regressors are nonstationary, see Kiviet and

Phillips (2012). The only difference is that they then have a higher degree of accuracy

than under (ii). In what follows moments will always be taken conditional on X and y0

(without indicating this explicitly).

In order to distinguish the fixed (conditional on X and y0) and Zero-mean stochastic

elements of the regressor matrix Z, we decompose Z = Z̄+ Z̃, where Z̄ is defined as the

mathematical expectation of Z, i.e.

Z̄ = E(Z) = [E(y−1), X] = (ȳ−1, X) (2.1)

Z̃ = Z − Z̄ = (y−1 − ȳ−1, X −X) = (ỹ−1, O) = ỹ−1e
′
1, (2.2)

where e1 = (1, 0, ..., 0)′ is a unit vector of K + 1 elements. It follows directly from model

(1.1) that

ȳ−1 =



1 0 · · · 0

λ 1 · ·
λ2 λ 1 · ·
· · · · · ·
· · · 0

λT−1 · · · λ 1





y0

x′1β

x′2β

·
·

x′T−1β


, (2.3)

where X ′ = (x1, ..., xT ), and hence we find that Z̄ is determined by X, y0, β and λ.
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Defining

F =



1

λ

λ2

·
·

λT−1


and C =



0 · · · · 0

1 0 ·
λ 1 0 ·
· · · · ·
· · · · ·

λT−2 · · λ 1 0


, (2.4)

one can easily verify that

ỹ−1 = Cu and Z̃ = Cue′1. (2.5)

We find

E(Z ′Z) = E(Z̄ + Cue′1)′(Z̄ + Cue′1) (2.6)

= Z̄ ′Z̄ + σ2 tr(C ′C)e1e
′
1

and we shall denote the inverse of E(Z ′Z) by Q, whereas q1 denotes the first column of

Q, and q11 the first element of q1, hence:

Q = [E(Z ′Z)]−1, q1 = Qe1, q11 = e′1Qe1. (2.7)

Using the same notation the following results have been proved in Kiviet and Phillips

(2012).

Theorem 2.1: Under Assumption 2.1 the bias of the least-squares estimator (1.3) can

be approximated to first order as E(α̂− α) = B1(α̂) + o(T−1), where

B1(α̂) = −σ2[tr(QZ̄ ′CZ̄)q1 +QZ̄ ′CZ̄q1 + 2σ2q11 tr (CC ′C) q1].

Corollary 2.1: Under Assumption 2.1 the bias of the least-squares estimator λ̂ can

be approximated to first order as

E(λ̂− λ) = −σ2[q11 tr(QZ̄ ′CZ̄) + q′1Z̄
′CZ̄q1 + 2σ2q2

11 tr(CC ′C)] + o(T−1).

In fact, Kiviet and Phillips (2012) presents a more accurate and complicated second or-

der approximation to the bias of α̂. However, for our present purposes the O(T−1) bias

approximation of Theorem 2.1 suffi ces. Notice that the bias approximation in Theorem

2.1 involves the term tr (CC ′C) which is O(T ). This could be replaced by an approxima-

tion in λ, correct to O(1), without changing the order of the bias approximation. Such

an approximation is given in Appendix G but we prefer not to introduce it in Theorem

2.1 because it is somewhat cumbersome. In later theorems and corollaries other trace

terms involving the C matrix will appear and suitable approximations for them can also

be found in Appendix G.
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In order to obtain the bias approximation in Theorem 2.1 one has to find an expansion

(in this particular case of the estimation error) in such a form that successive terms are of

decreasing stochastic order so that the order of the remainder term is known, whereas the

individual terms in the expansion have an expectation which can be derived analytically.

Such results have been presented for various settings and special cases in the literature

already but usually little attention is being paid to their validity, in particular to the

existence of the expectation of the remainder term in the expansion. That the type of

approximations that we use in the present model are admissible is demonstrated for the

result in Theorem 2.1 in Appendix A. Irrespective of whether one wants to approximate

(the bias in) the first or the second moment of estimators for the coeffi cients (or for the

disturbance variance), the typical expansion will involve terms in which particular types

of expressions occur frequently. For many of these typical expressions their expectation

can be found in Kiviet and Phillips (2010, 2012), see also Bao and Ullah (2010) and

Ullah (2004).

We shall present results now that are relevant in order to obtain further insight into

matters of interest regarding (the estimation of) the second moment of the full vector

of least-squares coeffi cient estimators. In Appendix B we derive:

Theorem 2.2: Under Assumption 2.1 we find for the variance of the estimator α̂ the

approximation V(α̂) = E{[α̂− E(α̂)][α̂− E(α̂)]′} =

σ2Q

+σ4{[tr(QZ̄ ′CC ′Z̄)− 2 tr(QZ̄ ′CCZ̄) + tr(QZ̄ ′CZ̄QZ̄ ′CZ̄)]q1q
′
1

−QZ̄ ′(CC + C ′C + C ′C ′)Z̄q1q
′
1 − q1q

′
1Z̄
′(CC + C ′C + C ′C ′)Z̄Q

+QZ̄ ′CZ̄q1q
′
1Z̄
′CZ̄Q+QZ̄ ′(C + C ′)Z̄q1q

′
1Z̄
′C ′Z̄Q

+q1q
′
1Z̄
′(C + C ′)Z̄QZ̄ ′CZ̄Q+ q1q

′
1Z̄
′C ′Z̄QZ̄ ′(C + C ′)Z̄Q

+QZ̄ ′(C + C ′)Z̄QZ̄ ′CZ̄q1q
′
1 +QZ̄ ′C ′Z̄QZ̄ ′(C + C ′)Z̄q1q

′
1

+ tr(QZ̄ ′CZ̄)(q1q
′
1Z̄
′CZ̄Q+QZ̄ ′C ′Z̄q1q

′
1) + (q′1Z̄

′CZ̄q1)QZ̄ ′(C + C ′)Z̄Q

+q11[tr(QZ̄ ′CZ̄)QZ̄ ′(C + C ′)Z̄Q+QZ̄ ′(CC ′ − CC − C ′C ′)Z̄Q
+QZ̄ ′CZ̄QZ̄ ′CZ̄Q+QZ̄ ′C ′Z̄QZ̄ ′C ′Z̄Q]}

+2σ6{6q′1Z̄ ′CZ̄q1 tr(CC ′C)q1q
′
1

+q11[tr(CC ′CC ′)− 4 tr(CC ′CC)− 2 tr(CC ′C ′C) + 2 tr(CC ′C) tr(QZ̄ ′CZ̄)]q1q
′
1

+q11 tr(CC ′C)(2QZ̄ ′CZ̄q1q
′
1 + 2q1q

′
1Z̄
′C ′Z̄Q+ 3QZ̄ ′C ′Z̄q1q

′
1 + 3q1q

′
1Z̄
′CZ̄Q)

+q2
11 tr(CC ′C)QZ̄ ′(C + C ′)Z̄Q}

+20σ8q2
11[tr(CC ′C)]2q1q

′
1 + o(T−2).

Corollary 2.2: Under Assumption 2.1 we find from Theorem 2.2 for the variance of
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the estimator λ̂ the approximation V(λ̂) = E[λ̂− E(λ̂)]2 =

σ2q11

+σ4{5(q′1Z̄
′CZ̄q1)2

+q11[6q′1Z̄
′CZ̄QZ̄ ′CZ̄q1 + 4q′1Z̄

′C ′Z̄QZ̄ ′CZ̄q1

+q′1Z̄
′(3CC ′ − 6CC − 4C ′C)Z̄q1 + 4q′1Z̄

′CZ̄q1 tr(QZ̄ ′CZ̄)]

+q2
11[tr(QZ̄ ′CC ′Z̄)− 2 tr(QZ̄ ′CCZ̄) + tr(QZ̄ ′CZ̄QZ̄ ′CZ̄)]}

+2σ6{18q2
11q
′
1Z̄
′CZ̄q1 tr(CC ′C)

+q3
11[tr(CC ′CC ′)− 4 tr(CC ′CC)− 2 tr(CC ′C ′C) + 2 tr(CC ′C) tr(QZ̄ ′CZ̄)]}

+20σ8q4
11[tr(CC ′C)]2 + o(T−2).

Next we shall examine how closely the above rather complex approximation to the

actual variance of the coeffi cient estimator corresponds to the expectation of the usual

estimator for the true variance. In Appendix C we prove:

Theorem 2.3: Under Assumption 2.1 we find for the expectation of the usual estimator

V̂(α̂), given in (1.4), of V(α̂) the approximation E[V̂(α̂)] = E[s2(Z ′Z)−1] =

σ2Q+ σ4{[tr(QZ̄ ′CC ′Z̄)− 2T−1 tr(C ′C)]q1q
′
1 +QZ̄ ′CC ′Z̄q1q

′
1 + (q1q

′
1 + q11Q)Z̄ ′CC ′Z̄Q}

+2σ6q11 tr(CC ′CC ′)q1q
′
1 + o(T−2).

Corollary 2.3: Under Assumption 2.1 the expectation of the usual estimator of the

variance of the estimator λ̂ can be approximated as E[V̂(λ̂)] = E[s2e′1(Z ′Z)−1e1] =

σ2q11 + σ4{3q11(q′1Z̄
′CC ′Z̄q1) + q2

11[tr(QZ̄ ′CC ′Z̄)− 2T−1 tr(C ′C)]}
+2σ6q3

11 tr(CC ′CC ′) + o(T−2).

Note that the approximation to order T−1 (the leading term) of both V(α̂) and E[V̂(α̂)]

is simply σ2Q. However, the second-order approximations of V(α̂) and E[V̂(α̂)] differ

markedly with respect to contributions of order T−2. Note that Theorem 2.3 implies that

the first-order approximation to E[σ̂2(Z ′Z)−1], the estimator which omits a degrees of

freedom correction, is given by σ2Q too; self-evidently, the degrees of freedom correction

does not affect the leading term. Since the second-order approximation to E[σ̂2(Z ′Z)−1]

equals the expression given in Theorem 2.3 plus the term −K+1
T
σ2Q we find that this

differs from both the expressions given in Theorems 2.2 and 2.3. Whether or not these

differences have an actual magnitude that is worth bothering about has to be found out

by numerical evaluation of these expressions for given values ofX, y0, α and σ2 at relevant

sample sizes T, and by comparing these approximate expressions with estimates of the

true variance which can be obtained from Monte Carlo experiments. If these differences

can be substantial it would seem interesting to develop a corrected estimator of V(α̂),
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say V̌(α̂), which adds particular terms to the standard estimator V̂(α̂), such that E[V̌(α̂)]

is equivalent to V(α̂) to second order. We shall elaborate on the issue of bias reduction

of variance and of coeffi cient estimators in the next section.

A more focussed comparison of the above analytical results on variance matrices is

possible if we limit ourselves to the simpler scalar results for the single lagged dependent

variable coeffi cient λ. Again we note that the two approximations given in Corollaries

2.2 and 2.3 differ substantially with respect to their order T−2 terms, which may be an

indication that there is scope for developing a second-order unbiased estimator V̌(λ̂) for

V(λ̂).

3. The effi ciency of bias corrected coeffi cient estimators

The approach already laid out in the foregoing section consists of three stages: (i)

approximate the second moment of a coeffi cient estimator to second order and next,

(ii) obtain to second order the expectation of a variance estimator of that coeffi cient

estimator in order to, (iii) exploit these results to correct the variance estimator such

that it will become unbiased to second order. This can also be applied to a bias corrected

least-squares estimator in which the result of Theorem 2.1 has been exploited such that

the corrected estimator is unbiased to order T−1. For the expression α̂ − B1(α̂), with

B1(α̂) as given in Theorem 2.1, it is obvious that this has expectation α + o(T−1), but

it is not an operational estimator, because σ2, Q, Z̄, and C are unobservable. However,

consider the operational corrected ordinary least-squares (COLS) estimator defined as

α̌ ≡ α̂− B̂1(α̂), with (3.1)

B̂1(α̂) = −s2[tr(PẐ ′ĈẐ)p1 + PẐ ′ĈẐp1 + 2s2p11 tr(ĈĈ ′Ĉ)p1],

where α̂ and s2 are the usual least-squares estimators, P = (Z ′Z)−1, which has first

column p1 with first element p11, Ẑ = (F̂ y0 + ĈXβ̂,X) and Ĉ corresponds to C (as F̂

corresponds to F ) with the unknown λ replaced by λ̂. In Appendix D we show that

the difference between the corresponding terms in the non-operational and operational

forms of the COLS estimator are of stochastic order T−3/2; hence both estimators have

the same expected value to order T−1. Thus we have:

Theorem 3.1: Under Assumption 2.1 the COLS estimator α̌ = α̂ − B̂1(α̂) given in

(3.1) is unbiased to order T−1, i.e. E(α̌) = α + o(T−1).

Corollary 3.1: Under Assumption 2.1 the COLS estimator λ̌ for λ defined as

λ̌ ≡ λ̂− B1(λ̂) = λ̂+ s2[p′1Ẑ
′ĈẐp1 + p11 tr(PẐ ′ĈẐ) + 2s2p2

11 tr(ĈĈ ′Ĉ)]
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is unbiased to order T−1.

For estimator α̌ we obtain in Appendix E:

Theorem 3.2: Under Assumption 2.1 we find for the variance of the bias corrected

estimator α̌ given in (3.1) the approximation V(α̌) = E{[α̌− E(α̌)][α̌− E(α̌)]′} =

σ2Q

+σ4{[tr(QZ̄ ′CC ′Z̄) + tr(QZ̄ ′CZ̄QZ̄ ′CZ̄)]q1q
′
1

+QZ̄ ′CC ′Z̄q1q
′
1 + q1q

′
1Z̄
′CC ′Z̄Q+QZ̄ ′CZ̄q1q

′
1Z̄
′C ′Z̄Q

+QZ̄ ′CZ̄QZ̄ ′CZ̄q1q
′
1 + q1q

′
1Z̄
′C ′Z̄QZ̄ ′C ′Z̄Q+ q11QZ̄

′CC ′Z̄Q}
+2σ6{2q′1Z̄ ′CZ̄q1 tr(CC ′C)q1q

′
1 + q11 tr(CC ′CC ′)q1q

′
1

+q11 tr(CC ′C)[QZ̄ ′CZ̄q1q
′
1 + q1q

′
1Z̄
′C ′Z̄Q]}

+4σ8q2
11[tr(CC ′C)]2q1q

′
1 + o(T−2).

Corollary 3.2: Under Assumption 2.1 we find V(λ̌) = E[λ̌− E(λ̌)]2 =

σ2q11 +

+σ4{(q′1Z̄ ′CZ̄q1)2 + q11(2q′1Z̄
′CZ̄QZ̄ ′CZ̄q1 + 3q′1Z̄

′CC ′Z̄q1)

+q2
11[tr(QZ̄ ′CC ′Z̄) + tr(QZ̄ ′CZ̄QZ̄ ′CZ̄)]}

+2σ6[4q2
11q
′
1Z̄
′CZ̄q1 tr(CC ′C) + q3

11 tr (CC ′CC ′)]

+4σ8q4
11[tr(CC ′C)]2 + o(T−2).

Note that the expression for the second order contribution to the variance of the corrected

estimator is substantially simpler than for the uncorrected least-squares estimators given

in Theorem 2.2 and Corollary 2.2.

In deriving Theorem 3.2 and its Corollary 3.2 we have also obtained an approximation

for the MSE of the corrected estimator, because the variance and MSE are equivalent up

to the order of the approximation. Comparison of these with theMSE of the uncorrected

estimator, which of course differs from the variance in the O(T−2) terms due to the

O(T−1) coeffi cient bias, yields information on any possible effi ciency gains or losses

through bias correction.

From the results in Theorems 2.3 and 3.2 it follows that the variance of the COLS

estimator V(α̌) can be estimated unbiasedly to order T−1 by V̂(α̌) ≡ s2(Z ′Z)−1 = s2P,

i.e. the standard OLS estimator, because V(α̌) and E[s2(Z ′Z)−1] both have leading term

σ2Q. However, from the same Theorems it also follows (proof in Appendix F) that an

estimator which is unbiased to the order of T−2 can be constructed as follows.

Theorem 3.3: Under Assumption 2.1 the estimator for the variance V̌(α̌), of the bias

corrected estimator α̌ given in (3.1), has E[V̌(α̌)− V(α̌)] = o(T−2), and hence is almost
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unbiased, if we define V̌(α̌) ≡

s2P

+s4{[tr(PẐ ′ĈẐP Ẑ ′ĈẐ) + 2T−1 tr(Ĉ ′Ĉ)]p1p
′
1

+PẐ ′ĈẐp1p
′
1Ẑ
′Ĉ ′ẐP + PẐ ′ĈẐP Ẑ ′ĈẐp1p

′
1 + p1p

′
1Ẑ
′Ĉ ′ẐP Ẑ ′Ĉ ′ẐP}

+2s6 tr(ĈĈ ′Ĉ)[2(p′1Ẑ
′ĈẐp1)p1p

′
1 + p11(PẐ ′ĈẐp1p

′
1 + p1p

′
1Ẑ
′Ĉ ′ẐP )]

+4s8p2
11[tr(ĈĈ ′Ĉ)]2p1p

′
1.

Corollary 3.3: Under Assumption 2.1 the variance estimator V̌(λ̌) of the corrected

estimator λ̌ is unbiased to second order for its true variance V(λ̌) when defining V̌(λ̌) ≡

s2p11 +

+s4{(p′1Ẑ ′ĈẐp1)2 + 2p11(p′1Ẑ
′ĈẐP Ẑ ′ĈẐp1) + p2

11[tr(PẐ ′ĈẐP Ẑ ′ĈẐ) + 2T−1 tr(Ĉ ′Ĉ)]}
+8s6p2

11p
′
1Ẑ
′ĈẐp1 tr(ĈĈ ′Ĉ)

+4s8p4
11[tr(ĈĈ ′Ĉ)]2.

It is relatively easy now to obtain, in the same spirit as the result of Theorem 3.3,

an operational bias corrected estimator V̌(α̂) for the variance of the uncorrected OLS

estimator. In the next sections we shall just encounter its element V̌(λ̂), and for the sake

of completeness we simply present therefore (without further derivations) its formula

V̌(λ̂) ≡ s2p11 + (3.2)

+s4{5(p′1Ẑ
′ĈẐp1)2

+p11[6p′1Ẑ
′ĈẐP Ẑ ′ĈẐp1 + 4p′1Ẑ

′Ĉ ′ẐP Ẑ ′ĈẐp1

−6p′1Ẑ
′ĈĈẐp1 − 4p′1Ẑ

′Ĉ ′ĈẐp1 + 4p′1Ẑ
′ĈẐp1 tr(PẐ ′ĈẐ)]

+p2
11[tr(PẐ ′ĈẐP Ẑ ′ĈẐ)− 2 tr(PẐ ′ĈĈẐ) + 2T−1 tr(Ĉ ′Ĉ)]}

+s6{36p2
11p
′
1Ẑ
′ĈẐp1 tr(ĈĈ ′Ĉ)

−p3
11[8 tr(ĈĈ ′ĈĈ) + 4 tr(ĈĈ ′Ĉ ′Ĉ)− 4 tr(ĈĈ ′Ĉ) tr(PẐ ′ĈẐ)]}

+20s8p4
11[tr(ĈĈ ′Ĉ)]2.

4. Results for the AR(1) model with intercept

In this section we focus on the variance of the OLS and COLS estimators for the lagged

dependent variable coeffi cient λ in the model of Assumption 2.1 with an intercept as the

one and only exogenous regressor, hence

yt = λyt−1 + β + ut. (4.1)

In order to obtain specific results for this special model from our general formulas given

in the earlier sections, it is helpful to rescale the model. Defining

y∗t ≡
1

σ

(
yt −

β

1− λ

)
, t = 0, ..., T (4.2)
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and substituting in (4.1), we obtain y∗t = λy∗t−1 +ut/σ, indicating that general results for

the AR(1) model with unknown intercept and arbitrary start-up are obtained by taking

in fact a unit disturbance variance, zero intercept and start-up value y∗0, indicating that

all results will be invariant with respect to β and σ.

Corollary 2.1 easily reduces for this AR(1) model to the well-known Kendall (1954)

approximation (proofs for all results in this section can be found in Appendix G)

E(λ̂− λ) = − 1

T
(1 + 3λ) + o(T−1). (4.3)

Hence, this approximation proves to be valid irrespective of β, σ and the nature of the

start-up value y0. From Corollary 2.2 we find for the true variance

V(λ̂) =
1− λ2

T
− 1− λ2

T 2
y∗20 −

1− 4λ− 14λ2

T 2
+ o(T−2), (4.4)

where the leading term (1 − λ2)/T is simply the asymptotic variance of λ̂. Notice that

the variance V(λ̂) decreases the more y0 deviates from its stationary mean β/(1 − λ).

Obviously, by adding to V(λ̂) the square of the first-order bias, we obtain

MSE(λ̂) =
1− λ2

T
− 1− λ2

T 2
y∗20 +

λ(10 + 23λ)

T 2
+ o(T−2). (4.5)

For the expectation of the standard variance estimator, which is here

V̂(λ̂) = s2p11 = s2

[
T∑
t=1

(
yt−1 −

1

T

T∑
t=1

yt−1

)2
]−1

, (4.6)

we find, using Corollary 2.3,

E[V̂(λ̂)] =
1− λ2

T
− 1− λ2

T 2
y∗20 +

2 + 2λ+ 5λ2

T 2
+ o(T−2). (4.7)

It is obvious that V̂(λ̂) is unbiased to order T−1, but biased to order T−2, since its second

order term differs from the corresponding one of (4.4). So, even though we do not know

V(λ̂) exactly, we find from its approximation that the standard estimator is biased to

second order, viz.

E[V̂(λ̂)− V(λ̂)] =
3− 2λ− 9λ2

T 2
+ o(T−2), (4.8)

implying that V̂(λ̂) overstates (omitting o(T−2) terms) whenever −0.699 < λ < 0.477

and understates otherwise. Employing the same type of reasoning as in Section 3 we

can obtain an almost unbiased estimator of V(λ̂), viz.

V̌(λ̂) ≡ V̂(λ̂)− 3− 2λ̂− 9λ̂
2

T 2
, (4.9)

which is unbiased to O(T−2), and is a special case of (3.2).
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For the simple model (4.1) our implementation of COLS leads to (cf Sawa, 1978,

p.165)

λ̌ ≡ λ̂+
1

T
(1 + 3λ̂) =

T + 3

T
λ̂+

1

T
. (4.10)

Specializing now the result of Corollary 3.2 for this AR(1) model we obtain

V(λ̌) =
1− λ2

T
− 1− λ2

T 2
y∗20 +

5 + 4λ+ 8λ2

T 2
+ o(T−2) (4.11)

= V(λ̂) + 6

(
1− λ2

T 2

)
+ o(T−2).

Note that this reflects the fact that correcting an estimator for bias will invariably lead

to an increase in variance. However, from (4.5) and (4.11), which is a second order

approximation to MSE(λ̌) too, it also follows that

MSE(λ̌) = MSE(λ̂) +
5− 6λ− 15λ2

T 2
+ o(T−2), (4.12)

from which a rather precise result follows, viz.:

Theorem 4.1: In the AR(1) model with intercept the OLS estimator λ̂ is likely to

be more effi cient than the bias corrected estimator λ̌ only when −0.811 < λ < 0.411,

because to order T−2 such λ values imply MSE(λ̂) < MSE(λ̌), and the reverse otherwise.

Hence, if λ > 0.411 it seems always beneficial to use the COLS estimator in this model.

In a similar way, it can be derived for the AR(1) model with no (or known) intercept

that bias correction yields a MSE reduction when |λ| > 0.707.

An asymptotically valid estimator for the variance V(λ̌) is provided by V̂(λ̂), but an

estimator unbiased to order T−2 follows simply from (4.11) and (4.8), viz.

V̌(λ̌) ≡ V̂(λ̂) +
3 + 2λ̂+ 3λ̂

2

T 2
, (4.13)

although the correction could also be evaluated in λ̌. Note that V̂(λ̂) is negatively biased

for V(λ̌) to second order, because 3 + 2λ+ 3λ2 > 0.

Bias correction of AR(1) models has been entertained in the literature in many

studies, see inter alia Copas (1966), Orcutt and Winokur (1969), Rudebusch (1992)

and MacKinnon and Smith (1998). All these studies based their bias correction on the

Kendall (1954) approximation to the bias (4.3), although, instead of using (4.10), all the

studies just referred to used a bias corrected estimator λ̇ which is obtained by solving

λ̂ = λ̇− 1

T
(1 + 3λ̇).

This yields a bias corrected estimator which slightly differs from (4.10), viz.

λ̇ ≡ T

T − 3
λ̂+

1

T − 3
, (4.14)
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leading to the following relationships:

Theorem 4.2: In the AR(1) model with intercept the corrected estimators λ̌ and λ̇

are both unbiased to order O(T−1), but λ̇ has uniformly (for any |λ| < 1) smaller

second order bias than λ̌, whereas the latter is uniformly more effi cient than λ̇ because

MSE(λ̌) < MSE(λ̇) to order T−2.

Note that there is no straightforward generalization of λ̇ for general ARX models unless

one is willing to solve highly non-linear equations. In the next section we shall examine

the actual numerical significance and accuracy of all the above analytical findings.

5. Numerical results

We shall examine the estimators λ̂, λ̌ and λ̇, their actual bias and effi ciency, the accuracy

of the approximations to their first two moments and the qualities of their respective

(bias corrected) variance estimators for three types of models, viz.: (i) model (4.1), i.e.

the AR(1) model with intercept; (ii) the AR(1) with both intercept and linear trend;

and (iii) the autoregressive model with an intercept and one strongly exogenous regressor

generated by an AR(1) process itself. For that purpose we perform various numerical

evaluations and execute a series of Monte Carlo experiments in which we shall also

examine the effects on test size when bias corrected coeffi cient or variance estimators

are used.

In what follows we simply write V(λ̂) for what in fact is the Monte Carlo estimate

of V(λ̂). Because we generated a great number of replications (105) for each design

the Monte Carlo estimates will be very close to the actual population characteristics.

Also for the mean over the Monte Carlo replications of λ̂ we simply write E(λ̂) and

the Monte Carlo estimate of the bias E(λ̂) − λ of λ̂ is indicated as B(λ̂), and likewise

for λ̌ and λ̇. For the mean over the simulations of V̂(λ̂) we write E[V̂(λ̂)], and similarly

for the estimated expectations of V̌(λ̂) and V̌(λ̌). Often the results are given as ratios.

Self-evidently, when E[V̂(λ̂)]/V(λ̂) is unity this indicates unbiasedness of V̂(λ̂) and values

smaller (greater) than one are found in case of negative (positive) bias, whereas the ratio

MSE(λ̌)/MSE(λ̂) indicates an effi ciency gain due to bias correction if it is smaller than

unity, and so on. In accordance with Assumption 2.1 we restrict ourselves to |λ| < 1

in all experiments, with an emphasis on positive values. As we also want to explore in

particular where in the parameter space the (higher-order) asymptotic approximations

break down (which they naturally will do in extreme cases) we examine rather small

values of T and a range of λ values including 0.99.
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5.1. Results for the AR(1) model with intercept

In the AR(1) model with intercept only, we have two versions of all asymptotic approx-

imations, viz. the general formulae of Sections 2 and 3 after substituting X = ι, which

we call the untrimmed expressions, and those of Section 4, which we call the trimmed ex-

pressions, because all higher-order terms have been eliminated here. In Tables 1 through

3 we examine the trimmed expressions for the AR(1) model with intercept, assuming

mean-stationarity, hence y∗0 = 0, giving E(yt) = β/(1− λ). Note that all results for the

mean-stationary AR(1) model given here are invariant with respect to β and σ. We

write V1(λ̂) for the leading term of the asymptotic variance of λ̂, which is (1 − λ2)/T.

The second-order asymptotic approximation to V(λ̂) is denoted as V2(λ̂). Using (4.4) we

find

V2(λ̂) =
1− λ2

T
− 1− λ2

T 2
y∗20 −

1− 4λ− 14λ2

T 2
. (5.1)

Apart from the bias in V̂(λ̂) we also examine the bias of two alternative estimators of

V(λ̂), viz. V̂2(λ̂) and V̌(λ̂). By V̂2(λ̂) we denote the estimator obtained by replacing λ

by λ̂ in (5.1), and the bias corrected estimator V̌(λ̂) is given by (4.9).

In Table 1 we find for the mean-stationary fixed start-up model the following. B(λ̂),

the actual bias of λ̂, its variance V(λ̂) and the bias in the standard estimator V̂(λ̂) are

given in columns (2) through (4) respectively, for various values of λ and T . In fact,

column (4) presents the relative bias of V̂(λ̂) plus unity. In relative terms the bias

of λ̂ is especially serious for small values of λ, and in absolute terms the situation is

worst for large positive λ. When T = 20 the coeffi cient bias is large (for positive λ

about -25%) and also at T = 50 it is still substantial (about -10% for λ ≥ 0.2). Note

that for substantial λ the bias of λ̂ and the standard deviation of λ̂ are about of equal

magnitude. The Kendall formula suggests that the bias changes sign at λ = −0.33. The

actual bias results are found to be in agreement with that, and as a matter of course

the bias is small around λ = −0.3. From column (5) of this table we also see that the

Kendall formula for the bias, evaluated at the true (but in practice unknown) value of

λ, is rather accurate at T = 50 for negative and non-extreme positive values of λ. For

λ close to one it understates the actual bias, but oddly enough it is more accurate for

positive λ when T is smaller. Column (3) shows how V(λ̂) changes with λ and T. Column

(6) shows that its first-order asymptotic approximation V1(λ̂) (evaluated for the true λ

values) is very inaccurate, especially at extreme λ values, also at T = 50. However, from

column (7) we see that the second-order approximation that we developed here is much

better, especially at T = 50. Column (4) shows that, in agreement with our conclusions

from (4.8), the standard estimator for V(λ̂) systematically overstates for moderate and

negative (but not extremely negative) λ values, whereas it is much too optimistic for

positive substantial values of λ and even more so at T = 50 than at a smaller sample

size. Column (9) shows that at small sample size our corrected estimator V̌(λ̂) is actually
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very good and at T = 50 it is in fact almost unbiased, even for extreme values of λ. For

smaller values of T it behaves adequately, though slightly conservatively. From column

(8) we see that the alternative estimator V̂2(λ̂) in (5.1) is less satisfactory for extreme λ

values. Hence, Table 1 shows that in this model the bias corrected variance estimator

V̌(λ̂) is a much better variance estimator than the standard expression V̂(λ̂). However,

for correcting the bias in λ̂ itself, the situation seems less promising, because even when

evaluated at the true λ value the bias approximation shows some defects and, especially

for large λ and T = 50, results are not as accurate as regarding V̌(λ̂). Hence, having an

almost unbiased estimator for its variance seems cold comfort. Therefore we proceed to

examine a bias correction of λ̂.

In Table 2 columns (3) and (4) show that the bias corrected estimator λ̌ is much

less biased than λ̂, in general. From column (7) we see that effi ciency gains (losses) can

be substantial when λ is 0.8 or larger (0.2 or smaller); this is in close agreement with

the first-order results of Theorem 4.1. Surprisingly, for larger T the potential effi ciency

losses decrease, whereas the potential gains increase. Next we examine whether we

have an adequate estimator of V(λ̌). Column (5) shows that estimator (4.13) tends to

have a negative bias. In column (6) we tried an estimator, denoted V̌∗(λ̌), which differs

from (4.13), because we evaluated the correction term in λ̌ rather than in λ̂. Although

equivalent to (4.13) to second order, we see that this leads to more satisfactory results.

Note that in finite samples there is a non-zero probability that | λ̂ |≥ 1. The frequency of

such occurrences is reported in column (2). In practice, where one has a single sample,

one might be tempted to adjust such an estimate in one way or another, in order to

satisfy the stability assumption |λ| < 1. This would of course not only affect the bias,

since the resulting distribution would be truncated and have a correspondingly different

variance. In Table 2 we did not use any such adjustments. Note that Theorem 3.1 holds

because λ̂ = λ + Op(T
−1/2), with |λ| < 1, which does not exclude the occurrence of

| λ̂ |≥ 1 in the substitution (3.1) that generates λ̌. From column (8) we see that values

of λ̌ in the non-stationarity region occur very frequently, especially when λ is extreme

and T is small.

The sharp increase of the frequency of values of λ̌ in the non-stationarity region

in comparison to this happening with the OLS estimator λ̂ is slightly worrying. This

increase is due to the fact that λ̂ values which are large in absolute value, induce λ̌ values

that are even farther away from zero after bias correction. Although asymptotically

valid in general, the estimation of our correction terms is really meant for λ̂ values

which are absolutely smaller than one. These asymptotic properties are not jeopardized,

however, if we redefine λ̌ and V̌(λ̌) such that the involved corrections of λ̂ and V̂(λ̂) are

only performed when | λ̂ |< 1 and leaving λ̂ and V̂(λ̂) unchanged otherwise. In Table

2A we have done so in columns (2) through (4). We have omitted the frequencies of

estimators λ̂ and λ̌ falling into the non-stationarity region as these are unaffected, also
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for λ̌, because the only effect of this re-definition is that when λ̂ is already in the non-

stationarity region, the correction is not pushing it into non-stationarity any further.

Self-evidently this adapted procedure has an effect for extreme λ values only, where

| λ̂ |≥ 1 actually occurs, and then it leads, as we see, to a slightly less successful bias

correction of the coeffi cient, but also to slightly less bias in the variance estimator and

to a minor improvement in MSE.

To really avoid large frequencies of corrected estimators in the non-stationarity re-

gion, we could be more drastic in our re-definition of λ̌, viz. not correcting λ̂ if the

correction would lead to a non-stationary value. The estimator V̌(λ̌) of such a λ̌ esti-

mator could then be taken as either the original formula when λ̂ is corrected and V̂(λ̂)

otherwise3. We have examined this procedure in Table 2A columns (5) through (7).

Now there is as a rule again less bias reduction in the coeffi cient estimator, but the

variance estimator is always conservative and actually very good, even for very small

sample size, whereas there is a substantial improvement again in the MSE ratio’s. An

obvious attraction of this correction procedure is that it does not aggravate (but neither

precludes) the occurrence of estimators in the non-stationarity region, which after all

are a natural phenomenon for least-squares in finite samples as this technique does not

impose the stability restriction.

In Table 2B we present results for the alternative bias corrected estimator λ̇. Theorem

4.2 predicts that this estimator is less biased than λ̌, but less effi cient too, neglecting

the effects of higher order terms. We find at the sample sizes examined (and for versions

of λ̇ and λ̌ that have been corrected in all replications) that the first property generally

holds except for λ close to −1. Especially for moderate values of λ the estimator λ̇ has

much less bias. It is remarkable that λ̇ is also a bit more effi cient than λ̌ when λ is

large and positive, but this goes with a higher probability to produce estimates in the

non-stationarity region. Because it is computationally cumbersome to generalize λ̇ for

models with more regressors, we will stick here to the type of correction as performed

in λ̌.

5.2. Results for the AR(1) model with intercept and another regressor

First we present a few results for the AR(1) model with intercept and trend4

yt = λyt−1 + β1 + β2t+ ut, (5.2)

3In the latter instance one could also take V̌(λ̂), but some initial experimentation showed that this

will yield a heavily biased variance estimator when λ values are close to the unit circle.
4Generalizations of this model (also allowing λ = 1 and higher-order dynamics) are examined in Roy

et al. (2004) where the focus is not on estimating and testing λ, but on the trend coeffi cient.
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which we rescale by defining

y∗t ≡
1

σ

[
yt −

1

1− λ

(
β1 +

λ

1− λβ2

)
− 1

1− λβ2t

]
, t = 0, ..., T. (5.3)

Substitution yields y∗t = λy∗t−1 + ut/σ, indicating that general results are obtained by

taking a unit disturbance variance and a zero intercept and zero trend coeffi cient, with

start-up value y∗0. We examine the mean-stationary fixed start-up case, with y
∗
0 = 0 i.e.

y0 = [β1 + λβ2/(1 − λ)]/(1 − λ), for which all the results are invariant with respect to

β1, β2 and σ. We found that in models with more regressors than just a constant our

original correction procedures work only reasonably well for moderate values of λ with

T not too small. However, if correction is performed only conditional on either λ̂ or λ̌

not in the non-stationarity region, then results of practical interest are also obtained in

more extreme cases.

From Table 3 it is seen how badly biased λ̂ is in the model with trend when T is

small. It is also seen that V̂(λ̂) has serious shortcomings, whereas the corrected variance

estimator V̌(λ̂) already works pretty well for T = 50. The first order bias approximation

B1(λ̂) calculated for the true parameter values (not presented in the Table) is not very

accurate for small T , especially not for large λ, and consequently the estimator λ̌ shows

still substantial bias. Nevertheless column (7) shows that it is more effi cient than OLS

for λ ≥ 0.4, whereas its variance can be assessed remarkably well by V̌(λ̌). Column (9)

shows with what probability the corrected estimator would have obtained values in the

non-stationarity region if we had not followed again the same strategy as in the last

columns of Table 2A, which assures that λ̌ is only in the non-stationarity region when

λ̂ is.

Next we shall perform some experiments for the stationary autoregressive model with

intercept and one strongly exogenous regressor, which itself is stationary and first-order

autoregressive, i.e.
yt = λyt−1 + β1 + β2xt + σεt,

xt = ρxt−1 + ξt.

 (5.4)

Here εt and ξt are both mutually independent i.i.d. N(0, 1) series. In addition to |λ| < 1

we assume |ρ| < 1 and strong stationarity implies

V(yt) =
1

1− λ2

(
σ2 +

β2
2

1− ρ2

1 + λρ

1− λρ

)
. (5.5)

In our simulations we shall only compare models with parameter values such that they

have all equivalent signal-to-noise ratio

SNR =
V(yt)− σ2

σ2
, (5.6)
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and thus, normalizing σ2 = 1, we chose

β2 =

∣∣∣∣∣
√

[SNR(1− λ2)− λ2](1− ρ2)
1− λρ
1 + λρ

∣∣∣∣∣ ,
which requires λ2 ≤ SNR/(SNR + 1). We will fix SNR = 19 (i.e. the population

R2 = 0.95) and therefore have to restrict our calculations to |λ| ≤ 0.975. For the series

xt we chose ρ = 0.95 so that a relatively smooth time-series results. We generated only

one arbitrary xt series, which has been used in all Monte Carlo replications (numbering

again 105). Hence our results do not pertain to the whole family of models (5.4), but

only to a very particular case. Note that, in agreement with this, all our theorems are

about moments of coeffi cient estimators conditional on X.

In Table 4 we show results for λ ≥ 0 only, but also include T = 100. Note that

the bias is again substantial in small samples, that for large λ values V̂(λ̂) is negatively

biased, but so is V̌(λ̂), although this behaves notably better. Because the first order bias

approximation B1(λ̂) is reasonably accurate (if λ is not very large whilst T very small) λ̌

shows substantial bias reduction, especially for larger T and moderate λ. Therefore λ̌ is

much more effi cient than λ̂, especially for larger λ values. Even when T = 100 and the

least-squares bias is not very large (although note that it is not much smaller than the

standard deviation of λ̂) still substantial effi ciency gains are achieved by bias correction.

However, V̌(λ̌) underestimates the variance when there is an effi ciency improvement,

though it is less biased than V̌(λ̂) and V̂(λ̂) are. The final column shows that leaving

OLS uncorrected did not occur very often for larger T .

5.3. Results on test statistics

Finally we examine how bias correction of either or both coeffi cient and variance esti-

mators affect operational test procedures in which any bias corrections have been esti-

mated. We consider various one-sided tests of H0 : λ = λ0 both against the left-hand

and against the right-hand side alternative, all at nominal significance level 5%. They

are the habitual test statistic t ≡ (λ̂−λ0)/[V̂(λ̂)]1/2, and three corrected statistics where

the estimators λ̌, V̌(λ̂) and V̌(λ̌) are exploited, i.e. t∗ ≡ (λ̌−λ0)/[V̂(λ̂)]1/2 where the bias

corrected coeffi cient is used, t∗ ≡ (λ̂ − λ0)/[V̌(λ̂)]1/2 where only the denominatorλ̌ has

been corrected, and t∗∗ ≡ (λ̌ − λ0)/[V̌(λ̌)]1/2 where both the coeffi cient estimate and its

variance have been corrected. Table 5 presents results on actual test size when using Stu-

dent critical values for the mean-stationary AR(1) model with intercept and trend, for

which only untrimmed corrections have been derived. For both alternative hypotheses

we find that the size distortions for the standard t-test are extremely severe. Correcting

just the numerator (shifting the location of the distribution) does mitigate the prob-

lems against right-hand side alternatives and for positive λ0 also against left-hand-side

alternatives. Correcting just the denominator (adjusting the scale of the distribution)
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does not help much to cure the size problems. The results for t∗∗ show that adjusting

both numerator and denominator leads to a test that converges faster to an exact test,

especially for moderate and negative values of λ0. Performing the correction always (also

when
∣∣λ̌∣∣ ≥ 1) does not seem harmful for the tail probabilities.

For models such as those examined here Rudebusch (1992, 1993) suggests tests which

mimic t∗. The results in Table 5 suggest that a much more successful finite sample

correction of test statistics will be achieved by not just applying bias correction to

parameter estimators but also to the associated variance estimators. The required bias

approximation to the variance of the already bias corrected coeffi cient estimator has been

derived here for any first-order autoregressive model. Now the remaining question is what

the effects of such corrections are for test power. For this we consider again the simple

AR(1) model with intercept. This shows substantial size distortions too, especially for

large values of λ, but again much less so for the t∗∗ statistic. From calculated size-

corrected rejection frequencies for a range of λ values under the alternative hypothesis

we established that the power seems hardly affected by giving special treatment to

estimates outside the stationarity region. Therefore Table 6 just presents results for

the standard statistics. These show that the better size control achieved by correcting

both numerator and deminator has no detrimental effects on power. On the contrary,

when testing values close to one we note an improvement in rejection frequency of false

null hypotheses by bias correction of both the estimated coeffi cient and its estimated

variance.

6. Conclusions

By adapting and extending techniques we employed in some earlier papers to approx-

imate to an accuracy of order O(T−2) the bias of the least-squares estimators for all

the parameters (both coeffi cients and disturbance variance) in linear regression models

with a lagged dependent explanatory variable, we find here an approximation to the

same order for the mean squared error and for the true variance of the least-squares

coeffi cient estimator. For the latter approximation we find that its algebraic expression

differs substantially from an approximation to the same order of accuracy for the expec-

tation of the expression that is usually employed to estimate the variance on the basis of

standard asymptotic reasoning. This means that the usual variance estimator, although

asymptotically valid, has a bias in finite samples which can be reduced by employing

alternative estimators derived in this paper. We employed similar techniques to approx-

imate the variance of bias corrected coeffi cient estimators and to develop bias corrected

estimators for the variance of such bias corrected coeffi cient estimators. The analytic

results presented in this paper may be illuminating as such (showing how complicated

basic notions such as variance and its estimation are in a single linear dynamic regression
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model), but should be of use primarily for improving the accuracy of inference in finite

samples of single dynamic regression models. Earlier, see Rudebusch (1992, 1993), test

statistics were adapted by just using bias corrected coeffi cient estimates; the present

results allow one to adapt their variance estimates as well. We undertook in this study

some numerical and simulation analysis to obtain insight into the seriousness of the finite

sample inaccuracies of first-order asymptotic expressions for first and second moments

of estimators and also into the ability of the higher-order asymptotic analytical approxi-

mations to assess and to correct such discrepancies and to improve the control over type

I errors in inference.

Our bias corrected coeffi cient and variance estimators are found to work surprisingly

well in the AR(1) model with intercept, even for small sample sizes, but less so close

to the unit circle. In models with an extra explanatory variable, such as a linear trend

or an arbitrary strongly exogenous AR(1) regressor, we still find surprisingly accurate

results after correction, especially when the sample size is not too small. However, it

is also found that there may be some adverse effects on the accuracy of higher-order

approximations due to the occurrence of estimates of the autoregressive parameter close

to or outside the stationarity region, but we show how these effects can be mitigated.

Note that it might be possible to achieve even better results by slightly adapting the

implementations of our bias corrected versions λ̌, V̌(λ̂) and V̌(λ̌), by not taking Ĉ in the

respective formulas, but by iterating at least once and using Č (the same for Ẑ). Also σ2

could be re-estimated on the basis of residuals obtained by employing λ̌ and β̌. Whether

such modifications have further positive effects on accuracy and effi ciency has not been

explored here. We find strong analytical evidence for simple AR(1) models when bias

correction will increase the mean squared error (−0.81 < λ < 0.41) and when it will

decrease it (otherwise). In addition, the simulation experiments show more generally

that exploiting our higher-order asymptotic findings can often substantially reduce bias

and mean squared error at the same time, and almost resolve test size problems without

deteriorating power. More particularly, we found that bias correction may be more

effective from a mean squared error point of view when the sample size is moderate

rather than in smaller samples, where the coeffi cient bias is usually much larger but

harder to assess accurately due to larger variances.

Hopefully the present results for single first-order dynamic models will form a step-

ping stone to achieve useful results for more general models as for instance the multi-

variate higher-order VAR model, where the determinants of bias have been studied, see

Abadir et al. (1999), but no results are available yet on variance and MSE, which of

course are much more relevant (see Mikhail, 1972, footnote 1).
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Appendices

A. Validity of the approximations

Let Assumption 2.1* comprise all elements of Assumption 2.1, including ut ∼ i.i.d.(0, σ2)

for t = 1, ..., T , but excluding the normality of u. Here we examine by what Assumption

2.1* should be supplemented in order to guarantee admissibility of the Nagar approach.

Premultiplying model (1.2) by Z ′ and taking expectations (and hence assuming that

these exist on both sides) gives

E(Z ′y) = E(Z ′Z)α, (A.1)

because E(Z ′u) = 0. That E(Z ′u | X) exists and is zero is implied by (2.5) and Assump-

tion 2.1*, since the latter entails the existence of the first two moments of u. Because we

assumed that E(Z ′Z) is nonsingular the set of equations (A.1) in α can be solved and

leads to

α = [E(Z ′Z)]−1E(Z ′y). (A.2)

Notice that α̂, given in (1.3), is the same function, though of the components of Z ′Z

and Z ′y, instead of E(Z ′Z) and E(Z ′y). Hence, upon collecting all distinct components

of the data cross-products Z ′Z and Z ′y in a vector d, we have α̂ = f(d) and α = f(δ),

where δ = E(d).

We shall now focus on the i-th scalar component fi(·) of the vector valued function
f(·) and assume that fi(·) is differentiable up to third order with derivatives that are
uniformly bounded in a neighbourhood of δ as T → ∞. We also assume that the com-
ponents of d do not just have finite first moment, as already assumed above, but finite

moments up to (at least) third order. Then expanding α̂i = fi(d) in a Taylor series

about the point δ yields

α̂i = αi + (d− δ)′f (1)
i (δ) +

1

2!
(d− δ)′f (2)

i (δ)(d− δ) +
1

3!

∑
j(dj − δj)(d− δ)′f

(3)
ij (δ∗)(d− δ),

(A.3)

where f (1)
i = ∂fi

∂δ
, f

(2)
i = ∂2fi

∂δ∂δ′ and f
(3)
ij =

∂f
(2)
i

∂δj
. The derivatives in f (3)

ij are evaluated at δ∗

which lies between δ and d. Because all derivatives in (A.3) are bounded as T →∞ and

Assumption 2.1* implies d− δ = Op(T
−1/2) the successive terms in the expansion are of

decreasing order of stochastic magnitude and its remainder term is Op(T
−3/2), whereas

the expectation of this remainder term is bounded and o(T−1). The expectation of the

first term being zero, the expectation of the second term in the expansion therefore

provides a bias approximation to O(T−1). This approximation will coincide with that

obtained by the Nagar expansion.

Similar arguments can be used to show that an expansion up to q-th order with

q + 1-th order remainder term requires bounded q + 1-th derivatives of f and then,
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assuming in addition the existence of finite moments of d up to q + 1-th order, which

in the present model requires the existence of the moments of u up to order 2(q + 1),

an approximation to E(α̂) of order O(T−q/2) follows with the remainder term having

bounded expectation of order O(T−(q+1)/2). The same line of reasoning leads to the

requirements for admissibility of approximations to the second moment of α̂ as obtained

in this study.

From the above it follows immediately that the normality that we adopted in As-

sumption 2.1 is suffi cient for the admissibility of the Nagar approach up to any order,

because it ensures the existence of the moments of any order of d.What remains are the

additional mild assumptions regarding the derivatives of f.

B. An approximation to V(α̂)

For the variance V(α̂) of the least-squares estimator α̂ we have

V(α̂) = E[α̂− E(α̂)][α̂− E(α̂)]′ (B.1)

= E[α̂− α][α̂− α]′ − [E(α̂)− α][E(α̂)− α]′.

We want to approximate this to the order of O(T−2). We shall make use of

Z ′u = Z̄ ′u+ Z̃ ′u = Z̄ ′u+ (u′Cu)e1 = Op(T
1/2), (B.2)

The first term of (B.1) is MSE(α̂). For this we find

E(α̂− α)(α̂− α)′ = E(Z ′Z)−1Z ′uu′Z(Z ′Z)−1. (B.3)

We first develop an expansion of (Z ′Z)−1. Referring to (2.6) and (2.7) we have

E(Z ′Z) = Q−1 = Z̄ ′Z̄ + E(Z̃ ′Z̃), and so

Z ′Z = (Z̄ + Z̃)′(Z̄ + Z̃) (B.4)

= E(Z ′Z)− E(Z̃ ′Z̃) + Z̄ ′Z̃ + Z̃ ′Z̄ + Z̃ ′Z̃

= {IK+1 + (Z̄ ′Z̃ + Z̃ ′Z̄)Q+ [Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q}Q−1.

Hence,

(Z ′Z)−1 = Q{IK+1 + (Z̄ ′Z̃ + Z̃ ′Z̄)Q+ [Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q}−1, (B.5)

where the stochastic terms (Z̄ ′Z̃ + Z̃ ′Z̄)Q and [Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q are both Op(T
−1/2).

The inverse matrix of the form [In +A]−1, with A = Op(T
−1/2) an n×n matrix, may be

expanded in [In − A + A2 − A3 + ...], whereby successive terms are of decreasing order

in probability. The expansion retains terms up to a certain order and in this way an

expansion is obtained which includes terms up to any desired order. For an expansion

25



of (Z ′Z)−1 to order T−2 we require

(Z ′Z)−1 = Q{IK+1 − (Z̄ ′Z̃ + Z̃ ′Z̄)Q− [Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q (B.6)

+(Z̄ ′Z̃ + Z̃ ′Z̄)Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q+ (Z̄ ′Z̃ + Z̃ ′Z̄)Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q

+[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q+ [Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q}
+op(T

−2),

whereas the expansion to order T−3/2 amounts to

(Z ′Z)−1 = Q−Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q−Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q+ op(T
−3/2), (B.7)

and to order T−1 we simply have

(Z ′Z)−1 = Q+ op(T
−1). (B.8)

The expansion (B.6) for (Z ′Z)−1 can be written as

(Z ′Z)−1 = Q(IK+1 −W1 −W2 +W1W1 +W1W2 +W2W1 +W2W2) + op(T
−2) (B.9)

where we introduced some further shorthand notation, viz.

W1 = (Z̄ ′Z̃ + Z̃ ′Z̄)Q = Z̄ ′Cuq′1 + e1u
′C ′Z̄Q = Op(T

−1/2) (B.10)

and

W2 = [Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q = [u′C ′Cu− σ2 tr(C ′C)]e1q
′
1 = Op(T

−1/2). (B.11)

Note that after premultiplication by Q we have seven terms in (B.9). Of these the first is

O(T−1), the second and the third are Op(T
−3/2), and the remaining four are all Op(T

−2).

This yields the following expansion for the squared estimation errors:

(α̂− α)(α̂− α)′ = (Z ′Z)−1Z ′uu′Z(Z ′Z)−1 (B.12)

= QZ ′uu′ZQ−QW1Z
′uu′ZQ−QW2Z

′uu′ZQ+Q(W1 +W2)2Z ′uu′ZQ

−QZ ′uu′ZW ′
1Q−QZ ′uu′ZW ′

2Q+QZ ′uu′Z(W ′
1 +W ′

2)2Q

+QW1Z
′uu′ZW ′

1Q+QW1Z
′uu′ZW ′

2Q+QW2Z
′uu′ZW ′

1Q

+QW2Z
′uu′ZW ′

2Q+ op(T
−2).

Note that

Z ′uu′Z = [Z̄ ′u+ (u′Cu)e1][u′Z̄ + (u′Cu)e′1] (B.13)

= Z̄ ′uu′Z̄ + Z̄ ′u(u′Cu)e′1 + (u′Cu)e1u
′Z̄ + (u′Cu)2e1e

′
1.

We now derive the expectation of the eleven terms of (B.12). For the first one we obtain

E (QZ ′uu′ZQ) = EQZ̄ ′uu′Z̄Q+ EQ(u′Cu)2e1e
′
1Q = σ2Q.
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For the expectation of the second term of (B.12) we find

E (QW1Z
′uu′ZQ) (B.14)

= σ4QZ̄ ′ (CC ′ + CC) Z̄q1q
′
1 + σ4q11QZ̄

′ (CC ′ + CC) Z̄Q

+σ4q1q
′
1Z̄
′ (CC ′ + CC) Z̄Q+ σ4 tr(QZ̄ ′CCZ̄)q1q

′
1 + σ4 tr(QZ̄ ′CC ′Z̄)q1q

′
1,

for the third

E (QW2Z
′uu′ZQ) (B.15)

= 2σ4q1q
′
1Z̄
′C ′CZ̄Q+ 2σ6q11 [2 tr (CC ′CC) + tr (CC ′C ′C) + tr (CC ′CC ′)] q1q

′
1,

and for the fourth

E[Q(W1 +W2)2Z ′uu′ZQ] = E (QW1W1Z
′uu′ZQ) + E (QW1W2Z

′uu′ZQ) (B.16)

+E (QW2W1Z
′uu′ZQ) + E (QW2W2Z

′uu′ZQ) .

We examine these four terms separately. Removing terms that are o(T−2) and using

Z̄ ′Z̄Q = I − σ2 tr(C ′C)e1q
′
1 gives

E (QW1W1Z
′uu′ZQ) = (B.17)

σ4(q′1Z̄
′CZ̄q1)QZ̄ ′CZ̄Q+ σ4QZ̄ ′CC ′Z̄q1q

′
1 + σ4QZ̄ ′CZ̄q1q

′
1Z̄
′CZ̄Q

+σ4q11 tr(QZ̄ ′CZ̄)QZ̄ ′CZ̄Q+ σ4q11QZ̄
′CC ′Z̄Q+ σ4q11QZ̄

′CZ̄QZ̄ ′CZ̄Q

+σ4 tr(QZ̄ ′CC ′Z̄)q1q
′
1 + σ4 tr(QZ̄ ′CZ̄)q1q

′
1Z̄
′CZ̄Q+ σ4q1q

′
1Z̄
′CC ′Z̄Q

+2σ4q1q
′
1Z̄
′C ′Z̄QZ̄ ′CZ̄Q+ σ4q1q

′
1Z̄
′CZ̄QZ̄ ′CZ̄Q+ o(T−2)

for the first term. For the second term of (B.16) we find

E (QW1W2Z
′uu′ZQ) (B.18)

= 2σ6q11 tr(CC ′C)QZ̄ ′CZ̄q1q
′
1 + 2σ6 tr(CC ′C)(q′1Z̄

′CZ̄q1)q1q
′
1

+2σ6q2
11 tr(CC ′C)QZ̄ ′CZ̄Q+ 2σ6q11 tr(CC ′C)q1q

′
1Z̄
′CZ̄Q+ o(T−2),

for the third

E (QW2W1Z
′uu′ZQ) (B.19)

= 2σ6 tr(CC ′C)(q′1Z̄
′CZ̄q1)q1q

′
1 + 2σ6q11 tr(CC ′C) tr(QZ̄ ′CZ̄)q1q

′
1

+4σ6q11 tr(CC ′C)q1q
′
1Z̄
′CZ̄Q+ o(T−2),

and for the fourth term of (B.16) we obtain

E (QW2W2Z
′uu′ZQ) (B.20)

= 2σ6q11 tr(C ′CC ′C)q1q
′
1 + 8σ8q2

11 tr(CC ′C) tr(CC ′C)q1q
′
1 + o(T−2).
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Collecting the four terms of (B.16), i.e. the expectation of the fourth term of (B.12), we

get

E[Q(W1 +W2)2Z ′uu′ZQ] (B.21)

= σ4(q′1Z̄
′CZ̄q1)QZ̄ ′CZ̄Q+ σ4QZ̄ ′CC ′Z̄q1q

′
1 + σ4QZ̄ ′CZ̄q1q

′
1Z̄
′CZ̄Q

+σ4q11 tr(QZ̄ ′CZ̄)QZ̄ ′CZ̄Q+ σ4q11QZ̄
′CC ′Z̄Q+ σ4q11QZ̄

′CZ̄QZ̄ ′CZ̄Q

+σ4 tr(QZ̄ ′CC ′Z̄)q1q
′
1 + σ4 tr(QZ̄ ′CZ̄)q1q

′
1Z̄
′CZ̄Q

+2σ4q1q
′
1Z̄
′C ′Z̄QZ̄ ′CZ̄Q+ σ4q1q

′
1Z̄
′CC ′Z̄Q+ σ4q1q

′
1Z̄
′CZ̄QZ̄ ′CZ̄Q

+2σ6q11 tr(CC ′C)QZ̄ ′CZ̄q1q
′
1 + 4σ6 tr(CC ′C)(q′1Z̄

′CZ̄q1)q1q
′
1

+2σ6q2
11 tr(CC ′C)QZ̄ ′CZ̄Q+ 6σ6q11 tr(CC ′C)q1q

′
1Z̄
′CZ̄Q

+2σ6q11 tr(CC ′C) tr(QZ̄ ′CZ̄)q1q
′
1 + 2σ6q11 tr(C ′CC ′C)q1q

′
1

+8σ8q2
11 tr(CC ′C) tr(CC ′C)q1q

′
1 + o(T−2).

For the expectation of the fifth term of (B.12) we find

E (QZ ′uu′ZW ′
1Q) = E (QW1Z

′uu′ZQ)
′
, (B.22)

which is just the transpose of the result for the second term (B.14). For the sixth we

find

E (QZ ′uu′ZW ′
2Q) = E (QW2Z

′uu′ZQ)
′
, (B.23)

which follows easily from (B.15). Likewise the expectation of the seventh term of (B.12)

equals the transpose of (B.21), hence

E[QZ ′uu′Z(W ′
1 +W ′

2)2Q] = E[Q(W1 +W2)2Z ′uu′ZQ′]. (B.24)

The expectation of the eighth term of (B.12) is

E (QW1Z
′uu′ZW ′

1Q)

= σ4(q′1Z̄
′Z̄q1)QZ̄ ′CC ′Z̄Q+ 2σ4QZ̄ ′CZ̄q1q

′
1Z̄
′C ′Z̄Q+ σ4 tr(QZ̄ ′CZ̄)QZ̄ ′CZ̄q1q

′
1

+σ4QZ̄ ′CZ̄QZ̄ ′CZ̄q1q
′
1 + σ4QZ̄ ′CC ′Z̄QZ̄ ′Z̄q1q

′
1 + σ4 tr(QZ̄ ′CZ̄)q1q

′
1Z̄
′C ′Z̄Q

+σ4q1q
′
1Z̄
′C ′Z̄QZ̄ ′C ′Z̄Q+ σ4q1q

′
1Z̄
′Z̄QZ̄ ′CC ′Z̄Q+ σ4 tr(QZ̄ ′CZ̄) tr(QZ̄ ′CZ̄)q1q

′
1

+σ4 tr(QZ̄ ′Z̄QZ̄ ′CC ′Z̄)q1q
′
1 + σ4 tr(QZ̄ ′CZ̄QZ̄ ′CZ̄)q1q

′
1

+σ6q2
11 tr(C ′C)QZ̄ ′CC ′Z̄Q+ σ6q11 tr(C ′C)QZ̄ ′CC ′Z̄q1q

′
1

+σ6q11 tr(C ′C)q1q
′
1Z̄
′CC ′Z̄Q+ σ6 tr(C ′C)(q′1Z̄

′CC ′Z̄q1)q1q
′
1 + o(T−2).

Substituting QZ̄ ′Z̄ = I − σ2 tr(C ′C)q1e
′
1 and q

′
1Z̄
′Z̄q1 = q11 − σ2q2

11 tr(C ′C) this yields

E (QW1Z
′uu′ZW ′

1Q) (B.25)

= σ4q11QZ̄
′CC ′Z̄Q+ 2σ4QZ̄ ′CZ̄q1q

′
1Z̄
′C ′Z̄Q+ σ4 tr(QZ̄ ′CZ̄)QZ̄ ′CZ̄q1q

′
1

+σ4QZ̄ ′CZ̄QZ̄ ′CZ̄q1q
′
1 + σ4QZ̄ ′CC ′Z̄q1q

′
1 + σ4 tr(QZ̄ ′CZ̄)q1q

′
1Z̄
′C ′Z̄Q

+σ4q1q
′
1Z̄
′C ′Z̄QZ̄ ′C ′Z̄Q+ σ4q1q

′
1Z̄
′CC ′Z̄Q+ σ4 tr(QZ̄ ′CZ̄) tr(QZ̄ ′CZ̄)q1q

′
1

+σ4 tr(QZ̄ ′CC ′Z̄)q1q
′
1 + σ4 tr(QZ̄ ′CZ̄QZ̄ ′CZ̄)q1q

′
1 + o(T−2).
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For the expectation of the ninth term of (B.12) we find

E (QW1Z
′uu′ZW ′

2Q) (B.26)

= 4σ6q11 tr(CC ′C)QZ̄ ′CZ̄q1q
′
1 + 2σ6q11 tr(QZ̄ ′CZ̄) tr(CC ′C)q1q

′
1

+2σ6 tr(CC ′C)(q′1Z̄
′CZ̄q1)q1q

′
1 + o(T−2),

and for the tenth

E (QW2Z
′uu′ZW ′

1Q) = E (QW1Z
′uu′ZW ′

2Q)
′
, (B.27)

which is just the transpose of the former term. Finally, the eleventh yields

E (QW2Z
′uu′ZW ′

2Q) (B.28)

= 2σ6q11 tr(CC ′CC ′)q1q
′
1 + 8σ8q2

11 tr(CC ′C) tr(CC ′C)q1q
′
1 + o(T−2).

Assembling the various contributions to the mean squared error we obtain after some

simplification

MSE(α̂) = E[(α̂− α)(α̂− α)′] = (B.29)

σ2Q+

+σ4QZ̄ ′ (CC ′ − CC − 2C ′C − C ′C ′) Z̄q1q
′
1

+σ4q1q
′
1Z̄
′ (CC ′ − CC − 2C ′C − C ′C ′) Z̄Q

+σ4q11QZ̄
′ (CC ′ − CC − C ′C ′) Z̄Q+ σ4 tr(QZ̄ ′CC ′Z̄)q1q

′
1 + σ4[tr(QZ̄ ′CZ̄)]2q1q

′
1

+σ4 tr(QZ̄ ′CZ̄QZ̄ ′CZ̄)q1q
′
1 − 2σ4 tr(QZ̄ ′CCZ̄)q1q

′
1

+σ4q11 tr(QZ̄ ′CZ̄)QZ̄ ′(C + C ′)Z̄Q+ σ4(q′1Z̄
′CZ̄q1)QZ̄ ′(C + C ′)Z̄Q

+σ4QZ̄ ′CZ̄q1q
′
1Z̄
′(C + C ′)Z̄Q+ σ4QZ̄ ′(C + C ′)Z̄q1q

′
1Z̄
′C ′Z̄Q

+σ4q11QZ̄
′CZ̄QZ̄ ′CZ̄Q+ σ4q11QZ̄

′C ′Z̄QZ̄ ′C ′Z̄Q

+σ4 tr(QZ̄ ′CZ̄)q1q
′
1Z̄
′(C + C ′)Z̄Q+ σ4 tr(QZ̄ ′CZ̄)QZ̄ ′(C + C ′)Z̄q1q

′
1

+σ4q1q
′
1Z̄
′(C + C ′)Z̄QZ̄ ′CZ̄Q+ σ4q1q

′
1Z̄
′C ′Z̄QZ̄ ′(C + C ′)Z̄Q

+σ4QZ̄ ′(C + C ′)Z̄QZ̄ ′CZ̄q1q
′
1 + σ4QZ̄ ′C ′Z̄QZ̄ ′(C + C ′)Z̄q1q

′
1

+6σ6q11 tr(CC ′C)QZ̄ ′(C + C ′)Z̄q1q
′
1 + 6σ6q11 tr(CC ′C)q1q

′
1Z̄
′(C + C ′)Z̄Q

+2σ6q2
11 tr(CC ′C)QZ̄ ′(C + C ′)Z̄Q

+12σ6q′1Z̄
′CZ̄q1 tr(CC ′C)q1q

′
1 + 8σ6q11 tr(CC ′C) tr(QZ̄ ′CZ̄)q1q

′
1

+σ6q11 [2 tr (CC ′CC ′)− 8 tr (CC ′CC)− 4 tr (CC ′C ′C)] q1q
′
1

+24σ8q2
11 tr(CC ′C) tr(CC ′C)q1q

′
1 + o(T−2).
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From Theorem 2.1 we easily find for the squared bias, the second term of (B.1):

[E(α̂)− α][E(α̂)− α]′ (B.30)

= σ4{[tr(QZ̄ ′CZ̄)]2q1q
′
1 +QZ̄ ′CZ̄q1q

′
1Z̄
′C ′Z̄Q+ tr(QZ̄ ′CZ̄)[QZ̄ ′CZ̄q1q

′
1 + q1q

′
1Z̄
′C ′Z̄Q]}

+σ6{4q11 tr (CC ′C) tr(QZ̄ ′CZ̄)q1q
′
1 + 2q11 tr (CC ′C) [QZ̄ ′CZ̄q1q

′
1 + q1q

′
1Z̄
′C ′Z̄Q]}

+σ8{4q2
11[tr (CC ′C)]2q1q

′
1}+ o(T−2).

This result has to be subtracted from theMSE approximation (B.29) to find the required

approximation to V(α̂) of Theorem 2.2.

C. An approximation to E[s2(Z ′Z)−1]

For the numerator of the estimator s2, given in (1.5), we have, upon using (B.8),

(y − Zα̂)′(y − Zα̂) = u′u− u′Z(Z ′Z)−1Z ′u (C.1)

= u′u− u′(Z̄ + Z̃)Q(Z̄ + Z̃)′u+ op(1).

First we shall examine an approximation to the expectation of the coeffi cient variance

estimator σ̂2(Z ′Z)−1, where σ̂2 = (y − Zα̂)′(y − Zα̂)/T and (C.1) yields

σ̂2 = T−1(u′u− u′Z̄QZ̄ ′u− u′Z̄QZ̃ ′u− u′Z̃QZ̄ ′u− u′Z̃QZ̃ ′u) + op(T
−1). (C.2)

An order T−2 approximation to

E[σ̂2(Z ′Z)−1] = E[(σ̂2 − σ2)(Z ′Z)−1] + σ2E[(Z ′Z)−1] (C.3)

is now obtained by employing (C.2) and an expansion for (Z ′Z)−1 to an appropriate

order, upon noting that (σ̂2 − σ2) = Op(T
−1/2). The first right-hand term of (C.3)

amounts to:

E[(σ̂2 − σ2)(Z ′Z)−1] (C.4)

= E[(T−1u′u− σ2)(Z ′Z)−1]

−T−1E[(u′Z̄QZ̄ ′u+ u′Z̄QZ̃ ′u+ u′Z̃QZ̄ ′u+ u′Z̃QZ̃ ′u)(Z ′Z)−1] + o(T−2)

= −T−1[σ2(K + 1)Q+ 2σ4 tr(C ′C)q1q
′
1] + o(T−2).

An approximation for the second right-hand term of (C.3) can be obtained from

(B.6). Note that of the terms in curly brackets the second and the third term have zero

mean, while the fifth and sixth term involve factors with zero mean and products of an

odd number of zero-mean normal random variables. Hence, when expected values are

taken these terms may be ignored. We then have

E[(Z ′Z)−1] = Q+ E[Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q] (C.5)

+E{Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q}+ op(T
−2).
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The second term of (C.5) is

E[Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q] (C.6)

= σ2[QZ̄ ′CC ′Z̄q1q
′
1 + q11QZ̄

′CC ′Z̄Q+ tr(QZ̄ ′CC ′Z̄)q1q
′
1 + q1q

′
1Z̄
′CC ′Z̄Q],

and the third

E{Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q} = 2σ4q11 tr(CC ′CC ′)q1q
′
1. (C.7)

Gathering terms yields the result

σ2E[(Z ′Z)−1] = σ2Q (C.8)

+σ4[tr(QZ̄ ′CC ′Z̄)q1q
′
1 +QZ̄ ′CC ′Z̄q1q

′
1 + (q1q

′
1 + q11Q)Z̄ ′CC ′Z̄Q]

+2σ6q11 tr(CC ′CC ′)q1q
′
1 + op(T

−2).

Adding up the terms (C.4) and (C.8) we obtain for (C.3) the approximation E[σ̂2(Z ′Z)−1] =

T−1(T −K − 1)σ2Q (C.9)

+σ4{[tr(QZ̄ ′CC ′Z̄)− 2T−1 tr(C ′C)]q1q
′
1 +QZ̄ ′CC ′Z̄q1q

′
1 + (q1q

′
1 + q11Q)Z̄ ′CC ′Z̄Q}

+2σ6q11 tr(CC ′CC ′)q1q
′
1 + o(T−2).

From this the result of Theorem 2.3 follows upon multiplying by T/(T −K − 1). The

latter affects the leading term, but not the remaining terms to the order of T−2.

D. The bias of the COLS Estimator

The bias of the COLS estimator (3.1) is given by

E(α̌− α) = E(α̂− B̂1(α̂)− α) (D.1)

= E(B1(α̂)− B̂1(α̂) + α̂− α− B1(α̂))

= −E(B̂1(α̂)− B1(α̂)) + o(T−1).

From Theorem 2.1 and (3.1) it follows that

B̂1(α̂)− B1(α̂) = σ2 tr(QZ̄ ′CZ̄)q1 − s2 tr(PẐ ′ĈẐ)p1 (D.2)

+σ2QZ̄ ′CZ̄q1 − s2PẐ ′ĈẐp1 + 2[σ4q11 tr(CC ′C)q1 − s4p11 tr(ĈĈ ′Ĉ)p1].

We shall examine the three pairs of terms of (D.2) in turn by exploiting a series of

intermediate results, which have to be developed first. We do that to a level of generality

that makes these intermediate results useful for derivations in the next Appendix as well.

From (B.7) we obtain for P = (Z ′Z)−1 that

P = Q+ P ∗ + op(T
−3/2), with (D.3)

P ∗ = −Q(Z̄ ′Z̃ + Z̃ ′Z̄)Q−Q[Z̃ ′Z̃ − E(Z̃ ′Z̃)]Q

= −QZ̄ ′Cuq′1 − q1u
′C ′Z̄Q− [u′C ′Cu− σ2 tr(C ′C)]q1q

′
1 = Op(T

−3/2).
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From this, it straightforwardly follows that p1 = q1 + p∗1 + op(T
−3/2) and p11 = q11 +

p∗11 + op(T
−3/2), with p∗1 = P ∗e1 and p∗11 = e′1P

∗e1 both Op(T
−3/2).

In order to find the leading term of Ẑ ′ĈẐ− Z̄ ′CZ̄ we have to produce some auxiliary
results. First note that for both C and Ĉ the (i, j)th element is zero for i ≤ j and for

the elements i > j they are such that, employing a first order Taylor expansion,

(Ĉ − C)i,j = λ̂
i−j−1 − λi−j−1 = (λ̂− λ)

∂

∂λ
λi−j−1 + op(T

−1/2) (D.4)

= (λ̂− λ)(i− j − 1)λi−j−2 + op(T
−1/2).

In fact, because it is easily verified that

∂

∂λ
C = CC, (D.5)

we can simply write

Ĉ = C + (λ̂− λ)CC + op(T
−1/2), (D.6)

and similarly, because ∂
∂λ
F = CF, we have

F̂ = F + (λ̂− λ)CF + op(T
−1/2). (D.7)

Further,

Ẑ − Z̄ = (ŷ−1, X)− (ȳ−1, X) (D.8)

= (y0F̂ + ĈXβ̂,X)− (y0F + CXβ,X)

= [y0(F̂ − F ) + (Ĉ − C + C)X(β̂ − β + β)− CXβ]e′1.

Substitution of (D.7) and (D.6) yields

Ẑ − Z̄ = Ẑ∗ + op(T
−1/2), with (D.9)

Ẑ∗ = [y0(λ̂− λ)CF + CX(β̂ − β) + (λ̂− λ)CCXβ]e′1

= [CZ̄(α̂− α)]e′1 = Op(T
−1/2).

Now we obtain

Ẑ ′ĈẐ − Z̄ ′CZ̄ = Ẑ ′ĈẐ − Z̄ ′ĈZ̄ + Z̄ ′ĈZ̄ − Z̄ ′CZ̄ (D.10)

= (λ̂− λ)Ẑ∗′CCẐ∗ + Ẑ∗′CẐ∗ + (λ̂− λ)Ẑ∗′CCZ̄ + Ẑ∗′CZ̄

+(λ̂− λ)Z̄ ′CCẐ∗ + Z̄ ′CẐ∗ + (λ̂− λ)Z̄ ′CCZ̄ + op(T
1/2).

Noting that only a few of these terms are Op(T
1/2) we find, using (D.9),

Ẑ ′ĈẐ = Z̄ ′CZ̄ + A∗ + op(T
1/2), with (D.11)

A∗ = e1(α̂− α)′Z̄ ′C ′CZ̄ + Z̄ ′CCZ̄(α̂− α)e′1 + (λ̂− λ)Z̄ ′CCZ̄ = Op(T
1/2).
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Next we develop a result regarding τ = tr(CC ′C) = O(T ) and τ̂ = tr(ĈĈ ′Ĉ). From

(D.5) we find

∂

∂λ
tr(CC ′C) = tr

[
∂

∂λ
(CC ′C)

]
= tr(C ′C ′CC) + 2 tr(C ′CCC), (D.12)

because

∂

∂λ
(CC ′C) =

(
∂C

∂λ

)
C ′C + C

(
∂C ′C

∂λ

)
= CCC ′C + CC ′C ′C + CC ′CC.

Since τ̂ = tr(CC ′C) + (λ̂− λ) ∂
∂λ

tr(CC ′C) + op(T
1/2) we may write

τ̂ = τ + τ̂ ∗ + op(T
1/2), with (D.13)

τ̂ ∗ = (λ̂− λ)[tr(C ′C ′CC) + 2 tr(C ′CCC)] = Op(T
1/2).

Next we consider s2. From Kiviet and Phillips (1998) we have

s2 = σ2 + s2
∗ + op(T

−1/2), with s2
∗ = Op(T

−1/2), (D.14)

and a Taylor expansion yields

s4 = σ4 + 2(s2 − σ2)σ2 + op(T
−1/2) (D.15)

= σ4 + 2s2
∗σ

2 + op(T
−1/2).

This completes the intermediate results which allow to examine the three pairs of terms

of (D.2).

For the first pair we find

σ2 tr(QZ̄ ′CZ̄)q1 − s2 tr(PẐ ′ĈẐ)p1 (D.16)

= −σ2 tr(QZ̄ ′CZ̄)p∗1 − σ2 tr(QA∗)q1 − σ2 tr(P ∗Z̄ ′CZ̄)q1 − s2
∗ tr(QZ̄ ′CZ̄)q1 + op(T

−3/2).

For the second pair we obtain

σ2QZ̄ ′CZ̄q1 − s2PẐ ′ĈẐp1 (D.17)

= −σ2QZ̄ ′CZ̄p∗1 − σ2QA∗q1 − σ2P ∗Z̄ ′CZ̄q1 − s2
∗QZ̄

′CZ̄q1 + op(T
−3/2),

and for the third

σ4q11 tr(CC ′C)q1 − s4p11 tr(ĈĈ ′Ĉ)p1 (D.18)

= −σ4q11τp
∗
1 − σ4q11τ̂

∗q1 − σ4p∗11τq1 − 2s2
∗σ

2q11τq1 + op(T
−3/2).

Upon noting that E(P ∗) = O, E(A∗) = O(T 1/2), E(s2
∗) = 0 and E(τ̂ ∗) = O(T−1) it is now

obvious that E(B̂1(α̂) − B1(α̂)) = 0 + o(T−3/2), thus (D.1) implies E(α̌ − α) = o(T−1),

as stated in Theorem 3.1.
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E. The variance of the COLS Estimator

The variance V(α̌) and the MSE(α̌) of the COLS estimator are the same to order T−2

since the squared bias is o(T−2). We have

MSE(α̌) = E[(α̌− α)(α̌− α)′] = E[(α̂− B̂1(α̂)− α)(α̂− B̂1(α̂)− α)′] (E.1)

= MSE(α̂) + E[B̂1(α̂)B̂1(α̂)′]− E[B̂1(α̂)(α̂− α)′]− E[(α̂− α)B̂1(α̂)′].

Since E(B̂1(α̂)− B1(α̂)) = 0 + o(T−1) with B1(α̂) = O(T−1) it is apparent that

E(B̂1(α̂)B̂1(α̂)′) = B1(α̂)B1(α̂)′ + o(T−2). (E.2)

From

E[B̂1(α̂)(α̂− α)′] = E[B1(α̂)(α̂− α)′] + E[(B̂1(α̂)− B1(α̂))(α̂− α)′] (E.3)

= B1(α̂)B1(α̂) + E[(B̂1(α̂)− B1(α̂))(α̂− α)′] + o(T−2)

it follows that on substituting these results into (E.1) we may write

MSE(α̌) = MSE(α̂)− B1(α̂)B1(α̂)′ (E.4)

−E[(B̂1(α̂)− B1(α̂))(α̂− α)′]− E[(α̂ − α)(B̂1(α̂)− B1(α̂))′] + o(T−2)

= V(α̂)− E[(B̂1(α̂)− B1(α̂))(α̂− α)′]− E[(α̂− α)(B̂1(α̂)− B1(α̂))′] + o(T−2).

An approximation for V(α̂) to order T−2 is given in Theorem 2.2. Hence, to establish an

approximation to MSE(α̌), i.e. to V(α̌), we have to find an approximation to order T−2

of E[(B̂1(α̂)−B1(α̂))(α̂−α)′] and its transpose. Note that its two factors are Op(T
−3/2)

and Op(T
−1/2) respectively, hence we only have to obtain the expectation of the product

of their leading terms. For (α̂ − α) these are QZ̄ ′u + (u′Cu)q1, whereas the leading

Op(T
−3/2) terms of (B̂1(α̂)−B1(α̂)) have already been obtained in Appendix E, notably

in the formulas (D.16), (D.17) and (D.18). Gathering these and regrouping we obtain

(B̂1(α̂)− B1(α̂))(α̂− α)′ (E.5)

= −σ2{[tr(QZ̄ ′CZ̄)p∗1 +QZ̄ ′CZ̄p∗1 + 2σ2q11τp
∗
1](u′Z̄Q+ u′Cuq′1)

+[tr(QA∗)q1 +QA∗q1](u′Z̄Q+ u′Cuq′1)

+[tr(P ∗Z̄ ′CZ̄)q1 + P ∗Z̄ ′CZ̄q1](u′Z̄Q+ u′Cuq′1)

+[tr(QZ̄ ′CZ̄)q1 +QZ̄ ′CZ̄q1 + 4σ2q11τq1]s2
∗(u
′Z̄Q+ u′Cuq′1)

+2σ2[q11q1τ̂
∗(u′Z̄Q+ u′Cuq′11) + τq1p

∗
11(u′Z̄Q+ u′Cuq′1)]}+ op(T

−2).

To obtain the expectation of the latter expression, we first derive a few auxiliary

results. Exploiting (D.3) we have

E[p∗1(u′Z̄Q+ u′Cuq′1)] = −σ2[q11QZ̄
′CZ̄Q+ q1q

′
1Z̄
′CZ̄Q+ 2σ2q11 tr(CC ′C)q1q

′
1],
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from which it follows that

E[p∗11(u′Z̄Q+ u′Cuq′1)] = −2σ2[q11q
′
1Z̄
′CZ̄Q+ σ2q2

11 tr(CC ′C)q′1].

Using (D.11) we find

E{[tr(QA∗)q1 +QA∗q1](α̂− α)′}
= σ2[q1q

′
1Z̄
′(CC + 2C ′C)Z̄Q+ q11QZ̄

′CCZ̄Q+ tr(QZ̄ ′CCZ̄)q1q
′
1 +QZ̄ ′CCZ̄q1q

′
1] + o(T−2).

and again substituting (D.3)

E[tr(P ∗Z̄ ′CZ̄)q1 + P ∗Z̄ ′CZ̄q1](u′Z̄Q+ u′Cuq′1)

= −σ2{q1q
′
1Z̄
′(C + 2C ′)Z̄QZ̄ ′CZ̄Q+ q′1Z̄

′CZ̄q1QZ̄
′CZ̄Q} − 4σ4q′1Z̄

′CZ̄q1 tr(CC ′C)q1q
′
1.

With (D.14) we find

E[s2
∗(u
′Z̄Q+ u′Cuq′1)] = E[(s2 − σ2)(u′Z̄Q+ u′Cuq′1)] + o(T−1)

= (T −K − 1)−1E{[u′u− u′Z(Z ′Z)−1Z ′u]u′Cuq′1}+ o(T−1)

= T−1E(u′uu′Cu)q′1 + o(T−1) = o(T−1),

and employing (D.13) we obtain

E[τ̂ ∗(u′Z̄Q+ u′Cuq′11)] = σ2[tr(C ′C ′CC) + 2 tr(C ′CCC)]q′1 + o(1).

Taking the expectation of (E.5) by substitution of the above results yields

E[(B̂1(α̂)− bB1(α̂))(α̂− α)′] (E.6)

= σ4{tr(QZ̄ ′CZ̄)q1q
′
1Z̄
′CZ̄Q+QZ̄ ′CZ̄q1q

′
1Z̄
′CZ̄Q

+q1q
′
1Z̄
′(C + 2C ′)Z̄QZ̄ ′CZ̄Q+ q′1Z̄

′CZ̄q1QZ̄
′CZ̄Q

− tr(QZ̄ ′CCZ̄)q1q
′
1 −QZ̄ ′CCZ̄q1q

′
1 − q1q

′
1Z̄
′(CC + 2C ′C)Z̄Q

+q11[tr(QZ̄ ′CZ̄)QZ̄ ′CZ̄Q+QZ̄ ′CZ̄QZ̄ ′CZ̄Q−QZ̄ ′CCZ̄Q]}
+2σ6{2q′1Z̄ ′CZ̄q1 tr(CC ′C)q1q

′
1

+q11 tr(CC ′C)[tr(QZ̄ ′CZ̄)q1q
′
1 +QZ̄ ′CZ̄q1q

′
1 + 3q1q

′
1Z̄
′CZ̄Q]

−q11[tr(C ′C ′CC) + 2 tr(C ′CCC)]q1q
′
1 + q2

11 tr(CC ′C)QZ̄ ′CZ̄Q}
+8σ8q2

11[tr(CC ′C)]2q1q
′
1 + o(T−2).

Finally, we substitute the results of Theorem 2.2 and (E.6) in (E.4). Exploiting the

equivalence regarding their leading order T terms, as proved in Kiviet and Phillips

(2012, Appendix C), of respectively tr(C ′C ′CC) and tr(CC ′C ′C) and of tr(C ′CCC) and

tr(CC ′CC ′) yields the required approximation to MSE(α̌) and, hence, to the variance

V(α̌) as stated in Theorem 3.2.
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F. Estimating the variance of the COLS estimator

Combining Theorems 2.3 and 3.2 we may show that

V̂(α̂) (F.1)

+σ4{[tr(QZ̄ ′CZ̄QZ̄ ′CZ̄) + 2(1− λ2)−1]q1q
′
1

+QZ̄ ′CZ̄q1q
′
1Z̄
′C ′Z̄Q+QZ̄ ′CZ̄QZ̄ ′CZ̄q1q

′
1 + q1q

′
1Z̄
′C ′Z̄QZ̄ ′C ′Z̄Q}

+2σ6{2q′1Z̄ ′CZ̄q1 tr(CC ′C)q1q
′
1 + q11 tr(CC ′C)[QZ̄ ′CZ̄q1q

′
1 + q1q

′
1Z̄
′C ′Z̄Q]}

+4σ8q2
11[tr(CC ′C)]2q1q

′
1

is unbiased for V(α̌) to order T−2. However, this is not an estimator because the terms

in σ4, σ6and σ8, which are O(T−2), are unknown. It follows that if these unknown

terms are replaced with estimates which have the same expected value to order T−2, the

resulting estimator will also be unbiased to order T−2. Using the results of Appendix D,

we find that we may replace Q with P , Z̄
′
CZ̄ with Ẑ

′
ĈẐ, and σ4, σ6 and σ8 with s4,

s6and s8 respectively, tr(CC
′
C) with tr(ĈĈ

′
Ĉ), and λ with λ̂ such that the resulting

expression, given in Theorem 3.3, will have the same expectation to order T−2.

G. Special results for the AR(1) model

Taking Z̄ = (y∗0F, ι) we can obtain

q11 = (1− λ2)T−1 + [1− (1− λ2)y∗20 ]T−2 + o(T−2)

q12 = −y∗0(1 + λ)T−2 + o(T−2)

q22 = T−1 + o(T−2),

(G.1)

and moreover
tr(QZ̄ ′CZ̄) = (1− λ)−1 +O(T−1)

q′1Z̄
′CZ̄q1 = y∗20 λT

−2 + o(T−2) = O(T−2).
(G.2)

Some of these results show orders smaller than expected, due to the typical nature of

the first column of Z̄, which has the effect that only one element of Z̄ ′Z̄ is O(T ) while

the other three are O(1).

Result (4.3) follows using tr(CC ′C) = λ(1−λ2)−2T +O(1), which is proved in Kiviet

and Phillips (2012, formula C.8). Kiviet and Phillips (2012) also gives

tr(CC ′CC ′) = (1 + λ2)(1− λ2)−3T +O(1)

tr(CC ′CC) = λ2(1− λ2)−3T +O(1)

tr(CC ′C ′C) = (1 + λ2)(1− λ2)−3T +O(1)

(G.3)
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and in this special model we further have

q′1Z̄
′CC ′Z̄q1 = o(T−1) tr(QZ̄ ′CC ′Z̄) = (1− λ)−2 + o(1)

q′1Z̄
′CCZ̄q1 = o(T−1) tr(QZ̄ ′CCZ̄) = (1− λ)−2 + o(1)

q′1Z̄
′C ′CZ̄q1 = o(T−1) tr(QZ̄ ′CZ̄QZ̄ ′CZ̄) = (1− λ)−2 + o(1)

q′1Z̄
′CZ̄QZ̄ ′CZ̄q1 = o(T−2) q1Z̄

′C ′Z̄QZ̄ ′CZ̄q1 = o(T−2).

(G.4)

Substituting the above in Corollary 2.2 yields

V(λ̂) = (1− λ2)T−1 − [(1− λ2)y∗20 ]T−2 − (1− 4λ− 14λ2)T−2 + o(T−2),

given in (4.4), and adding [(1+3λ)T−1]2 yields (4.5). Evaluating Corollary 2.3 upon using

tr(C ′C) = T (1 − λ2)−1 + O(1) gives (4.7) from which (4.8) and (4.9) straightforwardly

follow. Evaluation of Corollary 3.2 produces (4.11) and then it is easily established that

the roots of 5− 6λ− 15λ2 = 0, which are 0.4110101 and 0.8110101, determine the sign

of MSE(λ̂)−MSE(λ̌) as stated in Theorem 4.1.

In Kiviet and Phillips (2012) it has been derived that

E(λ̂) = λ− 1

T
(1 + 3λ)− 1

T 2

(
1− 3λ+ 9λ2

1− λ

)
+ o(T−2). (G.5)

This implies

E(λ̌− λ) = − 1

T 2

(
4 + 3λ

1− λ

)
+ o(T−2) (G.6)

and

E(λ̇− λ) = − 1

T 2

(
1 + 6λ

1− λ

)
+ o(T−2). (G.7)

Because 1 + 6λ < 4 + 3λ for any |λ| < 1 estimator λ̇ has smaller second order bias.

However, since V(λ̌) = [(T + 3)/T ]2V(λ̂) and V(λ̇) = [T/(T − 3)]2V(λ̂), MSE(λ̌) <

MSE(λ̇) follows from (T + 3)/T − T/(T − 3) = −9/[T (T − 3)] < 0 for T > 3. Note that

from (G.6) and (G.7) a higher-order bias correction is immediately available.
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Table 1: Mean-stationary AR(1) model with unknown intercept

λ B(λ̂) V(λ̂) E[V̂(λ̂)]

V(λ̂)

B1(λ̂)

B(λ̂)

V1(λ̂)

V(λ̂)

V2(λ̂)

V(λ̂)

E[V̂2(λ̂)]

V(λ̂)

E[V̌(λ̂)]

V(λ̂)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

T = 20 -0.9 0.067 0.023 0.89 1.27 0.42 1.16 1.25 1.09

-0.6 0.030 0.035 1.12 1.34 0.91 1.03 1.04 1.05

-0.3 -0.011 0.043 1.18 0.45 1.05 0.99 0.97 1.04

0 -0.053 0.048 1.18 0.94 1.05 1.00 0.97 1.04

0.2 -0.082 0.048 1.15 0.97 1.00 1.02 0.99 1.04

0.4 -0.113 0.047 1.11 0.97 0.90 1.05 1.04 1.04

0.6 -0.148 0.044 1.03 0.95 0.73 1.10 1.10 1.04

0.8 -0.193 0.040 0.91 0.88 0.46 1.16 1.20 1.03

0.9 -0.221 0.036 0.82 0.84 0.26 1.22 1.28 1.02

0.99 -0.235 0.033 0.68 0.84 0.03 1.28 1.37 0.98

T = 50 -0.9 0.031 0.006 0.89 1.09 0.61 1.05 1.17 1.03

-0.6 0.015 0.013 1.04 1.06 0.96 1.01 1.02 1.01

-0.3 -0.002 0.018 1.07 0.92 1.02 1.00 0.99 1.01

0 -0.020 0.020 1.07 1.01 1.02 1.00 0.99 1.01

0.2 -0.032 0.019 1.06 1.00 1.00 1.01 1.00 1.01

0.4 -0.044 0.018 1.03 0.99 0.95 1.02 1.02 1.01

0.6 -0.058 0.015 0.99 0.97 0.85 1.02 1.07 1.01

0.8 -0.074 0.011 0.89 0.92 0.63 1.03 1.15 1.00

0.9 -0.087 0.009 0.79 0.85 0.41 1.02 1.22 0.99

0.99 -0.103 0.007 0.63 0.77 0.06 1.01 1.38 0.97

B(λ̂) : Monte Carlo estimate of the actual bias of the ML estimator λ̂

V(λ̂) : Monte Carlo estimate of the actual variance of the ML estimator λ̂

V̂(λ̂) : standard estimator (4.6) of V(λ̂)

B1(λ̂) : first-order approximation to B(λ̂), −(1 + 3λ)/T

V1(λ̂) : first-order approximation to V(λ̂), (1− λ2)/T

V2(λ̂) : second-order approximation (5.1) to V(λ̂)

V̂2(λ̂) : V2(λ̂) evaluated in λ̂

V̌(λ̂) : bias corrected estimator (4.9) of V(λ̂)
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Table 2: Mean-stationary AR(1) model with unknown intercept

λ | λ̂ |≥ 1 B(λ̌) B(λ̌)

B(λ̂)

E[V̌(λ̌)]

V(λ̌)

E[V̌∗(λ̌)]

V(λ̌)

MSE(λ̌)

MSE(λ̂)
| λ̌ |≥ 1

(1) (2) (3) (4) (5) (6) (7) (8)

T = 20 -0.9 0.063 -.008 -0.12 0.94 0.96 1.11 0.346

-0.6 0.001 -.006 -0.19 0.98 0.99 1.29 0.006

-0.3 0.000 -.008 0.70 1.02 1.03 1.32 0.000

0 0.000 -.011 0.21 1.02 1.02 1.25 0.000

0.2 0.000 -.015 0.18 0.99 1.00 1.16 0.000

0.4 0.000 -.020 0.18 0.95 0.97 1.05 0.001

0.6 0.000 -.030 0.21 0.89 0.92 0.90 0.013

0.8 0.003 -.052 0.27 0.83 0.87 0.72 0.113

0.9 0.012 -.069 0.31 0.82 0.87 0.62 0.229

0.99 0.044 -.072 0.31 0.85 0.91 0.56 0.400

T = 50 -0.9 0.003 -.001 -0.03 0.97 0.98 0.97 0.054

-0.6 0.000 -.000 -0.00 1.00 1.00 1.11 0.000

-0.3 0.000 -.000 0.14 1.01 1.01 1.12 0.000

0 0.000 -.001 0.05 1.01 1.01 1.10 0.000

0.2 0.000 -.002 0.06 1.00 1.01 1.07 0.000

0.4 0.000 -.003 0.07 0.99 1.00 1.01 0.000

0.6 0.000 -.005 0.09 0.98 0.98 0.92 0.000

0.8 0.000 -.010 0.14 0.93 0.95 0.77 0.004

0.9 0.001 -.018 0.21 0.91 0.92 0.64 0.084

0.99 0.029 -.030 0.29 0.93 0.96 0.50 0.380

λ̌ : the bias corrected estimator λ̂+ (1 + 3λ̂)/T

B(λ̌) : Monte Carlo estimate of the actual bias of λ̌

B(λ̂) : Monte Carlo estimate of the actual bias of λ̂

V(λ̌) : Monte Carlo estimate of the actual variance of λ̌

V̌(λ̌) : the bias corrected estimator (4.13) of V(λ̌)

V̌∗(λ̌) : bias corrected estimator of V(λ̌) given by V̂(λ̂) + (3 + 2λ̌+ 3λ̌
2
)/T 2
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Table 2A: Effects of alternative definitions of λ̌ in AR(1) model

| λ̂ |≥ 1 no correction | λ̌ |≥ 1 no correction

λ B(λ̌)

B(λ̂)

E[V̌∗(λ̌)]

V(λ̌)

MSE(λ̌)

MSE(λ̂)

B(λ̌)

B(λ̂)

E[V̌∗(λ̌)]

V(λ̌)

MSE(λ̌)

MSE(λ̂)

(1) (2) (3) (4) (5) (6) (7)

T = 20 -0.9 -0.02 0.96 1.02 0.37 1.16 0.82

-0.6 -0.19 0.99 1.29 -0.17 1.00 1.28

-0.3 0.70 1.03 1.32 0.70 1.02 1.32

0 0.21 1.02 1.25 0.21 1.02 1.25

0.2 0.18 1.00 1.16 0.18 0.99 1.16

0.4 0.18 0.97 1.05 0.18 0.96 1.04

0.6 0.21 0.92 0.90 0.22 0.96 0.87

0.8 0.27 0.87 0.71 0.38 1.07 0.62

0.9 0.32 0.87 0.61 0.50 1.13 0.53

0.99 0.35 0.91 0.53 0.63 1.10 0.52

T = 50 -0.9 -0.03 0.98 0.97 0.04 1.03 0.92

-0.6 -0.00 1.00 1.11 -0.00 1.00 1.11

-0.3 0.14 1.01 1.12 0.14 1.01 1.12

0 0.05 1.01 1.10 0.05 1.01 1.10

0.2 0.06 1.01 1.07 0.06 1.00 1.07

0.4 0.07 1.00 1.01 0.07 0.99 1.01

0.6 0.09 0.98 0.92 0.09 0.98 0.92

0.8 0.14 0.95 0.77 0.14 0.95 0.76

0.9 0.21 0.93 0.64 0.28 1.03 0.57

0.99 0.31 0.97 0.48 0.58 1.16 0.46
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Table 2B: Effects of alternative bias correction in AR(1)

λ B(λ̇) B(λ̇)

B(λ̌)

MSE(λ̇)

MSE(λ̌)
| λ̇ |≥ 1

(1) (2) (3) (4) (5)

T = 20 -0.9 -0.005 0.61 0.98 0.422

-0.6 -0.014 2.32 1.05 0.011

-0.3 -0.007 0.91 1.05 0.000

0.0 -0.003 0.29 1.05 0.000

0.2 -0.002 0.16 1.04 0.000

0.4 -0.004 0.19 1.04 0.002

0.6 -0.011 0.36 1.02 0.027

0.8 -0.034 0.66 0.96 0.173

0.9 -0.055 0.80 0.91 0.311

0.99 -0.063 0.88 0.89 0.489

T = 50 -0.9 0.002 -1.94 1.00 0.103

-0.6 -0.000 2.92 1.01 0.000

-0.3 -0.000 0.85 1.01 0.000

0.0 -0.000 0.16 1.01 0.000

0.2 -0.000 0.10 1.01 0.000

0.4 -0.001 0.19 1.01 0.000

0.6 -0.002 0.38 1.01 0.000

0.8 -0.006 0.63 1.00 0.009

0.9 -0.015 0.82 0.98 0.132

0.99 -0.029 0.95 0.95 0.464

λ̇ : estimator (T λ̂+ 1)/(T − 3) of (4.14)

λ̌ : estimator [(T + 3)λ̂+ 1)]/T of (4.10)
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Table 3: ARX(1) model with intercept and trend (no correction if | λ̌ |≥ 1)

λ B(λ̂) V (λ̂) E[V̂(λ̂)]

V(λ̂)

E[V̌(λ̂)]

V(λ̂)

E[V̌(λ̌)]

V(λ̌)

MSE(λ̌)

MSE(λ̂)
| λ̂ |≥ 1 | λ̌ |≥ 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

T = 20 -0.9 0.057 0.021 0.98 1.94 1.22 0.92 0.070 0.340

-0.6 0.007 0.033 1.22 1.28 1.12 1.41 0.001 0.009

-0.3 -0.048 0.041 1.27 1.04 1.09 1.34 0.000 0.000

0.0 -0.105 0.047 1.26 1.00 1.04 1.16 0.000 0.000

0.2 -0.146 0.048 1.21 1.04 1.00 1.04 0.000 0.000

0.4 -0.191 0.049 1.15 1.11 0.95 0.89 0.000 0.003

0.6 -0.244 0.048 1.06 1.18 0.94 0.73 0.000 0.020

0.8 -0.310 0.047 0.93 1.18 0.94 0.62 0.001 0.066

0.9 -0.355 0.046 0.86 1.09 0.92 0.63 0.003 0.088

0.99 -0.417 0.047 0.80 0.98 0.88 0.66 0.007 0.092

T = 50 -0.9 0.029 0.006 0.93 1.21 1.07 0.98 0.003 0.057

-0.6 0.007 0.013 1.08 1.04 1.02 1.16 0.000 0.000

-0.3 -0.016 0.0017 1.10 1.01 1.02 1.14 0.000 0.000

0.0 -0.040 0.020 1.09 1.00 1.01 1.08 0.000 0.000

0.2 -0.057 0.020 1.07 1.01 1.00 1.01 0.000 0.000

0.4 -0.074 0.018 1.03 1.02 0.98 0.92 0.000 0.000

0.6 -0.094 0.016 0.97 1.04 0.95 0.79 0.000 0.000

0.8 -0.120 0.013 0.85 1.04 0.91 0.62 0.000 0.006

0.9 -0.141 0.012 0.76 1.00 0.91 0.53 0.000 0.047

0.99 -0.180 0.011 0.65 0.87 0.89 0.54 0.005 0.106
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Table 4: ARX(1) model with AR(1) regressor (no correction if | λ̌ |≥ 1)

λ B(λ̂) V (λ̂) E[V̂(λ̂)]

V(λ̂)

E[V̌(λ̂)]

V(λ̂)

E[V̌(λ̌)]

V(λ̌)

MSE(λ̌)

MSE(λ̂)
| λ̂ |≥ 1 | λ̌ |≥ 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

T = 20 0.0 -0.018 0.013 1.06 1.00 1.01 1.09 0.000 0.000

0.2 -0.032 0.015 1.08 1.00 1.01 1.07 0.000 0.000

0.4 -0.050 0.016 1.06 1.01 1.01 0.99 0.000 0.000

0.6 -0.075 0.018 0.94 0.99 0.97 0.85 0.000 0.001

0.8 -0.118 0.026 0.70 0.84 0.87 0.67 0.003 0.027

0.9 -0.171 0.037 0.58 0.73 0.79 0.63 0.026 0.109

0.95 -0.236 0.045 0.59 0.72 0.78 0.65 0.047 0.156

T = 50 0.0 -0.009 0.005 1.03 1.00 1.01 1.03 0.000 0.000

0.2 -0.014 0.006 1.03 1.00 1.00 1.02 0.000 0.000

0.4 -0.020 0.005 1.03 1.01 1.00 0.99 0.000 0.000

0.6 -0.029 0.005 0.99 1.01 1.00 0.91 0.000 0.000

0.8 -0.044 0.005 0.84 0.96 0.95 0.72 0.000 0.000

0.9 -0.065 0.006 0.66 0.84 0.88 0.58 0.001 0.014

0.95 -0.099 0.009 0.58 0.76 0.86 0.53 0.014 0.096

T = 100 0.0 -0.004 0.003 1.01 1.00 1.01 1.01 0.000 0.000

0.2 -0.006 0.003 1.02 1.01 1.00 1.01 0.000 0.000

0.4 -0.010 0.003 1.02 1.01 1.00 1.00 0.000 0.000

0.6 -0.016 0.003 1.00 1.01 1.00 0.95 0.000 0.000

0.8 -0.024 0.002 0.92 1.00 0.99 0.81 0.000 0.000

0.9 -0.034 0.002 0.79 0.95 0.95 0.67 0.000 0.000

0.95 -0.044 0.003 0.67 0.88 0.92 0.56 0.001 0.033
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Table 5: Test size in mean-stationary AR(1) model with intercept and trend

left-hand alternative, corrected: right-hand alternative, corrected:

always if | λ̌ |< 1 always if | λ̌ |< 1

λ0 t t∗ t∗ t∗∗ t∗ t∗∗ t t∗ t∗ t∗∗ t∗ t∗∗
T = 20 -0.9 0.03 0.14 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.03 0.04 0.03

-0.6 0.04 0.09 0.04 0.05 0.09 0.05 0.02 0.04 0.04 0.03 0.04 0.03

-0.3 0.06 0.08 0.07 0.06 0.08 0.06 0.02 0.04 0.03 0.03 0.04 0.03

0.0 0.09 0.08 0.13 0.07 0.08 0.07 0.01 0.04 0.01 0.03 0.04 0.03

0.2 0.11 0.08 0.16 0.07 0.08 0.07 0.01 0.05 0.00 0.02 0.05 0.02

0.4 0.15 0.10 0.19 0.09 0.10 0.09 0.00 0.05 0.00 0.02 0.05 0.02

0.6 0.21 0.12 0.23 0.11 0.12 0.11 0.00 0.04 0.00 0.01 0.02 0.01

0.8 0.34 0.18 0.34 0.16 0.18 0.16 0.00 0.02 0.00 0.00 0.00 0.00

0.9 0.47 0.25 0.44 0.22 0.25 0.22 0.00 0.01 0.00 0.00 0.00 0.00

0.99 0.67 0.37 0.60 0.32 0.37 0.33 0.00 0.00 0.00 0.00 0.00 0.00

T = 50 -0.9 0.03 0.11 0.01 0.05 0.08 0.04 0.06 0.04 0.06 0.03 0.04 0.03

-0.6 0.05 0.07 0.05 0.06 0.07 0.06 0.04 0.04 0.04 0.04 0.04 0.04

-0.3 0.06 0.06 0.07 0.05 0.06 0.05 0.03 0.05 0.03 0.04 0.05 0.04

0.0 0.08 0.06 0.09 0.06 0.06 0.06 0.02 0.05 0.02 0.04 0.05 0.04

0.2 0.09 0.06 0.10 0.06 0.06 0.06 0.02 0.06 0.02 0.04 0.06 0.04

0.4 0.11 0.06 0.12 0.06 0.06 0.06 0.01 0.06 0.01 0.04 0.06 0.04

0.6 0.15 0.07 0.15 0.06 0.07 0.06 0.01 0.06 0.00 0.04 0.06 0.04

0.8 0.23 0.10 0.21 0.08 0.10 0.08 0.00 0.05 0.00 0.02 0.05 0.02

0.9 0.36 0.14 0.30 0.12 0.14 0.12 0.00 0.03 0.00 0.01 0.00 0.00

0.99 0.68 0.29 0.55 0.24 0.29 0.24 0.00 0.00 0.00 0.00 0.00 0.00

t ≡ (λ̂− λ0)/[V̂(λ̂)]1/2, t∗ ≡ (λ̌− λ0)/[V̂(λ̂)]1/2, t∗ ≡ (λ̂− λ0)/[V̌(λ̂)]1/2, t∗∗ ≡ (λ̌− λ0)/[V̌(λ̌)]1/2
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Table 6: Test size (italics) and size-corrected power in mean-stationary

AR(1) with intercept, H0 : λ = λ0, λ is true value, T = 50

left-hand alternative: right-hand alternative:

λ0 λ t t∗ t∗ t∗∗ t t∗ t∗ t∗∗
0.0 0.0 0.06 0.06 0.07 0.05 0.03 0.05 0.03 0.04

0.2 0.00 0.00 0.00 0.00 0.40 0.40 0.40 0.40

0.4 0.00 0.00 0.00 0.00 0.86 0.86 0.86 0.86

0.4 0.4 0.08 0.06 0.09 0.05 0.02 0.06 0.02 0.05

0.2 0.37 0.37 0.37 0.37 0.00 0.00 0.00 0.00

0.6 0.00 0.00 0.00 0.00 0.48 0.48 0.48 0.48

0.8 0.8 0.13 0.06 0.12 0.05 0.01 0.08 0.00 0.04

0.6 0.42 0.42 0.42 0.42 0.00 0.00 0.00 0.00

0.99 0.00 0.00 0.00 0.00 0.68 0.69 0.67 0.68

0.99 0.99 0.39 0.10 0.25 0.07 0.00 0.09 0.00 0.01

0.6 0.89 0.93 0.92 0.94 0.00 0.00 0.00 0.00

0.8 0.32 0.38 0.37 0.40 0.00 0.00 0.00 0.00
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