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Relative Profitability of Dynamic Walrasian Strategies

Version: July 30, 2008

The advantage of price-taking behavior in achieving relative profitability in oligopolistic quantity competition has
been much appreciated recently from economic dynamics and evolutionary game theory, respectively. The current
research intends to provide a direct economic interpretation as well as intuitive justification and further to build a
linkage between different perspectives. In particular, a detailed illustration of an arbitrary oligopoly that produce a
homogenous product is presented. So long as the outputs of other firms are fixed and the residual demand is downward
sloping, for any two identical firms whose cost functions are convex, their output space can be divided symmetrically
into mutually exclusive relatively profitability regimes. Furthermore, there exist infinitely many relative-profitability
reactions for each firm in such “residual” duopoly, all of which intersect at the “residual” Walrasian equilibrium.
This suggests that sticking to this dynamical equilibrium output constantly (i.e., the static Walrasian strategy) turns
out to be a relative-profitability strategy at each period. On the other hand, regardless of what strategies its rival
may take, a firm adopting price-taking strategy or more generally defined dynamic Walrasian strategies can achieve
the relative profitability if an intertemporal equilibrium is reached. The methodology adopted and the conclusions
arrived clarify the confusions and misunderstandings due to the different usages of same terminologies under different
frameworks and generalize the previous available results in the literature to a higher level and a broader context.

Key Words: Price-taking, Walrasian behavior, Relative profit, Oligopoly, Cournot, dynamic Walrasian
strategy
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1. INTRODUCTION

One of the lessons learned from basic microeconomics is thata profit maximizing firm will always leverage on

market information as well as the behavioral rule of its rivals when making its output decision. Given limited infor-

mation about the market as well as its rivals’ behavior (which varies from case to case), it is invariably assumed that

a quantity competing oligopolistic firm’s best response is to maximize myopically its instantaneous absolute payoff,

giving rise to a reaction function of its rival’s expected output for the period. It is deemed economically irrational if

a firm either ignores or is ignorant about its market power andinstead adopts some simple strategy in oligopolistic

competition.

However, such beliefs were questioned and challenged from different perspectives over last decade. A huge body

of literature from evolutionary game theory revealed that producing at the competitive equilibrium output level (or

adopting static Walrasian strategy) is an evolutionarily stable strategy (ESS) when all firms have identical technology.

The study of Cournot oligopolies where firms learn through imitation of success can be traced back as early as to

Alchian [1950]. Schaffer (1989) demonstrates with a Darwinian model of economic natural selection and shows that

the profit-maximizers are not necessarily the best survivors. In a simple context with just two quantity-setting firms

which have identical and constant marginal costs, only price-taking behavior is evolutionarily stable. Vega-Redondo

(1997) shows that, for a symmetric oligopoly in which all firms have identical non-decreasing return technology, when

some firms produce at the competitive equilibrium level and the others produce at an same identical mutant level (the

mutant strategy), the former will gain relative higher profit than the latter. This result is independent of both the number

of mutant firms and of the mutant outputs so long as they are identical. The ESS characteristics of static Walrasian

strategy have lately been extended in different directionsunder different specifications by Schenk-Hoppe (2000) and

Alos-Ferrer and Ania (2005), etc.

The relative profitability of price-taking behavior in the dynamic sense where a firm produces at an output level

that equates the current marginal cost to price-expectation, has been explored in Huang (2002), where it is showed that,

in an oligopolistic industry where all firms equipped with identical technology1, the price-takers always triumph over

the other firms at a dynamical equilibrium in terms of relative profitability, regardless of what strategies (dynamical

behavioral rules) these non-price-takers may adopt. Therefore, the price-taking behavior is appreciated without the

critical assumption of “imitations” in evolutionary game theory analysis.

The aims of current research are i) to study the relative profitability of Walrasian strategies in general under an

unified framework so that intuitive economic interpretations can be justified for both static and dynamic Walrasian

strategies and mutual implication are explored. ii) to generalize the previous results to more general oligopolistic

industry with heterogeneous technologies.

All these goals are achieved through characterizing the relative-profitability regime in the output space. In an

arbitrary oligopoly, so long as the outputs of other firms arefixed, for any two firms who share an identical technology

1It will be made clear later that the assumption of uniform technology for all firms are not necessary.
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that exhibits non-increasing return to scale, their outputspace can be divided uniquely into symmetrically located as

well as mutually exclusive relative-profitability regimes. For each firm in such “residual” duopoly, there exist infinitely

many relative-profitable strategies, among which are the dynamic Walrasian strategies and a unique static Walrasian

strategy. While adopting static Walrasian strategy can achieve relative profitability against any other strategies at

each period of dynamical adjustment so long as the market environment is fixed, the dynamic Walrasian strategies,

which demand minimum market information, possess relative-profitability only when an intertemporal equilibrium is

reached. Nevertheless, the dynamic Walrasian strategies are robust to changes in market environment such as residual

demand, the entry and exit of oligopolistic firms, the technological advances et. al. Finally, the dynamic Walrasian

strategy would converge to the static Walrasian strategy, should firms imitate each other and strive for the relative

successes as assumed in the evolutionary game theory.

The remaining discussion is organized as follows. Section 2defines the concept of relative-profitability curve

and relative-profitability regimes in a symmetric residual-duopoly. The uniqueness of relative-profitability curve is

ensured providing that the cost function is convex. The concepts of relative-profitability strategy and efficient relative-

profitability, i.e., the strategy that brings about the maximum profit difference, are introduced in Section 3, in which the

compromise of relative-profitability with absolute profitability is explored. Section 4 is the core of this article, in which

the concept of dynamic Walrasian strategy is formally defined and its linkage to the static Walrasian strategy discussed

in evolutionary game theory is built. Concluding remarks aswell as the further research are provided in Section

6. For the sake of presentation, some straightforward or tedious analytical derivations are included in Appendix A.

Typical characteristics of relative-profitability curve and Walrasian reaction curve are provided in Appendix B and C,

respectively.

2. RELATIVE-PROFITABILITY FRONTIER

Consider an oligopoly market, in whichN firms produce a homogeneous product with quantityqi
t, i = 1, 2, ..., N ,

at periodt. The market inverse demand for the product is given bypt = D̃(Q̃t), whereD̃′ ≤ 0. The conventional

assumption that̃Qt =
∑N

i=1 qi
t, i.e., the actual market price adjusts to the demand so as to clear the market at every

periodapplies.

Our goal is compare the relative profitability of any two firmsthat have an identical technology exhibiting non-

increasing returns to scale and thus an identical convex cost functionC(q), with C′′ ≥ 0, in such an oligopoly. To

concentrate on the interaction between these two firms, we refer them as X and Y, and assume that the output levels of

all other firms are fixed so theresidual market demandfor these two firms isD = D(x + y)=̇D̃(x + y + Q̃′), where

x andy denote the outputs of these two firms and letQ̃′=̇
∑

j\x,y qj = Q̃ − x − y denote the outputs of all other

firms. For the convenience of latter reference, we shall callX and Y as a residual-duopoly and similarly use prefix

“residual-” on relevant terminologies to indicate that theanalysis and the conclusion arrived for any two identical firms

in an oligopoly with all other firm’s outputs being fixed.

We start with some basic definitions for the residual-duopoly.
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2.1. Relative-profitability frontier

Let Q be the economically meaningful domain forx andy whenQ̃′ is given. WithD′ < 0 implied byD̃′ < 0, the

profits gained by firms X and Y, are then given by:

πq (x, y) = D (x + y) q − C (q) , with q = x, y ∈ Q.

Denote therelative profitfor Firm X, ∆xy (x, y), as its profit difference as compared to Firm Y, that is,

∆xy (x, y) =̇πx (x, y) − πy (x, y) .

Definition 1. Equal-profitability curve in x-y plane refers to the curves in the economically meaningful

domain which give rise to πx = πy, that is, ∆xy (x, y) = ∆yx (x, y) = 0.

Definition 2. Relative profitability regime (for Firm X) is a (x, y) subset in the economically meaningful

domain Q in which Firm X makes a higher profit relative to his rival Firm Y, that is, ∆xy (x, y) > 0.

The 45-degree diagonal line in x-y plane or equivalently,y = x, is a trivial equal-profitability curve (which arises

from the fact that both firms have an identical cost.) In addition to this trivial equal-profitability curve, there also

exist non-trivial equal-profitability curves.In Figure 1,with residual demand being fixed atD (Q) = 1/Q, typical

3-dimensional plots for∆xy (positive portion only) are provided for three different cost functions: (a) strict convex

cost: c1 (q) = cq2/2, c > 0; (b) strict concave cost:c2 (q) = cq, c > 0 and (c) S-shape cost (convex-concave) cost:

c3 (q) = c sin2 (πq/d) , c, d > 0.

For a general residual-duopoly, the first question that interests us is whether this non-trivial equal-profitability

curve is unique when the residual demand function and cost function satisfy certain requirements. A definite and

positive answer is provided in the next theorem. To distinguish this unique non-trivial equal-profitability curve with

the trivial one, we shall call it relative-profitability frontier hereafter.

Definition 3. Relative-profitability frontier: all (x, y) combination in the economically meaningful

domain Q such that ∆xy (x, y) = 0 but x 6= y.

A critical concept that relates to the relative-profitability frontier and plays an important role in the proof of the

following theorem is the Walrasian reaction curve.

Definition 4. Walrasian reaction curve By Walrasian reaction for Firm X, we mean that for any

given rival’s output y, Firm X responds by equating its marginal cost to the expected price. That is, the

reaction to a given y, denoted as Rw, is implicitly defined by

D (Rw (y) + y) = C′ (Rw (y)) . (1)

Theorem 1. (Uniqueness Theorem) When C is convex, that is, C′′ (q) ≥ 0 for all q ∈ Q, and D′ < 0,

we have the following
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i) there exists a unique relative-profitability frontier given by fe such that ∆xy (x, fe (x)) = 0 and x =

fe (x) if and only if x = qw, where qw is uniquely determined from the following identity

C′ (qw) = D (2qw) .

ii) f ′
e (x) ≤ 0, where the equality holds only at finite points;

iii)with the trivial equal-profitability curve and the relative-profitability frontier fe, the economically mean-

ingful domain Q in x-y plane is divided into four quadrants, the vertex of which is characterized by the residual

Walrasian equilibrium Ew = (qw, qw). While the upper and lower quadrants forms the relative-profitability

regime for Firm X, the left and the right quadrants is the relative-profitability regime for Firm Y.

Proof. (see Appendix A)

Figure 2 depicts several examples of the relative-profitability frontiers (as well as the Walrasian reaction curves).

It needs to mention that, for a duopoly, the residual Walrasian equilibrium simplifies to the competitive equilibrium.

Remark 1. For monotonically downward sloping demand D′ < 0, the convexity of cost, that is, C′′ ≥ 0,

is a sufficient condition for the uniqueness (as well as the monotonicity) of relative-profitability frontier fe. If

the convexity of cost can’t be warranted, there exist situations where multiple non-trivial equal-profitability

curves coexist, as illustrated in Figure 1.(c), as well as the possibility that the non-trivial equal-profitability

curve is not monotonic, as illustrated in Figure 1.(b).

2.2. Characterize the relative-profitability frontier fe

Due to the fact thatπx (x, y) ≡ πy (y, x), the relative-profitability frontierfe must be symmetric with respect to

the 45-degree line. This kind of anti-symmetricity is analytically characterized by

f−1
e (x) = fe (x)

which demands thatf ′
e (qw) = −1, whereqw is the residual Walrasian output. Formally, we have

Proposition 1. The relative-profitability frontier fe is symmetric with respect to the 45-degree line,

whose derivative is given by

f ′
e (x) =

C′ (x) − D (x + y) − (x − y)D′ (x + y)

C′ (y) − D (x + y) + (x − y)D′ (x + y)
< 0 (2)

and f ′
e (qw) = −1.

The second-order derivative offe has very complicated analytical expression, which makes the analysis of the

second-order derivative property offe impossible. We shall bypass this obstacle by evaluating therelative magnitude

of absolute value off ′
e in comparison to unity. Due to the symmetricity offe, we only need to discuss the lower

portion offe, that isx ≥ qw ≥ y. It follows from

|f ′
e| − 1 =

C′ (x) + C′ (y) − 2D

(D − C′ (y)) − (x − y)D′
,
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as well as the fact thatD (x + y) = (C (x) − C (y)) / (x − y) wheny = fe (x), we have

Proposition 2. For convex C, we have |f ′
e| ≶ 1 for all x ≥ qw ≥ y if the inequality

C′ (x) + C′ (y)

2
≶

C (x) − C (y)

x − y
(3)

holds for all x > y > 0.

Condition (3) provides us with the information about the concavity of fe near the residual Walrasian equilibrium

due to the fact thatlimx→qw
f ′′

e ≷ 0 if and only if limx→q−

w
|f ′

e| ≶ 1. Geometrically, the non-trivial equal profitability

curvefe is convex (concave) aroundEw if the average marginal costs for any two points exceeds the slope of chord

that connects the corresponding points in the cost functionC.

For instance, ifC (q) = cqα, α ≥ 1, let F (x, y) = (C′ (x) + C′ (y)) /2 − (C (x) − C (y)) / (x − y), then we

have

α F (x, y) f ′′
e

1 0 0

3/2 −1

4
c

√
x (x + 3y) −√

y (y + 3x)

x − y
< 0 +

2 0 0

3 c
1

2
(x − y)

2
> 0 −

We see thatf ′′
e = 0 if α = 1, 2. For α = 3/2 and3, the relative-profitability frontiers are convex and concave,

respectively, as shown in Fig. 2 for two different residual demand functions.

The quadratic cost is most widely adopted as example in the economical analysis. The proof of the following

interesting fact is provided in Appendix A.

Proposition 3. When cost function C is quadratic, that is, C (q) = a + bq + cq2 with a, b, c ≥ 0, then

the relative-profitability frontier fe is always a straight line with slope −1 so long as the residual demand D

satisfies the basic requirement D (0) > b. Moreover, when the cost is linear (c = 0), the relative-profitability

frontier geometrically coincides with the Walrasian reaction Rw.

The relative-profitability regimes expand and shrink with changes in the residual demand as well as the cost

function. Understanding the impacts of the various changesin market characteristics on the shape and location offe

enable us to study the comparative statics when technology changes as well as when the entry and exit are allowed.

The following proposition can be easily verified.

Proposition 4. Comparative effects of the relative-profitability frontier

i) For the same residual demand function D, let f
(i)
e be the relative-profitability frontier when C(i) is

given as the cost function of the residual duopoly, i = 1, 2. If C(2) (q) ≥ C(1) (q) for all q ∈ Q, then we

have f
(2)
e (x) ≤ f

(1)
e (x) for all x ∈ Q. In other words, increasing the cost of residual-duopoly shifts the

relative-profitability frontier downward.
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ii) For a given identical cost C, let f
(i)
e be the relative-profitability frontier when the residual demand is

given by D(i), i = 1, 2. If D(2) (x + y) ≤ D(1) (x + y) for all x, y ∈ Q, then we have f
(2)
e (x) ≤ f

(1)
e (x) for

all x ∈ Q. In other words, increasing the residual demand shifts the equal-profitability curve upward.

3. RELATIVE-PROFITABILITY STRATEGIES

In the theory of firms, all firms are commonly assumed to seek maximized (absolute) profit. However, economists

have pondered over the definition and/or criteria of profit for quite some time (Bernstein 1953). A directly related

question to the definition and/or criteria of profit is apparently what are the firms’ goals. This question, nevertheless,

also remained very much an open debate in the history of economics (Osborne 1964). In Baumol’s seminal work

(Baumol (1959)), it was suggested that in the real world, a firm is actually maximizing the sales revenue subject to

minimum profit requirement rather than maximizing absoluteprofit. The pioneering work on the theory of bounded

rational behavior by Simon (1959) further stimulated the discussion of firm’s objectives. The view that “the firm seeks

to attain a satisfactory level of profits rather than a maximum level” had received overwhelming responses in 1960s. As

Lamberton (1960) had argued, “when dealing with the large, multi-product, oligopolisticfirm whose particular (and

general) expectations are held with uncertainty the hypothesis is clearly a plausible one. Business management will

frequently be thinking in terms of simultaneous, discontinuous changes in a large number of variables with which it is

concerned and will have recourse to conventional procedures, one which may be the adoption of a profit target....The

target may be indicated according to a variety of methods, e.g., percentage on turnover or capital employed, and

pursued by a single policy under stable conditions.”

The relevance of profit maximization is much less obvious forlarge modern corporations where ownership and

control of the firm are separated: the former in the hands of potentially diffused shareholders and the latter vested

in professional management. This separation provides a considerable degree of decision-making autonomy of man-

agers, whose behavior may deviate significantly from what isimplied by profit maximization. It is well known in the

strategic-managerial-incentives literature that a firm’sowner can increase the firm’s profit by hiring a manager and as-

signing him an objective different from profit-maximization (Vickers (1985), Fershtman and Judd (1987) and Sklivas

(1987)). A literature relevant to relative profitability isfrom Lundgren (1996), where a method to eliminate incentives

for collusion by making managerial compensation, which depends on relative profits rather than absolute profits, is

proposed. This alteration of managerial incentives sets upa zero-sum game among the firms in an industry, yielding

the result that firms no longer have incentive to collude, either actually or tacitly, with regards to prices or outputs.

Recently, increasing appreciation of Walrasian equilibrium output from evolutionary and game theoretic perspec-

tives have once again provided alternative views to profit maximization as firms’ primary objectives. The essence

of evolutionary economics lies in the evaluation of relative success of different strategies. Rational firms imitate the

successful strategies, i.e., the strategies that can achieve a profit higher than the average. Thus, during an evolutionary

process, it is not the absolute profit but the relative profit that matters. Therefore, pursuing a goal of achieving relative

9



profit advantage is an economically justified in oligopolistic competition. A detailed examination of this concept is

warranted.

3.1. Relative-profitability strategy

Definition 5. Relative-profitability reaction (response) Given a rival’s output level, the firm reacts with

an output that can lead to a higher relative profit at each period during the dynamically oligopolistic

competition.

Relative-profitability strategy In dynamic oligopolistic competition, a relative-profitability strategy is any

open-loop or close-loop strategy such that all the equilibrium outputs lie on a relative-profitability reaction

curve.

It needs to emphasize that the relative-profitability strategy is a broader concept than the relative-profitability

reaction. With full information about the current output ofits rival, a firm responding with the relative-profitability

reaction is adopting a relative-profitability strategy. A relative-profitability strategy, however, can be composed of finite

relative-profitability responses (to current or past outputs of its rivals), or a simple response to the past price-level, or

even producing at a constant output likeqw.

Geometrically, all relative-profitability reactions for Firm X must lie in the relative-profitability regime for Firm X.

For each firm of residual-duopoly, there exist infinitely many relative-profitability strategies, all of them must intersect

at the residual Walrasian equilibrium. Then the natural question that arises is which one of them can maximize the

relative profit, should a firm’s goal be tomaximizethe relative profit intentionally. This section is conducted under

such motivation.

Definition 6. Efficient relative-profitability reaction is the relative-profitability reaction that maximizes

the relative profit for any given rival’s output.

Efficient relative-profitability strategy is any dynamical strategy that guarantees that a dynamical equi-

librium will lies on the efficient relative-profitability reaction curve.

The efficient relative-profitability reaction therefore reflects the maximum possible difference in profit when the

rival’s output is given. This reaction naturally requires information about the residual demand function. With knowl-

edge of the residual demandD and the rival’s outputy, Firm X maximizes its relative profit given by∆xy =

(x − y)D (x + y) − (C (x) − C (y)). A local maximum of∆xy occurs at

C′ (x) = D + (x − y)D′ (4)

if ∂2∆xy/∂x2 = 2D′ + (x − y)D′′ − C′′ (x) < 0.

Denote the efficient relative-profitability reaction implicitly defined in (4) asx = Rr (y), and the Cournot best-

response asx = Rc (y), which is implicitly defined by the first-order profit maximization condition as

C′ (x) = D + xD′. (5)

10



We should be able to infer from (4) and (5) thatRr (y) > Rc (y) for all y > 0.

However, in comparing with the Walrasian reactionRw (y) defined in (1), we have the following generic observa-

tion:

Theorem 2. If C′′ ≥ 0, we have Rw (y) > Rr (y) > Rc (y) for y < qw and Rr (y) > Rw (y) > Rc (y) for

y > qw.

Proof. See Appendix A.

If C′′ (q) ≡ 0 for all q ∈ Q, that is,C′ (q) ≡ c, Rw (y) coincides with the equal-profitability curve as well as the

normal-profitability curve. Therefore, for anyy > qw, with efficient relative-profitability reaction, both firm Xand Y

make negative profit while Firm Y loses more. To maintain a positive profit, the output of Firm Y must be less than

qw.

Remark 2. The efficient relative-profitability strategy x = Rr (y) implicitly defined in (4) is independent

of the cost function of Y and hence can be generalized to the cases in which two firms have different cost

functions.

Example 1. For a residual-duopoly consisting of Firm X and Y, assume the cost function is given by

C (q) = cq2/2. When the residual demand take the two forms that are most commonly seen: linear demand

D (Q) = 1 − Q and iso-elastic demand D (Q) = 1/Q, the relevant reaction curves are summarized in the

following table.
D (Q) = 1 − Q D (Q) = 1/Q

fe (x)
2 − x (2 + c)

2 + c

√

2/c− x

Rc (y) (1 − y) / (2 + c)
uc (y)

6c
+

2

3

y2c

uc (y)
− 2

3
y

Rw (y) (1 − y) / (1 + c)
(√

y2 + 4/c − y
)

/2

Rr (y) 1/ (2 + c)
ur (y)

3c
+

1

3

cy2

ur (y)
− 2

3
y

qw 1/ (2 + c)
√

2/c

Note: ur (y) =̇ 3

√

y
(

cy2 + 27 + 3
√

3 (2cy2 + 27)
)

c2

uc (y) =̇ 3

√

4y
(

2cy2 + 27 + 3
√

3 (4cy2 + 27)
)

c2

Table 1: Reaction curves with C (q) = q2/2
The relevant curves are illustrated in Figure 3 (a), from which we make the following observations for

both cases:

i) Rw (y) > Rr (y) > Rc (y) for y < qw and Rr (y) > Rw (y) > Rc (y) for y > qw, as suggested in Theorem

2;

ii) Relative-profitability frontier fe is a straight line, as implied by Proposition 3

iii) When the residual demand is linear, Rr = qw, a fact to be verified in Proposition 4 of next section.

iv) ∆xy (qw, y) > 0, if y 6= qw. For any given y, ∆xy (x, y) increases from zero (when x = y) to its

maximum value at x = Rr (y) and then decreases to zero at x = fe after x passes the Walrasian reaction fw.
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FIG. 3 Relative profitability and Absolute profitability
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3.2. Reconciling relative-profitability with absolute profitability

As have been discussed, a firm’s objective may be to maximize if not simply maintain the relative-profitability.

Condition on the fact that a firm’s main priority is to maintain relative-profitability, we ask if the firm is able to

maximize absolute profit at the same time. The answer is positive when the rival’s output falls in the certain range.

Actually, it can be verified that if a firm adopts Cournot best-response in a residual duopoly, two sections of this

best-response actually pass through its relative-profitability regimes, one is below and the other is above the residual

Walrasian equilibrium. In other words, any point on these two sections of the best response function not only allows

the firm to achieve the highest absolute profit given its rival’s output level but also ensures that the firm makes higher

profit relative to its rival. Therefore, these two sections of best-response themselves can in fact be interpreted as

the relative-profitability strategy that achieves the highest absolute profit level. When the main objective of relative

profitability is not met, the firm is willing to give up the opportunity of making the maximum absolute profit and

thus responds differently from Cournot-best response. Such compromise can be supplemented either with an equal

profitability (so that to main certain absolutely profitability) or with efficient relative-profitability response, depending

on the profitability preference of the firm.

Example 2. Following the settings of Example 1.

A direct combination of Rc and Rr can be constructed with

x = Rcr (y) =

{
Rc (y) , y ∈ [0, qc) ∪ [yrc,∞),
Rr (y) , y ∈ [qc, yrc],

where yrc corresponds to the y value at the intersection point of Rc and fe. When y ∈ [qc, yrc], the firm

cannot achieve relative profitability if it adopts the Cournot-best response and thus it switches to maximizing

the relative profit. Its reaction function is thus Rr (y). Otherwise, since the goal of relative profitability is

achieved, it will then sought to maximize the absolute profit by selecting the Cournot-best response, which

is given by Rc (y). We notice that the discontinuity inevitably occur at y = qc as well as at y = yrc, as

illustrated by the thick curve in Figure 3.(b)

Alternatively, the firm may choose to maximize absolute profit given that relative profitability is main-

tained when y ∈ [qc, yrc].To achieve this secondary objective, the firm will choose to react according to y

when y ∈ (qc, qw) and f−1
e (y) when y ∈ (qw, yrc), where f−1

e (y) is the inverse of fe. The reaction is thus

summarized by

x = Rce (y) =







Rc (y) , y ∈ [0, qc) ∪ [yrc,∞),
y, y ∈ (qc, qw) ,

f−1
e (y) , y ∈ (qw, yrc) ,

and is illustrated by the thick curve in Figure 3.(c).

4. WALRASIAN BEHAVIORS IN GENERAL

Always stick to your proved strategy!

—Another Chinese Philosophical Quotation
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In the proof of Theorem 1, we have actually shown that, whenx > (<) y, the relative-profitability frontierfe lies

on the left (right) hand side of the inverse of the Walrasian reaction curvefw, respectively. This in turn suggests that the

Walrasian reactionx = Rw (y), for any giveny, lies in the relative-profitability regime of X, or equivalently, Walrasian

reaction is one of the relative-profitability reactions. Onthe other hand, since the center of relative-profitability regime

is the residual Walrasian equilibriumEw = (qw, qw), fixing the output level directly at the constant level ofqw is

another simple relative-profitability strategy. This section will explore further the relative implications and extend our

results to more general oligopolistic framework.

4.1. Dynamic Walrasian Strategies

In a residual duopoly, like relative-profitability reactions, there exist infinitely many relative-profitability strategies

for each firm. Among them, the one that requires the minimum information about the market structure turns out to be

theprice-taking strategy, which is to react to only the lagged market price by adjusting current marginal cost:

pt−h = C′ (xt) ,

or, equivalently,

xt = MC−1 (pt−h) , (6)

wherep is the price andh ≥ 0 is the information lag. The explanation for the delayed reaction function (6) being a

relative-profitability strategy lies in the fact that when an equilibrium is reached withxt = xt−1, Eq. (6) is nothing

but the Walrasian reaction defined in (1). The price-taking strategy certainly belongs to more general category of the

Walrasian strategy, by which we mean:

Definition 7. Dynamic Walrasian strategy: any dynamical strategy (or behavioral rule) that can

guarantees the equality of marginal cost to the market price at any intertemporal equilibrium.

Geometrically, dynamic Walrasian strategy refers to any dynamical behavioral rule that can guarantee that an

intertemporal equilibrium lies on the Walrasian reaction function for a residual duopoly. The dynamic Walrasian

strategy so defined differs from the static one adopted in theevolutionary game theory. It includes the behavioral rules

and reactions such assimple trial and error procedure, imitating behavior, advanced learning rules, optimal or non-

optimal search behavior, adaptive adjustments, or evendynamic optimizationsso long as they can reach to Walrasian

reaction curve in a dynamic equilibrium.

A typical form of dynamic Walrasian strategy is the conventional adaptive adjustment defined by

xt = xt−1 + α
(
MC−1 (pt−1) − xt−1

)
. (7)

if the marginal cost is not a constant, whereα ∈ (0, 1) is the adaptive speed2.

2An alternative, but more general adaptive adjustment strategy is

xt = αxt−1 + (1 − α) g
(
pt−1 − C′ (xt−1)

)

where g is a monotonically increasing function with g (0) = 0.
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It needs to emphasize that the relative profitability of dynamic Walrasian strategy can be generalized to more

general heterogenous oligopolistic models where firms havedifferent costs and strategies. We have the following

beautiful result3:

Theorem 3. In an oligopolistic economy consisting of N firms that produce an homogeneous product,

assume Firm X has strict convex cost function C and adopts a dynamic Walrasian strategy. If an intertem-

poral equilibrium is arrived, Firm X can profit more than any rival who has identical cost but produces at

different equilibrium output level.

Proof. Assume Firm Y to be one of the firms having the identical cost C as the price-taker. Let x̄ and

ȳ be the equilibrium outputs of the price-taker and Firm Y, respectively. Denote {q̄j}N
j=3 as the equilibrium

outputs for the other oligopolistic firms, with either same or different costs, so that the equilibrium price is

given by

p̄ = D̃(x̄ + ȳ +

N∑

j=3

q̄j).

It follows from the definition of dynamic Walrasian strategy that C′(x̄) = p̄.

The profit difference between Firm X and Firm Y is then given by

∆xy (x̄, ȳ) = p̄ · (x̄ − ȳ) − (C(x̄) − C(ȳ)) = C′(x̄)(x̄ − ȳ) − (C(x̄) − C(ȳ)).

It follows from the assumption of C′′(·) > 0 that C′(x̄)(x̄ − ȳ) − (C(x̄) − C(ȳ)) ≥ 0, regardless the relative

magnitudes of x̄ and ȳ, or equivalently,

∆xy (x̄, ȳ) ≥ 0, (8)

where the equality holds if and only if x̄ = ȳ.

Since Firm Y’s production strategy as well as the equilibrium output ȳ are not explicitly specified, the

inequality (8) thus leads to the conclusion immediately. Q.E.D.

The conclusions drawn in Theorem 3 is generic in the sense that it depends on neither the particular market structure

(the residual demand and cost functions) nor on the strategies (or outputs) that other firms may take. Moreover, since

only equilibrium is concerned, the result is robust to the changes in the market environments such as the market

demand, entry and exit of oligopolistic firms, advances in some or overall technology level. Hence, it supersedes all

available conclusions in the relevant literatures. Economical interpretation for the relative profitability of dynamic

Walrasian strategies in general is simple and straightforward: when an intertemporal equilibrium is reached, the price

converges to an equilibrium and remains unchanged. Any sophisticated strategy aiming to affect the market through

3The relative profitability of the price-taking strategy was first formally proposed in Huang (2002) where the proof was
mistakenly omitted in the editorial process. The proof itself is quite straightforward. Although the simplified forms were
reported in several later publications, we again provide a more general form here for the sake of completeness as well as the
appreciation of role of convex cost functions.
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market power ceases to function and becomes in vain. In contrast,MC = P is in fact the unique way to gain the

economic efficiency, a fundamental economic principal taught to all undergraduates4

It should be emphasized that the relative profitability is not purposely but unconsciously achieved by a firm who

adopts a dynamic Walrasian strategy. If a firm rival intends to maximize its profit relative to a price-taker by adopting

any relative-profitability strategy, both firms will end up with producing at the residual Walrasian equilibrium level.

When a firm’s production technology exhibits constant returns to scale, or, equivalently, the firm’s marginal cost

is constant, the firm cannot behave as a price-taker with output determined by (6). The following complement to

Theorem 3 can be similarly proved.

Theorem 4. For an oligopolistic economy consisting of N firms that produce an homogeneous product,

assume Firm X has a constant marginal cost c and adopts the following dynamic Walrasian strategy so that

its output at period t is determined by

xt = xt−1 + g(D̃−1 (c) −
N∑

j=2

q
(j)
t−hj

− xt−1), (9)

where g is a monotonically increasing function with g (0) = 0, hj ≥ 1 is the information lag for firm j’s output,

and q
(j)
t−h, j = 2, ..., N , are the lagged outputs of other N − 1 firms. When an intertemporal equilibrium is

reached, we have the following:

i)Firm X makes normal profit at the equilibrium, so do any firm has positive equilibrium output;

ii)Any firm equipped with the same technology as Firm X but adopt traditional strategies such as Cournot

best-response or Stackelberg leader strategy will be driven out the market in general due to loss of profit in

equilibrium.

Proof. i) Let the equilibrium output vector be (x̄, q̄2, q̄3, ..., q̄N ). Eq. (9) then implies

c = D (x̄ + q̄2 + ... + q̄N ) (10)

so that the profits for all firms having cost function C (q) = cq must enjoy normal profits in equilibrium.

ii) Without loss of generality, assume that Firm 2 has the same cost function C (q) = cq and adopts

Cournot best-response (with or without knowledge of the exact outputs of other firms) so that its output yt

is determined from

D(xt−l1 + yt +
N∑

j=3

q
(j)
t−lj

) + D′(xt−l1 + yt +
N∑

j=3

z
(j)
t−lj

x) · yt = c, (11)

where lj ≥ 0, j = 1, 3, ..., N are the information lags for Firm Y.

When an intertemporal equilibrium (x̄, ȳ, q̄3, ..., q̄N ) is reached, (11) simplifies to

D(x̄ + ȳ + q̄3 + ... + q̄N ) + D′(x̄ + ȳ + q̄3 + ... + q̄N ) · ȳ = c. (12)

4Needless to say, if duopoly game is just played with finite rounds (before reaching the equilibrium), then which firm has
the relative profitability depends on the length of game as well as the strategies adopted by the sophisticated firm.
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However, we know from (10) that c = D(x̄ + ȳ + q̄3 + ... + q̄N ) so that identity (12) suggests that

D′((x̄ + ȳ + q̄3 + ... + q̄N ) · ȳ = c,

that is, ȳ = 0 so long as D′ 6= 0.

The proof for all other conventional Stackelberg leader strategy follow the same reasoning. Q.E.D.

4.2. Static Walrasian strategy

We can infer directly from the relative-profitability regimes depicted in x-y plane that committing to the residual

Walrasian residual equilibrium output (xt = qw) is itself a simplest relative-profitability strategy. We shall refer it as

thestatic Walrasian strategy.

In a residual duopoly, definey1 andy2 as the solutions toπy (qw, y1) = 0 andπx (qw, y2) = 0 respectively.

Referring to Figure 4.2, we see that when Firm X commits its output toqw, the following inequalities exist between

the profits of the two firms:

i) πx > πy > 0 wheny < y1,

ii) πx > 0 > πy wheny1 < y < y2,

iii) 0 > πx > πy wheny > y2.

The beauty of adopting static Walrasian strategy is more appreciated when the residual demand is linear.

Proposition 5. (Efficiency Theorem) When the residual demand function is linear, p = D (Q) =

a − bQ, so long as C′′ ≥ 0 is satisfied, the static Walrasian strategy is the efficient relative-profitability

strategy that maximizes the relative profit, regardless of the actual function form of C.

Proof. Since the efficient relative-profitability strategy x = Rr (y) is derived from (4), substituting

D (x + y) = a − b · (x + y) into it yields

C′ (x) = a − 2bx. (13)

The efficient relative-profitability strategy is therefore to fix its output at a constant that is solved from (13).

However, the residual Walrasian equilibrium outputs xw = yw = qw is determined from

C′ (qw) = a − 2bqw. (14)

Comparing (14) with (13) leads to the conclusion. Q.E.D.

Therefore, committing to static Walrasian strategy provides a firm with unbeatable commitment advantage. Given

this information, its rival who is a profit maximizer, has no choice but to produce aty∗ = Rc (qw), whereRc is the

Cournot best response for Firm Y.

Apparently, the relative-profitability as well as the efficiency of static Walrasian strategy only holds true when the

outputs of all other firms (whether they have same technologyor not) are fixed.
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FIG. 4 Static Walrasian strategy

On the other hand, if all firms have identical costC, then the static Walrasian strategy, i.e., producing at residual

Walrasian equilibrium output amounts to producing at the competitive equilibrium level5. In fact, if we denoteqc as

the competitive equilibrium output level so that

C′ (qc) = D̃ (Nqc)

then we can see thatqc ≡ qw. Therefore, the relative profitability of static Walrasianstrategy applies to the symmetric

oligopoly where all firms have identical cost in the sense that

D̃ ((N − k) qc + kq̄) qc − C (qc) > D̃ ((N − k) qc + kq) q̄ − C (q̄) . (15)

for all q̄ 6= qc and1 ≤ k ≤ N .

Inequality (15) was first provided in Vega-Redondo (1997), where it was shown that the competitive equilibriumqc

is aglobal stable evolutionary strategyin the sense that, starting with all firms producing at an identical qc, if k firms

change to defect and produce at another identical output level q̄, they will definitely make less profit than those who

remain in producing atqc. Extending (15) to ann-residual oligopoly, by replacingN with n < N andD̃ with D, we

arrive at an analogous conclusion: the static Walrasian strategy (producing atqw determined byC′ (qw) = D (nqw) )

is a global stable strategy from the evolutionary game theoretic point of view.

5Producing at the competitive level is commonly referred to as “Walrasian strategy” or “Walrasian behavior” directly in
evolutionary game-theoretic literatures.
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5. EVOLUTIONARY STABILITY OF DYNAMIC WALRASIAN STRATEGIES

For the static Walrasian strategy, in comparison to the dynamic Walrasian strategy, an noticeable short-coming is

the former demands more information than the latter becauseto compute the residual Walrasian equilibrium output

or competitive output, extra information such as (residual) demand and number of firms are needed. Moreover, the

evolutionary stability of static Walrasian strategy is somewhat misleading. To see this, we should first note that concept

of “strategy” adopted in either classical game theory or evolutionary game theory is a “static” concept and is more

often defined as an option of action variable so that the strategies space consists of either a finite or infinite number of

such choices6. A “strategy” in game-theoretic sense is said to be evolutionarily stable (ESS) if it, once adopted by all

players, will not be discarded in favor of another “strategy” when a small fraction of players (mutants) choose another

singledifferent “strategy”7, as implied by (15), where the relative-profit of producing at the competitive equilibrium

output is checked against one mutant strategy (output level) q̄ at a time. If more than one mutant strategies appear

simultaneously, such relative profitability may disappear. In other words, ifk1 mutants produce at̄q1 andk2 mutants

produce at̄q2, then it may lead to the following opposite conclusion

D̃ ((N − k1 − k2) qc + k1q̄1 + k2q̄2) qc − C (qc) < D̃ ((N − k1 − k2) qc + k1q̄1 + k2q̄2) q̄i − C (q̄i)

i = 1, or 2.

Such examples can be easily constructed.

Example 3. Consider a symmetric oligopoly consisting of three firms, X, Y and Z, the output bundle is

a vector of (x, y, z). Assume that the market inverse demand is given by D̃ (Q) = 3/Q, where Q = x + y + z

and that the identical cost is quadratic: C (q) = q2/2 for q > 0.

It follows from D̃ (3qc) = C′ (qc) that the Walrasian equilibrium output level qc = 1.

Now x ≡ qc, for any positive y and z, we have the profit ratio

πx : πy : πz = 5 − y − z : y (6 − y (1 + y + z)) : z (6 − z (1 + y + z)) .

6Such usage is different from the much broader “strategy” understood in common sense. In particular, in other fields of
economics, “strategy” is commonly refer to some kind of behavioral rule in response to changes resulted from rival’s actions,
market condition or external environment. In dynamic framework, it is usually expressed as a reaction function, such as the
Cournot-best response (responding to rival’s output or price), price-taking strategy and/or Cobweb strategy (responding to
market price), adaptive and/or cautious-strategy (responding to unstable economy). This distinction is particularly clear for
“Cournot-best response” that used both in game theory and in oligopolistic dynamics. In the former, all the quantities resulted
from the response function are “strategies”, while in the latter, the “best-reponse” itself is a strategy (like price-taking strategy),
one of many “strategies” formed by different responses .

7The principal notions of evolutionary stability have evolved constantly. The idea of Evolutionarily stable strategies can be
at least traced back to Ronald Fisher (1930). the formal definition were introduced by John Maynard Smith and George R.
Price in a 1973 Nature paper, in which a strategy S is defined as an ESS if and only if, for all T 6= S, either i) E(S, S) > E(T, S),
or ii) E(S, S) = E(T, S) and E(S, T ) > E(T, T ), where T stands for any strategy and E(·, ·) is the expected payoff.

The first condition is sometimes called a strict Nash equilibrium condition or equilibrium property to indicate that the best
strategy to face strategy S is also strategy S. The second is sometimes referred to as Maynard Smith’s second condition or
stability property, which emphasizes that if T does just as well against S as does S itself, then S will only be stable if it does
better against T than T does against itself. In consequence, although the adoption of strategy T is neutral with respect to the
payoff against strategy S, the population of players who continue to play strategy S have an advantage when playing against
T .

There are many alternative definitions of ESS in different applications. They are not precisely equivalent to each other. For
instance, Thomas (1984) changed the above two conditions to i) E(S,S) ≥ E(T, S), and ii) E(S, T ) > E(T, T ) for all T 6= S.
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We see that πy > πx when (1 − y)
(
y2 + yz + 2y − 5 + z

)
> 0 and that πz > πx when (1 − z)

(
z2 + yz + 2z − 5 + y

)
>

0. Therefore, there exist infinitely many (y, z) combinations such that make one of Firm Y and Z makes

more profit than Firm X. Figure 5 illustrates the situation.

On the other hand, given any z, residual demand left for Firm X and Y is D (Q) = 3/ (Q + z) and the

residual Walrasian equilibrium is obtained from the equilibrium condition D (2qw) = C′ (qw), which yields

qw = (
√

z2 + 24 − z)/4. Now for x ≡ qw, we have

πx − πy =
1

32

(4y + z −
√

z2 + 24)2(4y + z + 3
√

z2 + 24)√
z2 + 24 + 3z + 4y

≥ 0

for arbitrary y and z, where the equality holds if and only if y = qw.

Suppose, instead, Firm X behaves as a price-taker, then for any given y and z, the equilibrium output x̄ is

obtained from the equilibrium condition D̃ (x̄ + y + z) = C′ (x̄), which leads to x̄ = (

√

(y + z)
2

+ 12−y−z)/2

and

πx − πy =
1

2

(
3 + y2

)
√

(y + z)2 + 12 + y2 (y + z) − (15y + 3z)
√

(y + z)2 + 12 + y + z
≥ 0

where the equality holds if and only if y = x̄ = qw. Similarly, πx ≥ πy and the equality holds if and only

z = x̄ = qw.

In additional to its weakness to against multiple mutants, static Walrasian strategy has another two shortcomings:

i) Robustness issue: according to Proposition 4, when the (residual) market demand changes or when entry or exit

occur, the relative-profitability frontier shifts outwardor inward, leading to the displacement of relative-profitability

20



regime. Therefore, relative-profitability advantage in committing at the original Walrasian equilibrium output level

may not be maintained;

ii) Heterogeneous costs: unlike the dynamic Walrasian strategy defined in Definition 7, the relative profitability

of the static Walrasian strategy cannot be generalized to the non-symmetric oligopoly where firms have heterogeneous

costs.

The implication between the dynamic and static Walrasian strategies can be seen straightforwardly by comparing

(15) with the conclusions drawn in Theorem 3. When all firms have identical convex costC, assume thatk firms

producing at arbitrary amounts̄q1, q̄2, ...q̄k, while remainN − k firms produce at the dynamical equilibrium levelx

determined from

C′ (x̄) = D̃((N − k) x̄ +

k∑

j=1

q̄j) (16)

then Theorem 3 implies that, for alli = 1, 2..., k, so long as̄qi 6= x, we have

D̃((N − k) x̄ +

k∑

j=1

q̄j)x̄ − C (x̄) > D̃((N − k) q̄j +

k∑

j=1

q̄j)q̄i − C (q̄i) , (17)

The distinctions between (15) and (17) are apparent. However, the implications from (17) is far broader than the

one from (15) in the sense that the latter can be logically inferred from the former either when “imitation” is assumed

or when a payoff monotone evolutionary selection mechanismis enforced. As in the evolutionary game analysis where

all firms seek to maximize relative profit, firms intend to imitate the successors by changing to the output levels that

brings greater relative profit, (15) is then a long-run evolutionary outcome from (17) due to the fact that, along with the

increasing number of “price-takers”, the equilibrium output level x̄ derived from (16) will approach the competitive

equilibriumqc. After all firms become price-takers,x̄ = qc, any arbitrary deviation fromqc by any number of firms

may promote short-term relative-profitability against theprice-takers (here the price-takers will react to these deviation

instead of sticking toqc) but definitely ends up with a relative disadvantage status in terms of relative profit, should a

new equilibrium be arrived. At this new equilibrium, the mutants may profit more or less than they do at the original

equilibrium. Regardless of which case it is, in terms of the relative profitability, the mutants still performs worse than

the “price-takers”. In the long-run, by repeated imitations or selections, the competitive equilibrium is converged.

The converse implication, that is, from (15) to (17), does not exist. For instance, for a duopoly, (15) refers to the

relative-profitability ofqw while (17) refers to the relative profitability offw.

Just as the concepts of “static strategy” defined in the game theory should be distinguished with the “dynamic

strategy” defined in our model, the distinctions between theconcept of “strategy equilibrium” adopted in game the-

oretical analysis and the concept of “intertemporal equilibrium” adopted in dynamical analysis should also be noted.

“Equilibrium” in game theory is interpreted in terms of static “strategies”. A ESS is essentially a Nash-equilibrium

with respect to the relative payoffs, which refers to the situation in which that you have no incentive to change your

“strategy” (i.e., the output level in quantity-competition) when your rival sticks to his current “strategy”. However, the

“intertemporal equilibrium” that we concern here is a dynamic concept. It is nothing but a “steady state” resulted from
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mutual adjustments. When an intertemporal equilibrium is locally stable, if you change, your rival will react, and then

the game will revert to whatever it was before. So it is not because you don’t have incentive to change but because

your rival always reacts properly to your change so as to makeyour change in vain and force you to adjust back to the

original equilibrium status. The intertemporal equilibrium coincides with Nash-equilibrium if and only if all players

adopted their respectively best-response strategies (such as Cournot reaction)8.

Nevertheless, the conventional concept of evolutionary stability for static Walrasian strategy can be generalized to

the dynamic Walrasian strategy as well. As we have emphasized repeatedly, except adopting Walrasian reaction di-

rectly, Walrasian strategy in general does not guarantee the relative profitability at each period of interaction. While an

impatient imitator may not switch to the Walrasian strategyduring the dynamical adjustment course, rational imitators

will soon realize that it is always the long-run outcome thataccounts and hence only imitate the strategy that can bring

relatively higher profit when the system converges to a relatively stable state, i.e., a dynamical equilibrium. Along

with the course of evolution, more and more firms become rational imitators and the Walrasian strategy evolves into

an evolutionary stable strategy.

6. CONCLUSIVE REMARKS

We have proved that there exists a unique downward-sloping relative-profitability frontier, which together with 45-

degree diagonal line, divides the output space into symmetrically located relative-profitability regimes for each firm.

All relative-profitability reactions for a particular firm must pass through the residual Walrasian equilibrium, which

happens to be the unique vertex that separates different relative-profitability regimes. Regardless of what strategies

its rival may take, a firm behaving as a price-taker can achieve the relative profitability if an equilibrium is reached.

Producing at the Walrasian output constantly, however, canbring about the relative profit at each and every period.

Moreover, when the residual demand is linear, such commitment to invariant output turns out to be the efficient reaction

in the sense that it unconsciously maximizes the relative profit against its rival.

These fundamental facts provide a direct economic interpretation and intuitive justification for the appreciation of

Walrasian behavior from the different perspectives and provide a linkage between them. They do not only clarify the

confusions and misunderstandings due to the different usages of same terminologies under different frameworks but

also help to generalize the available results to a new level.

The relative profitability gained by a price-taker is conventionally interpreted as a consequence of betrayal and

free-riding (Stigler 1950). It is well-known that in a cartel, any member has an incentive to increase its output above

the agreed level so as to gain extra profit. The higher relative profit enjoyed by a betrayer (a price-taker) is achieved

through hurting those who remain in the collusion more than hurting itself9. In other words, the price paid for betraying

is the reduction in instantaneous absolute profit. Such observations lead to the questioning of the rationale of price-

taking strategy, in particular for the economists who believe the absolute profitability is what a firm should concern.

8The price-taking reaction can be regarded as a best-response strategy in boarder sense: it is the reaction best-response to
the price instead to the outputs of rivals.

9This behavior is described as “spiteful” in Schaffer (1989).
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However, when the number of firms in an oligopoly is relative large, a firm may prefer to behave as a “price-taker”

not just for the higher relative profit compared to the rest but also for higher instantaneous profit. In the terminology

of game-theory, the “price-taking” can be a dominant strategy for some firms when the oligopoly is composed of

price-takers and sophisticated firms that adopt Cournot best-response strategy and the price-takers. Such observation

is first revealed in Huang (2002) and will be further exploredin the second part of this research, where the advantage

of price-taking strategy against conventional sophisticated strategies such as Cournot best-response and collusionwill

be further explored.
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8. APPENDIX A: PROOFS

Proof of Theorem 1

Without loss of generality, we proceed with the case in whichy < x since the proof for the case in whichy > x

follows directly due to the symmetry ofx andy.

Let y = fw (x) be the inverse function of the Walrasian reaction defined in (1). This implies that the curve on x-y

plane satisfies the following identity:

D (x + fw (x)) = C′ (x) .

First, we shall show thatfe (x) ≥ fw (x) for all x ∈ Q and the equality holds only whenfe (x) = x. In other

words, given any level ofy, fe lies on the right-hand side offw.

Notice that by the definition of∆xy (x, fe (x)) = 0, we have

∆xy (x, fe (x)) = (x − fe (x))D (x + fe (x)) − (C (x) − C (fe (x))) = 0.

Sofe (x) has an implicitly defined solution of

fe (x) = x − C (x) − C (fe (x))

D (x + fe (x))

Or, equivalently,D (x + fe (x)) = (C (x) − C (fe (x))) / (x − fe (x)).

With the convexity ofC, we have

C (x) − C (fe (x))

x − fe (x)
≤ C′ (x) for x ≥ fe (x) ,

where the equality holds only whenfe (x) = x, therefore

D (x + fe (x)) ≤ C′ (x) = D (x + fw (x)) .

The downward-sloping property ofD implies thatfw (x) ≤ fe (x), with the equality being held whenfe (x) = x.

Therefore, for a givenx andfe < x, we havefe lies abovefw. This is equivalent to saying thatfe lies on the

right-hand side offw for any given y.

To prove the uniqueness offe, we first show that for any fixedy, ∆xy (x, y) is a monotonically decreasing function

of x for x > f−1
w (y).

Given a fixedx, we haveD (x + y) ≶ C′ (x) wheny ≷ fw (x), or, equivalently, given ay, D (x + y) ≶ C′ (x)

whenx ≷ f−1
w (y). However, for any fixedy, we have

∂∆xy (x, y)

∂x
= D − C′ (x) + (x − y)D′.

Due tox > y (by assumption) and the fact thatD (x + y) ≶ C′ (x) for x ≷ f−1
w (y), we know that

∂∆xy (x, y)

∂x
< 0 whenx > f−1

w (y) .
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This implies that∆xy (x, y) is a monotonically decreasing function ofx for x > f−1
w (y). Therefore, for any fixedy,

whenx is greater than the value implied by the curvex = f−1
e (y) (∆xy (x, y) = 0), ∆xy (x, y) is always negative.

Since it is impossible to have∆xy (x, y) = 0 for x > f−1
e (y), uniqueness offe is ensured.

ii) The downward sloping characteristics offe follows straightforwardly from the uniqueness offe. If not, there

must exist ax0 such thatf ′
e (x0) = 0 with f ′′

e (x0) > 0. This in turn implies the existence of aǫ → 0+ such that for

yǫ = f−1
e (x0) + ǫ, f−1

e (yǫ) has multiple values, a contradiction.

iii) The intersection of the trivial equal profitability curve and the relative-profitability frontier gives rise tox =

y = qw. The rest of conclusions are obvious. Q.E.D.

Proof of Proposition 1

Proof. (2) is obtained by rearrangement after taking derivative with respect to x over both sides of the

identity

D (x + fe) (x − fe) = C (x) − C (fe) .

Consider the segment of y = fe (x) below the 45-degree line, we have y < x and C′ (x) ≥ D > C′ (y),

which implies that f ′
e < 0 for y < x. In particular, when x → qw and fe → qw, we have C′ (x) − D → 0, so

that

lim
x→qw, y→qw

f ′
e =

C′ (x) − D − (x − fe)D′

C′ (fe) − D + (x − fe)D′
= lim

x→qw, y→qw

C′ (x) − D

C′ (fe) − D
= −1.

Q.E.D.

Proof of Proposition 3

Proof. For an arbitrary D that satisfies D (0) > b, when C (q) = a + bq + cq2 and y = fe (x), we have

∆xy (x, y) = D (x + y) · (x − y) − b · (x − y) − c ·
(
x2 − y2

)
= 0.

Therefore, for x 6= y, we have

D (x + y) − c · (x + y) = b (18)

which implies that

D (x + y) = D̂−1 (b)

where D̂−1 is the inverse function defined by D̂ (z) =̇D (z) − cz. Therefore, the equal-profitability curve fe

is always linear, regardless of the residual demand D.

When c = 0, (18) simplifies to

D (x + y) = b = C′ (x) = C′ (y)

which is nothing but the Walrasian reaction curve for both Firm X and Y. It is also the normal-profitability

curves for both firms due to zero fixed cost. Q.E.D.
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Proof of Proposition 4

Proof. i) For a given x, denote C(2) (x) = (1 + α)C(1) (x). When α 6= 0, the equal-profitability curve

fe (α, x) is implicitly defined by

(x − fe (α, x)) D (x + fe (α, x)) = (1 + α) (C (x) − C (fe (α, x))) . (19)

Taking derivative with respect to α over both sides of (19) and rearranging yields

∂fe (α, x)

∂α
=

C (x) − C (fe (α, x))

(1 + α)C′ (fe (α, x)) + (x − fe (α, x))D′ − D

=
C (x) − C (fe (α, x))

(1 + α) (C′ (fe (α, x)) − C (x) − C (fe (α, x))

x − fe (α, x)
) + (x − fe (α, x))D′

Since the convexity of C implies that

C (x) − C (fe (α, x))

x − fe (α, x)
R C′ (fe (α, x)) when x R fe (α, x) ,

we thus have
∂fe (α, x)

∂α
< 0 for all α.

ii) Since for any given z = x+y, we are able to define a β (z) such that D(2) (z) = (1 + β (z))D(1) (z), the

proof can be accomplished by showing that fe, which is a function of β (z), shifts rightwards with increasing

β (z) when the residual demand function is given by (1 + β)D (z). Now the equal-profitability curve fe (β, x)

is implicitly defined by

(x − fe (β, x)) (1 + β) D (x + fe (β, x)) = C (x) − C (fe (β, x)) . (20)

Taking derivative with respect to β over both sides of (20) and rearranging would suggest that

∂fe

∂β
=

(x − fe (β, x))D (x + fe (β, x))

C (x) − C (fe (β, x))

x − fe (β, x)
− C′ (fe (β, x)) − (x − fe (β, x)) (1 + β)D′

> 0

for all β. Q.E.D.

Proof of Proposition 9

Proof. Verification of i) and iii) are straightforward by noticing that when (21) is satisfied, the profit from

Firm X is given by πx (x, fw (x)) = C′ (x)x−C (x) and ∆xy (x, y) |y=fw(x) = C′ (x) (x − y)−(C (x) − C (fw (x))).

ii) Since y = fw (x) and πy (x, fw (x)) = C′ (x) fw (x) − C (fw (x)), we thus have

dπy (x, y)

dx
|y=fw(x) = C′′ (x) y + (C′ (x) − C′ (y)) f ′

w (x) ,

substituting f ′
w (x) = C′′ (x) /D′ − 1 into which yields

dπy (x, y)

dx
|y=fw(x) =

1

D′
(yC′′ (x) D′ + (C′ (x) − C′ (y)) (C′′ (x) − D′)) .
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Therefore so long as x ≤ qw (x ≤ y) we have
dπy (x, y)

dx
> 0. Since πy (qw, qw) > 0 and πy (x∗, 0) = 0, πy

must have at least one local maximum between qw and x∗ = Rw (0). One of such local maximum occurs at

xs > qw with
dπy (xs, ys)

dx
|ys=fw(xs) = 0, that is, Eq. (22).

Moreover it can be verified that

d2πy (x, y)

dx2
|y=fw(x) = D′C′′ (x) (2C′′ (x) − 2D′ − yD′′) − C′′ (y) (C′′ (x) − D′)

2

+ (D′ (C′′′ (x) + D′′) − 2D′′C′′ (x)) (C′ (x) − C′ (y))

which is negative for all y = fw (x) when conditions (23) are satisfied. Q.E.D.

Proof of Proposition 2

Proof. Notice that Rw, Rr and Rc meet the following identities, respectively.

C′ (Rw (y)) = D (Rw (y) + y) ,

C′ (Rr (y)) = D (Rr (y) + y) + (Rr (y) − y)D′ (Rr (y) + y) ,

C′ (Rc (y)) = D (Rc (y) + y) + Rc (y)D′ (Rc (y) + y) .

It is easy to see that for any given y, we have Rc (y) < Rw (y) and Rc (y) < Rr (y). However, Rr (y) and

Rw (y) intersect at x = y = qw. Moreover, as can be seen from Figure 6 that, for a given y, the function

of G (x) =̇D (x + y) + (x − y)D′ (x + y) lies above (below) D (x + y) for x < y (x > y), which implies that

Rr (y), the intersection of G and C′, is greater (less) than Rw (y) if x < y (x > y). Q.E.D.

9. APPENDIX B: ISO-PROFIT CURVE AND RELATIVE-PROFITABILITY FRONTIER

In this appendix, we shall reveal some relations among iso-profit curve, the normal-profit curves and the equal-

profitability curve. The information revealed is importantfor the analysis of interactions of various strategies adopted

by the duopolistic firms.

Definition 8. Iso-profit curve and normal-profit curve for Firm i

Iso-profit curve for Firm i is the curve in the x-y plane that depicts the relationship between x and y so

that the profit for Firm i is fixed at a constant level πi (x, y) = π0, where π0 is a constant. In particular,

when π0 = 0, the iso-profit curve will be referred to as the normal-profitability curve.

Let qw be the residual Walrasian equilibrium output such thatD (2qw) = C′ (qw) and denoteEw = (qw, qw) as

the residual Walrasian equilibrium point in the x-y plane. Furthermore, letqn represents the maximumq such that

πx (qn, qn) = πy (qn, qn) = 0, that is,qn satisfies the identity

qnD (2qn) = C (qn) .
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FIG. 6 Relative magnitudes of Rr, Rc and Rw

The analytical relationship between iso-profit curve and equal profitability curves is summarized in the following

proposition:

Proposition 6. i) Along the 45-degree line, only at residual Walrasian equilibrium (qw, qw) will the slope

of iso-profit curves of both firms equal −1. In other words, at the residual Walrasian equilibrium (qw, qw),

the iso-profit curves (for both firms) are tangent to the equal-profitability curve.

Proof. For the iso-profit curve of Firm X, we have

πx (x, y) = xD (x, y) − C (x)

The slope of πx (x, y) is given by

D (x, y) + xD′ (x, y)

(

1 +
∂y

∂x

)

− C′ (x) = 0

or,

∂y

∂x
=

C′ (x) − D

xD′ (x, y)
− 1.

Since y = x along the 45-degree line, we thus have ∂y/∂x = −1 if and only if C′ (x) = D, i.e., if and only

if at the residual Walrasian equilibrium. Q.E.D.

Whenx ∈ (qw, qn), the profit is positive. The iso-profit curve will intersect twice with the equal-profitability curve

fe. The following proposition indicates that these two intersection points are anti-symmetric.

Proposition 7. If qn > qw, then for any q̃ ∈ (qw, qn), there exists a pair (q1, fe (q1)) , (fe (q1) , q1) on
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the equal profitability curve y = fe (x) such that

∆xy (q1, fe (q1)) = ∆xy (fe (q1) , q1) = ∆xy (q̃, q̃)

and

πi (q1, fe (q1)) = πi (fe (q1) , q1) = πi (q̃, q̃) for i = x, y.

Proof. As depicted in Figure7.(a), the normal-profit curve πx (x, y) = 0 passes (qn, qn), (q∗, 0) and (0, q∗)

three points.

For any qn > q̃ ≥ qw, πi (q̃, q̃) > 0, we are able to identify a q1 on the lower segment of y = fe (x) such

that πx (q1, fe (q1)) = πx (q̃, q̃). By the symmetricity of πx (x, y) and πy (y, x) and the anti-symmetricity of

∆xy = 0, we must have

πx (q1, fe (q1)) = πy (fe (q1) , q1) = πx (fe (q1) , q1)

where the first equality follows from the symmetricity of πx (x, y) and πy (x, y) and the second one from

∆xy = 0. Q.E.D.

Remark 3. The profits levels along y = fe (x) thus ranges from 0 to πw. Unless y = x, any strategy that

results in y 6= x and consequently ∆xy = 0 results in a profit that is less than the Walrasian profit.

To see the relationship between iso-profitability curve andiso-profits curves for the case of residual Walrasian

equilibrium, Cournot equilibrium and collusive equilibrium, we letqc denote the identical Cournot equilibrium output

when both firms adopt Cournot strategy whereqc satisfies the following identity:

D (2qc) + qcD
′ (2qc) = C′ (qc) ,

then it can be shown that
∂π (x, x)

∂x
|x=qc

= 0.

On the other hand, denotequ as the average collusive output when both firms collude as a Cartel, wherequ is

determined from

D (2qu) + 2quD′ (2qu) = C′ (qu) ,

then it can be verified that the iso-profit curve is tangent to the 45degree line atqu (at whichπ (x, x) reaches its

maximum value).

Figure 7 (a) and (b) illustrate the relationship between equal-profitability curve and iso-profits curves for the case of

residual Walrasian equilibrium, Cournot equilibrium and collusive equilibrium in x-y plane for the iso-elastic residual

demand (D (Q) = 1/Q) and the linear residual demandD (Q) = 1−Q , respectively. To see how profit level changes

along the 45-degree line, the profit functions are depicted underneath the respective graphs.
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Notice that, when there is no fixed cost, the intercepts of theequal-profitability curvey = fe (x) at x andy axes,

denotes asx∗ andy∗ respectively, satisfy the following identities:

D (x∗) = C (x∗) /x∗, D (y∗) = C (y∗) /y∗,

and consequently, we haveπx = πy = 0 at these two extreme points. In other words, we know the normal-profit curve

for X (Y) must intersect atx∗ (y∗).

10. APPENDIX C: CHARACTERIZATION OF WALRASIAN REACTION

In a residual-duopoly in which Firm X exercises the Walrasian strategy, regardless of whether the production tech-

nology exhibits constant return or decreasing return to scale, Walrasian reaction defined by (1) is where an equilibrium

outcome(x̄, ȳ) lies on. The following proposition characterizes the shapeof Walrasian reaction curve.

Proposition 8. When D′ < 0 and C′′ ≥ 0 are satisfied, the inverse of the Walrasian reaction y = fw (x)

implicitly defined by

D (x + fw (x)) = C′ (x) (21)

has the following properties10:

i) fw is a downward sloping curve with a slope greater than unity in absolute value, i.e.,

f ′
w (x̄) = C′′ (x̄) /D′ − 1 < −1;

ii) f ′′
w (x̄) =

−1

D′

(

(C′′ (x̄) /D′)2 D′′ − C′′′ (x̄)
)

, which is positive if D′′ ≥ 0 and C′′′ ≤ 0.

Proof. Direct verification.

Remark 4. |f ′
w (x̄)| > 1 implies that when x increases, the reduction of y exceeds the increment of x so

that the industrial output decreases and the market price increases.

Remark 5. Conditions D′′ ≥ 0 and C′′′ ≤ 0 are just sufficient but not necessary conditions for the

convexity of fw. For instance, when D = 1 − Q and C (q) = q3, we have C′′′ (q) > 0 but f ′′
w (x) = 2x−4 > 0.

The graph of fw is depicted in Fig. 2.(c).

Since we are more interested in the relative change of profitsand the relative profits along the Walrasian reaction

curve, we have

Proposition 9. Along the Walrasian reaction curve whose inverse is given by y = fw (x) , we have

i) πx is a monotonically increasing function of x with
dπx

dx
|y=fw(x) = xC′′ (x) so that πx achieves its

maximum at x∗ = Rw (0);

10For the Walrisian reaction, we have
R′

w
(y) = D′/

(
C′′ (x̄) − D′

)

and

R′′

w
(y) =

D′′ (C′′ (x̄))2 − (D′)2 C′′′ (x)

(C′′ (x) − D′)3
.
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ii) πy is a monotonically increasing function of x when x < y (i.e, x < qw) and it achieves a local

maximum at xs > qw that is implicitly defined by

(C′ (xs) − C′ (fw (xs))) (C′′ (xs) − D′) = −fw (xs)D′C′′ (xs) . (22)

Moreover, if

D′ + D′′y < 0, D′′ > 0 and C′′′ < 0, (23)

then xs is the unique maximum.

iii)
d∆xy (x̄, ȳ)

dx
|y=fw(x) = C′′ (x) (x − y) − (C′ (x) − C′ (y)) f ′

w so that

d∆xy (x̄, ȳ)

dx
|y=fw(x) ≷ 0 if x ≷ qw).

The relative profit between two firms, however, is a monotonically increasing and decreasing function ofx when

x is greater or less thanqw, respectively which is consistent with the fact that the relative profit difference reaches to

its minimum (zero) at the residual Walrasian equilibriumEw.

Finally, it is worthwhile to point out that for a symmetric duopoly with Firm X exercising Walrasian strategy, a

local maximum profit is achieved when Firm Y behaves as a quasi-Stackelberg leader in the way that the Walrasian

reaction curveRw is known to Firm Y and is taken into consideration in its profitmaximization strategy. Instead of

proceeding to the relevant proof, we introduce a more general result related to strategically related parameter.

Proposition 10. Comparative statics for a strategic parameter γi

When D′ < 0 and C′′ > 0 is satisfied, for an equilibrium established by (21) and

D − h ({γi} , x̄, ȳ) = C′ (ȳ) (24)

where {γi} is a set of strategic parameters that do not appear in both D and C, then we have

∂x̄

∂γi
= −D′

H̄

∂h

∂γi
(25)

∂ȳ

∂γ
=

D′ − C′′ (x̄)

H̄

∂h

∂γi
(26)

where

H̄=̇C′′ (x̄)C′′ (ȳ) − D′ (C′′ (x̄) + C′′ (ȳ)) + (∂h/∂x − ∂h/∂y)D′, (27)

is nonnegative if

∂h/∂x ≤ ∂h/∂y. (28)

As an application of Proposition 10, we examine the traditional reaction by Firm Y that can be unified with

conjectural variation formulation. In general, assume that Firm Y’s reaction curve is implicitly defined by

D + (α + βR′
w (y)) ȳD′ = C′ (ȳ)

with α ≥ β ≥ 0.
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While Cournot best-response corresponds to the case in which α = 1 andβ = 0, Stackelberg-alike strategy is

characterized byα = β = 1.

For fixedα andβ, leth (α, β, x, y) = −ȳD′ (x̄ + ȳ) (α + βR′
w (y)), then we haveh (α, β, x, y) > 0 if 0 ≤ β < α

(due to|R′
w (y)| < 1).

∂h/∂x − ∂h/∂y = [

(+)
︷ ︸︸ ︷

α + βR′
w (y)+βȳR′′

w (y)]D′.

It follows from Proposition 8 that ifD′′ > 0 andC′′′ < 0, we haveR′′
w (y) > 0, which in turn implies that

∂h/∂x < ∂h/∂y.

Due to the facts that

∂h (α, β, x, y)

∂α
= −ȳD′ > 0,

∂h (α, β, x, y)

∂β
= −ȳD′R′

w (y) < 0,

for β < α and
∂h (α, β, x, y)

∂α
= −ȳD′ (1 + R′

w (y)) > 0

for α = β, we are able to get the following comparative statics immediately from Theorem 9 and Proposition 10:

β < α α = β
∂/∂β ∂/∂α ∂/∂α

x − + +
y + − −
πx − + +

∆πxy − + +

In particular, forα = β = 1, substitutingD with C′ (x) in (24) and rearrange gives us

C′ (x̄) + ȳD′(1 +
D′

C′′ (x̄) − D′
) = C′ (ȳ)

which is nothing but the first-order maximization conditionfor πy given by (22). That is to say that Stackelberg alike

strategy (taking into account the reaction curveRw) leads to the maximum profit for Firm Y, which is at least true

when Walrasian reaction curve is convex.
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