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Relative Profitability of Dynamic Walrasian Strategies

Version: July 30, 2008

The advantage of price-taking behavior in achieving relative profitability in oligopolistic quantity competition has
been much appreciated recently from economic dynamics and evolutionary game theory, respectively. The current
research intends to provide a direct economic interpretation as well as intuitive justification and further to build a
linkage between different perspectives. In particular, a detailed illustration of an arbitrary oligopoly that produce a
homogenous product is presented. So long as the outputs of other firms are fixed and the residual demand is downward
sloping, for any two identical firms whose cost functions are convex, their output space can be divided symmetrically
into mutually exclusive relatively profitability regimes. Furthermore, there exist infinitely many relative-profitability
reactions for each firm in such “residual” duopoly, all of which intersect at the “residual” Walrasian equilibrium.
This suggests that sticking to this dynamical equilibrium output constantly (i.e., the static Walrasian strategy) turns
out to be a relative-profitability strategy at each period. On the other hand, regardless of what strategies its rival
may take, a firm adopting price-taking strategy or more generally defined dynamic Walrasian strategies can achieve
the relative profitability if an intertemporal equilibrium is reached. The methodology adopted and the conclusions
arrived clarify the confusions and misunderstandings due to the different usages of same terminologies under different
frameworks and generalize the previous available results in the literature to a higher level and a broader context.

Key Words: Price-taking, Walrasian behavior, Relative profit, Oligopoly, Cournot, dynamic Walrasian
strategy
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1. INTRODUCTION

One of the lessons learned from basic microeconomics isatipabfit maximizing firm will always leverage on
market information as well as the behavioral rule of itsIswa&hen making its output decision. Given limited infor-
mation about the market as well as its rivals’ behavior (Wwhiaries from case to case), it is invariably assumed that
a quantity competing oligopolistic firm's best responseisiaximize myopically its instantaneous absolute payoff,
giving rise to a reaction function of its rival’s expectedjput for the period. It is deemed economically irrational if
a firm either ignores or is ignorant about its market power iastead adopts some simple strategy in oligopolistic
competition.

However, such beliefs were questioned and challenged fitiereht perspectives over last decade. A huge body
of literature from evolutionary game theory revealed thaidpicing at the competitive equilibrium output level (or
adopting static Walrasian strategy) is an evolutionatipke strategy (ESS) when all firms have identical technolog
The study of Cournot oligopolies where firms learn throughtation of success can be traced back as early as to
Alchian [1950]. Schaffer (1989) demonstrates with a Daranrmodel of economic natural selection and shows that
the profit-maximizers are not necessarily the best sursivor a simple context with just two quantity-setting firms
which have identical and constant marginal costs, onlyeptaking behavior is evolutionarily stable. Vega-Redondo
(1997) shows that, for a symmetric oligopoly in which all fgimave identical non-decreasing return technology, when
some firms produce at the competitive equilibrium level dreldthers produce at an same identical mutant level (the
mutant strategy), the former will gain relative higher prtifan the latter. This result is independent of both the rermb
of mutant firms and of the mutant outputs so long as they amgticd. The ESS characteristics of static Walrasian
strategy have lately been extended in different directiorder different specifications by Schenk-Hoppe (2000) and
Alos-Ferrer and Ania (2005), etc.

The relative profitability of price-taking behavior in thgrthmic sense where a firm produces at an output level
that equates the current marginal cost to price-expeatdtias been explored in Huang (2002), where it is showed that,
in an oligopolistic industry where all firms equipped witleittical technolog}, the price-takers always triumph over
the other firms at a dynamical equilibrium in terms of relagprofitability, regardless of what strategies (dynamical
behavioral rules) these non-price-takers may adopt. Towerethe price-taking behavior is appreciated without the
critical assumption of “imitations” in evolutionary gantesbry analysis.

The aims of current research are i) to study the relative talufity of Walrasian strategies in general under an
unified framework so that intuitive economic interpretaican be justified for both static and dynamic Walrasian
strategies and mutual implication are explored. ii) to galiee the previous results to more general oligopolistic
industry with heterogeneous technologies.

All these goals are achieved through characterizing thativelprofitability regime in the output space. In an

arbitrary oligopoly, so long as the outputs of other firmsfawed, for any two firms who share an identical technology

11t will be made clear later that the assumption of uniform technology for all firms are not necessary.



that exhibits non-increasing return to scale, their ousimaice can be divided uniquely into symmetrically located as
well as mutually exclusive relative-profitability regiméor each firm in such “residual” duopoly, there exist infiyt
many relative-profitable strategies, among which are thmadhc Walrasian strategies and a unique static Walrasian
strategy. While adopting static Walrasian strategy cariexehrelative profitability against any other strategies at
each period of dynamical adjustment so long as the markétoemaent is fixed, the dynamic Walrasian strategies,
which demand minimum market information, possess relgiiaditability only when an intertemporal equilibrium is
reached. Nevertheless, the dynamic Walrasian strategieslaust to changes in market environment such as residual
demand, the entry and exit of oligopolistic firms, the tedbgwal advances et. al. Finally, the dynamic Walrasian
strategy would converge to the static Walrasian stratdgyulsl firms imitate each other and strive for the relative
successes as assumed in the evolutionary game theory.

The remaining discussion is organized as follows. Sectialefthes the concept of relative-profitability curve
and relative-profitability regimes in a symmetric residdabpoly. The uniqueness of relative-profitability curge i
ensured providing that the cost function is convex. The epteof relative-profitability strategy and efficient relat
profitability, i.e., the strategy that brings about the macim profit difference, are introduced in Section 3, in whiud t
compromise of relative-profitability with absolute profitity is explored. Section 4 is the core of this article, ihiah
the concept of dynamic Walrasian strategy is formally defized its linkage to the static Walrasian strategy discussed
in evolutionary game theory is built. Concluding remarksiagdl as the further research are provided in Section
6. For the sake of presentation, some straightforward gowsdanalytical derivations are included in Appendix A.
Typical characteristics of relative-profitability curvedaWalrasian reaction curve are provided in Appendix B and C,

respectively.

2. RELATIVE-PROFITABILITY FRONTIER

Consider an oligopoly market, in whick firms produce a homogeneous product with quantity = 1,2, ..., N,
at periodt. The market inverse demand for the product is givemby= D(Q,), whereD’ < 0. The conventional
assumption tha);, = Zf;l qi, i.e.,the actual market price adjusts to the demand so as to cleanthrket at every
periodapplies.

Our goal is compare the relative profitability of any two firthat have an identical technology exhibiting non-
increasing returns to scale and thus an identical convedxfeonstion C(q), with C” > 0, in such an oligopoly. To
concentrate on the interaction between these two firms, feetteem as X and Y, and assume that the output levels of
all other firms are fixed so thresidual market demanitr these two firms i) = D(z + y)=D(z 4+ y + Q’), where
= andy denote the outputs of these two firms and@¥& Zj\w ¢ = Q — z — y denote the outputs of all other
firms. For the convenience of latter reference, we shallXahd Y as a residual-duopoly and similarly use prefix
“residual-" on relevant terminologies to indicate that #malysis and the conclusion arrived for any two identiced$ir
in an oligopoly with all other firm’s outputs being fixed.

We start with some basic definitions for the residual-dugpol



2.1. Relative-profitability frontier

LetQ be the economically meaningful domain foandy when@’ is given. WithD’ < 0 implied by D’ < 0, the

profits gained by firms X and Y, are then given by:
7l (z,y) =D (x+y)qg—C(q),withg==z,y € Q.
Denote theelative profitfor Firm X, A*Y (x,y), as its profit difference as compared to Firm Y, that is,
A" (z,y) =" (z,y) — ¥ (z,y) .

DEFINITION 1. Egqual-profitability curve in x-y plane refers to the curves in the economically meaningful

domain which give rise to 7 = ¥, that is, A™ (z,y) = AY* (z,y) = 0.

DEFINITION 2. Relative profitability regime (for Firm X) is a (x, y) subset in the economically meaningful

domain Q in which Firm X makes a higher profit relative to his rival Firm Y, that is, A® (z,y) > 0.

The 45-degree diagonal line in x-y plane or equivalenthy z, is a trivial equal-profitability curve (which arises
from the fact that both firms have an identical cost.) In addito this trivial equal-profitability curve, there also
exist non-trivial equal-profitability curves.In Figure Wjth residual demand being fixed & (Q) = 1/Q, typical
3-dimensional plots foA*¥ (positive portion only) are provided for three differenstéunctions: (a) strict convex
cost:c1 (q) = cq?/2,c > 0; (b) strict concave cost; (¢) = cq,c¢ > 0 and (c) S-shape cost (convex-concave) cost:
c3 (q) = csin® (nq/d) ,¢,d > 0.

For a general residual-duopoly, the first question thatré@stis us is whether this non-trivial equal-profitability
curve is unique when the residual demand function and costtifun satisfy certain requirements. A definite and
positive answer is provided in the next theorem. To distisigthis unique non-trivial equal-profitability curve with

the trivial one, we shall call it relative-profitability frdier hereafter.

DEFINITION 3. Relative-profitability frontier: all (x,y) combination in the economically meaningful

domain Q such that A™ (z,y) = 0 but = # y.

A critical concept that relates to the relative-profitaigifrontier and plays an important role in the proof of the

following theorem is the Walrasian reaction curve.

DEFINITION 4. Walrasian reaction curve By Walrasian reaction for Firm X, we mean that for any
given rival’s output y, Firm X responds by equating its marginal cost to the expected price. That is, the

reaction to a given y, denoted as R,,, is implicitly defined by
D (Ru (y) +y) = C" (Ru () - (1)

THEOREM 1. (Uniqueness Theorem) When C is convez, that is, C"' (q) > 0 for all ¢ € Q, and D’ < 0,

we have the following



(a) A%Y for convex cost: C1(q) = ¢*/2

(b) A™ for concave cost: Ca(q) = \/q
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i) there exists a unique relative-profitability frontier given by f. such that A®Y (z, f. (x)) = 0 and x =

fe (x) if and only if x = qu, where q, is uniquely determined from the following identity
' (Qw) =D (2Qw) .

ii) f! (x) <0, where the equality holds only at finite points;

iii)with the trivial equal-profitability curve and the relative-profitability frontier f., the economically mean-
ingful domain Q in z-y plane is divided into four quadrants, the vertex of which is characterized by the residual
Walrasian equilibrium Ey, = (qu,Gw). While the upper and lower quadrants forms the relative-profitability

regime for Firm X, the left and the right quadrants is the relative-profitability regime for Firm Y.

Proof. (see Appendix A)

Figure 2 depicts several examples of the relative-profitalfiontiers (as well as the Walrasian reaction curves).

It needs to mention that, for a duopoly, the residual Wadmasiquilibrium simplifies to the competitive equilibrium.

Remark 1. For monotonically downward sloping demand D’ < 0, the convexity of cost, that is, C"” > 0,
is a sufficient condition for the uniqueness (as well as the monotonicity) of relative-profitability frontier f.. If
the convexity of cost can’t be warranted, there exist situations where multiple non-trivial equal-profitability
curves coexist, as illustrated in Figure 1.(c), as well as the possibility that the non-trivial equal-profitability

curve is not monotonic, as illustrated in Figure 1.(b).
2.2. Characterize the relative-profitability frontier f.

Due to the fact that® (z,y) = #¥ (y, x), the relative-profitability frontielf. must be symmetric with respect to

the 45-degree line. This kind of anti-symmetricity is arialglly characterized by
fgl (z) = fe (2)
which demands that (¢.,) = —1, whereg,, is the residual Walrasian output. Formally, we have

PROPOSITION 1. The relative-profitability frontier f. is symmetric with respect to the 45-degree line,

whose derivative is given by

fl(@) = — 9 2)
and fé (qw) =-L

The second-order derivative gf has very complicated analytical expression, which makesatialysis of the
second-order derivative property ff impossible. We shall bypass this obstacle by evaluatingdlaive magnitude
of absolute value of in comparison to unity. Due to the symmetricity if, we only need to discuss the lower
portion of f., that isz > ¢, > y. It follows from

C'(z)+C" (y) —2D

I = Do) - @ n D
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FIG. 2 Illustrative relative profitability regimes



as well as the fact thdd (z + y) = (C () — C (y)) / (x — y) wheny = f. (x), we have

PROPOSITION 2. For convex C, we have |f.| S 1 for all x > q,, > y if the inequality

C' (z) -QF ' (y) < ¢ (xi = 5 () 3)

holds for all x > y > 0.

Condition (3) provides us with the information about the caxrity of f. near the residual Walrasian equilibrium
due to the fact thdim, .., f; = Oifand only iflim, - [f/| = 1. Geometrically, the non-trivial equal profitability
curve f, is convex (concave) around,, if the average marginal costs for any two points exceedsltpe ©f chord
that connects the corresponding points in the cost function

For instance, itC (¢) = ¢¢®, a > 1, let F (z,y) = (C" (z) + C" (y)) /2 — (C (z) — C (y)) / (x — y), then we

have
o F(z,y) ¢
1 0 0
1 + 3y) — + 3
3/2 _lve@tdy) - yly+3e) )
4 T —y
2 0 0
1 2
3 c3 (x—y) >0 -

We see thayf! = 0if a = 1,2. Fora = 3/2 and3, the relative-profitability frontiers are convex and corea
respectively, as shown in Fig. 2 for two different residuatdnd functions.
The quadratic cost is most widely adopted as example in tbaauical analysis. The proof of the following

interesting fact is provided in Appendix A.

PROPOSITION 3. When cost function C is quadratic, that is, C (q) = a + bq + cq® with a,b,c > 0, then
the relative-profitability frontier f. is always a straight line with slope —1 so long as the residual demand D
satisfies the basic requirement D (0) > b. Moreover, when the cost is linear (c =0), the relative-profitability

frontier geometrically coincides with the Walrasian reaction R,,.

The relative-profitability regimes expand and shrink withanges in the residual demand as well as the cost
function. Understanding the impacts of the various chamyesarket characteristics on the shape and locatiof), of
enable us to study the comparative statics when technologiyges as well as when the entry and exit are allowed.

The following proposition can be easily verified.

PROPOSITION 4. Comparative effects of the relative-profitability frontier

i) For the same residual demand function D, let fei) be the relative-profitability frontier when C is
given as the cost function of the residual duopoly, i = 1,2. If C® (q) > CW (q) for all ¢ € Q, then we
have fe(Q) (z) < fe(l) (x) for all x € Q. In other words, increasing the cost of residual-duopoly shifts the

relative-profitability frontier downward.



it) For a given identical cost C, let féi) be the relative-profitability frontier when the residual demand is
given by DY i =1,2. If D@ (z+y) < DW (z +y) for all z,y € Q, then we have f€(2) (z) < fe(l) (x) for

all x € Q. In other words, increasing the residual demand shifts the equal-profitability curve upward.

3. RELATIVE-PROFITABILITY STRATEGIES

In the theory of firms, all firms are commonly assumed to seekmiaed (absolute) profit. However, economists
have pondered over the definition and/or criteria of profitdoite some time (Bernstein 1953). A directly related
guestion to the definition and/or criteria of profit is appahgwhat are the firms’ goals. This question, nevertheless,
also remained very much an open debate in the history of esimsgOsborne 1964). In Baumol's seminal work
(Baumol (1959)), it was suggested that in the real world,ra f§ actually maximizing the sales revenue subject to
minimum profit requirement rather than maximizing absofuafit. The pioneering work on the theory of bounded
rational behavior by Simon (1959) further stimulated theedssion of firm’s objectives. The view that “the firm seeks
to attain a satisfactory level of profits rather than a maximhevel” had received overwhelming responses in 1960s. As
Lamberton (1960) had arguedyhen dealing with the large, multi-product, oligopolistian whose particular (and
general) expectations are held with uncertainty the hypsithis clearly a plausible one. Business management will
frequently be thinking in terms of simultaneous, discardirs changes in a large number of variables with which it is
concerned and will have recourse to conventional procesluwae which may be the adoption of a profit target....The
target may be indicated according to a variety of methods.,, @ercentage on turnover or capital employed, and
pursued by a single policy under stable conditidns

The relevance of profit maximization is much less obviousldoge modern corporations where ownership and
control of the firm are separated: the former in the hands téniially diffused shareholders and the latter vested
in professional management. This separation provides sid@rmable degree of decision-making autonomy of man-
agers, whose behavior may deviate significantly from whahdied by profit maximization. It is well known in the
strategic-managerial-incentives literature that a firowger can increase the firm’s profit by hiring a manager and as-
signing him an objective different from profit-maximizati¢vickers (1985), Fershtman and Judd (1987) and Sklivas
(1987)). A literature relevant to relative profitabilityfiem Lundgren (1996), where a method to eliminate incestive
for collusion by making managerial compensation, whicheshels on relative profits rather than absolute profits, is
proposed. This alteration of managerial incentives set@ pgro-sum game among the firms in an industry, yielding
the result that firms no longer have incentive to colludéezitictually or tacitly, with regards to prices or outputs.

Recently, increasing appreciation of Walrasian equiliirioutput from evolutionary and game theoretic perspec-
tives have once again provided alternative views to profitimeation as firms’ primary objectives. The essence
of evolutionary economics lies in the evaluation of relatsuccess of different strategies. Rational firms imitage th
successful strategies, i.e., the strategies that canvacaigrofit higher than the average. Thus, during an evolation

process, it is not the absolute profit but the relative prbfit matters. Therefore, pursuing a goal of achieving radati



profit advantage is an economically justified in oligop@aistompetition. A detailed examination of this concept is

warranted.
3.1. Relative-profitability strategy

DEFINITION 5. Relative-profitability reaction (response) Given a rival’s output level, the firm reacts with
an output that can lead to a higher relative profit at each period during the dynamically oligopolistic
competition.

Relative-profitability strategy In dynamic oligopolistic competition, a relative-profitability strategy is any
open-loop or close-loop strategy such that all the equilibrium outputs lie on a relative-profitability reaction

curve.

It needs to emphasize that the relative-profitability sggtis a broader concept than the relative-profitability
reaction. With full information about the current outputitsf rival, a firm responding with the relative-profitability
reaction is adopting a relative-profitability strategy.efative-profitability strategy, however, can be compoddihite
relative-profitability responses (to current or past otgmf its rivals), or a simple response to the past pricel@re
even producing at a constant output likge.

Geometrically, all relative-profitability reactions foirfa X must lie in the relative-profitability regime for Firm.X
For each firm of residual-duopoly, there exist infinitely maglative-profitability strategies, all of them must irgect
at the residual Walrasian equilibrium. Then the naturalktjoa that arises is which one of them can maximize the
relative profit, should a firm’s goal be toaximizethe relative profit intentionally. This section is conduttender

such motivation.

DEFINITION 6. Efficient relative-profitability reaction is the relative-profitability reaction that maximizes
the relative profit for any given rival’s output.
Efficient relative-profitability strategy is any dynamical strategy that guarantees that a dynamical equi-

librium will lies on the efficient relative-profitability reaction curve.

The efficient relative-profitability reaction therefordleets the maximum possible difference in profit when the
rival’s output is given. This reaction naturally requiraformation about the residual demand function. With knowl-
edge of the residual demanid and the rival's output, Firm X maximizes its relative profit given bA*Y =

(x—y)D(x+y)—(C(x) — C(y)). Alocal maximum ofA*¥ occurs at
C'(x) =D+ (z—y) D' (4)

if 92A%Y /92% = 2D’ + (v —y) D" — C" (z) < 0.
Denote the efficient relative-profitability reaction ingtly defined in (4) asc = R, (y), and the Cournot best-

response as = R. (y), which is implicitly defined by the first-order profit maxinaiton condition as
C'(z)=D+axD'. (5)

10



We should be able to infer from (4) and (5) tHat (y) > R, (y) forally > 0.
However, in comparing with the Walrasian reactip (y) defined in (1), we have the following generic observa-

tion:

THEOREM 2. If C" > 0, we have Ry, (y) > R, (y) > R¢ (y) for y < qw and R, (y) > Ry (y) > Re (y) for
Y > Gu-

Proof. See Appendix A.

If C" (q) = 0forall ¢ € Q, thatis,C’ (¢) = ¢, Ry, (y) coincides with the equal-profitability curve as well as the
normal-profitability curve. Therefore, for any> q¢.,, with efficient relative-profitability reaction, both firm 2nd Y
make negative profit while Firm Y loses more. To maintain aitpasprofit, the output of Firm Y must be less than
Qu -+

Remark 2. The efficient relative-profitability strategy @ = R, (y) implicitly defined in (4) is independent
of the cost function of Y and hence can be generalized to the cases in which two firms have different cost

functions.

EXAMPLE 1. For a residual-duopoly consisting of Firm X and Y, assume the cost function is given by
C (q) = cg*/2. When the residual demand take the two forms that are most commonly seen: linear demand
D(Q) =1 — @ and iso-elastic demand D (Q) = 1/Q, the relevant reaction curves are summarized in the

following table.
D@ =1-@ D(@Q)=1/Q

2—x2(2+¢) N

24 ¢ e .
R R Sl T

Ro) | 1-9)/(+0) |  (ViP+alc—y) /2
ur(y) 1 cy? 2

R, (y) 1/ (2 + C) 3c g Uy (1/) _ g
w | 129 2/

Note: | u, (y) ;f/y (cy2 + 27+ 34/3 (2cy? + 27)) c?
uc (y) ii/ély (203/2 + 27+ 34/3 (4ey? + 27)) c?

Table 1: Reaction curves with C (q) = ¢?/2
The relevant curves are illustrated in Figure 3 (a), from which we make the following observations for

both cases:

i) Ry (y) > Ry (y) > Re (y) for y < ¢ and R, (y) > Ry (y) > Re (y) for y > qu, as suggested in Theorem

ii) Relative-profitability frontier f. is a straight line, as implied by Proposition 3
iii) When the residual demand is linear, R, = ¢y, a fact to be verified in Proposition 4 of next section.
iv) A™ (qy,y) > 0, if y # q,. For any given y, A™ (x,y) increases from zero (when x = y) to its

maximum value at = R, (y) and then decreases to zero at x = f, after x passes the Walrasian reaction f,,.

11
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(¢) Smooth combination of R, and f.

12

FIG. 3 Relative profitability and Absolute profitability



3.2. Reconciling relative-profitability with absolute profitability

As have been discussed, a firm's objective may be to maxirhizetisimply maintain the relative-profitability.
Condition on the fact that a firm’s main priority is to maimailative-profitability, we ask if the firm is able to
maximize absolute profit at the same time. The answer isipesithen the rival’s output falls in the certain range.

Actually, it can be verified that if a firm adopts Cournot bestponse in a residual duopoly, two sections of this
best-response actually pass through its relative-prdftialegimes, one is below and the other is above the residua
Walrasian equilibrium. In other words, any point on these sgctions of the best response function not only allows
the firm to achieve the highest absolute profit given its Bwalitput level but also ensures that the firm makes higher
profit relative to its rival. Therefore, these two sectiolfishest-response themselves can in fact be interpreted as
the relative-profitability strategy that achieves the reghabsolute profit levelWhen the main objective of relative
profitability is not met, the firm is willing to give up the opgionity of making the maximum absolute profit and
thus responds differently from Cournot-best response h 8ompromise can be supplemented either with an equal
profitability (so that to main certain absolutely profitatyil or with efficient relative-profitability response, dapding

on the profitability preference of the firm.

EXAMPLE 2. Following the settings of Example 1.

A direct combination of R, and R, can be constructed with

— _ RC (y) ) y S [07 qc) U [yTCa OO),
= Her (y) B { R (y), Y € [qe, Yrel,

where y,.. corresponds to the y value at the intersection point of R. and f.. When y € [g., yrc], the firm
cannot achieve relative profitability if it adopts the Cournot-best response and thus it switches to maximizing
the relative profit. Its reaction function is thus R, (y). Otherwise, since the goal of relative profitability is
achieved, it will then sought to maximize the absolute profit by selecting the Cournot-best response, which
is given by R (y). We notice that the discontinuity inevitably occur at y = ¢. as well as at y = y,¢, as
illustrated by the thick curve in Figure 3.(b)

Alternatively, the firm may choose to maximize absolute profit given that relative profitability is main-
tained when y € [gc, yrc|.To achieve this secondary objective, the firm will choose to react according to y
when y € (qe, qw) and £ ! (y) when y € (quw,yre), where fo ! (y) is the inverse of f.. The reaction is thus

summarized by
Re(y), y€[0,¢)U[yre,0),
T = Ree (y) = Y, Yy e (qC7 qw)v
fot ), Y € (qusYre) »

and is illustrated by the thick curve in Figure 3.(c).

4. WALRASIAN BEHAVIORS IN GENERAL

Always stick to your proved strategy!

—Another Chinese Philosophical Quotation
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In the proof of Theorem 1, we have actually shown that, when (<) y, the relative-profitability frontielf. lies
on the left (right) hand side of the inverse of the Walrasgaction curvef,,,, respectively. This in turn suggests that the
Walrasian reactiom = R,, (y), for any giveny, lies in the relative-profitability regime of X, or equivalgy, Walrasian
reaction is one of the relative-profitability reactions. Ba other hand, since the center of relative-profitabiétyime
is the residual Walrasian equilibriuf®,, = (qw, ¢w), fixing the output level directly at the constant levelg@f is
another simple relative-profitability strategy. This sactwill explore further the relative implications and exteour

results to more general oligopolistic framework.
4.1. Dynamic Walrasian Strategies

In a residual duopoly, like relative-profitability reaatis, there exist infinitely many relative-profitability segies
for each firm. Among them, the one that requires the minimuorimation about the market structure turns out to be

theprice-taking strategywhich is to react to only the lagged market price by adjgstinrrent marginal cost:
pe—n = C' (x¢),

or, equivalently,

Ty = ]\/,[071 (pt—h) y (6)

wherep is the price andh > 0 is the information lag. The explanation for the delayed tieadunction (6) being a
relative-profitability strategy lies in the fact that whem equilibrium is reached with; = z; 1, Eq. (6) is nothing
but the Walrasian reaction defined in (1). The price-takingtegy certainly belongs to more general category of the

Walrasian strategy, by which we mean:

DEFINITION 7. Dynamic Walrasian strategy: any dynamical strategy (or behavioral rule) that can

guarantees the equality of marginal cost to the market price at any intertemporal equilibrium.

Geometrically, dynamic Walrasian strategy refers to anyadyical behavioral rule that can guarantee that an
intertemporal equilibrium lies on the Walrasian reactiondtion for a residual duopoly. The dynamic Walrasian
strategy so defined differs from the static one adopted ietb&utionary game theory. It includes the behavioral rules
and reactions such afmple trial and error procedurdmitating behavior advanced learning rule®ptimal or non-
optimal search behavigadaptive adjustmentsr evendynamic optimizationso long as they can reach to Walrasian
reaction curve in a dynamic equilibrium.

A typical form of dynamic Walrasian strategy is the convendl adaptive adjustment defined by
T =Tr—1 + @ (MC_I (ptfl) - Itfl) . (7)

if the marginal cost is not a constant, where (0, 1) is the adaptive speéd

2An alternative, but more general adaptive adjustment strategy is
zp=ari 1+ (1—a)g(pi—1 —C (zt-1))

where g is a monotonically increasing function with g (0) = 0.
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It needs to emphasize that the relative profitability of dyiaWalrasian strategy can be generalized to more
general heterogenous oligopolistic models where firms llifferent costs and strategies. We have the following

beautiful resuft;

THEOREM 3. In an oligopolistic economy consisting of N firms that produce an homogeneous product,
assume Firm X has strict convex cost function C and adopts a dynamic Walrasian strategy. If an intertem-
poral equilibrium is arrived, Firm X can profit more than any rival who has identical cost but produces at

different equilibrium output level.

Proof. Assume Firm Y to be one of the firms having the identical cost C as the price-taker. Let & and
g be the equilibrium outputs of the price-taker and Firm Y, respectively. Denote {g; }jvzg as the equilibrium
outputs for the other oligopolistic firms, with either same or different costs, so that the equilibrium price is
given by

N
p=D@E+5+> ).
7j=3

It follows from the definition of dynamic Walrasian strategy that C’'(Z) = p.

The profit difference between Firm X and Firm Y is then given by

A (z,9) =p- (2 —y) — (C(z) - C() = C(

I
S~—
I
|

<
S~—
|
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|
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—
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It follows from the assumption of C”(-) > 0 that C'(Z)(Z — §) — (C(Z) — C(y)) > 0, regardless the relative
magnitudes of T and g, or equivalently,

A (7,5) > 0, (®)

where the equality holds if and only if Z = .
Since Firm Y’s production strategy as well as the equilibrium output ¢ are not explicitly specified, the

inequality (8) thus leads to the conclusion immediately. Q.E.D.

The conclusions drawn in Theorem 3 is generic in the sensé tlepends on neither the particular market structure
(the residual demand and cost functions) nor on the stegdgr outputs) that other firms may take. Moreover, since
only equilibrium is concerned, the result is robust to tharaes in the market environments such as the market
demand, entry and exit of oligopolistic firms, advances ims®r overall technology level. Hence, it supersedes all
available conclusions in the relevant literatures. Ecoicahinterpretation for the relative profitability of dynan
Walrasian strategies in general is simple and straightiodwwhen an intertemporal equilibrium is reached, theepric

converges to an equilibrium and remains unchanged. Anyistigdited strategy aiming to affect the market through

3The relative profitability of the price-taking strategy was first formally proposed in Huang (2002) where the proof was
mistakenly omitted in the editorial process. The proof itself is quite straightforward. Although the simplified forms were
reported in several later publications, we again provide a more general form here for the sake of completeness as well as the
appreciation of role of convex cost functions.
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market power ceases to function and becomes in vain. Inastmi/C' = P is in fact the unique way to gain the
economic efficiency, a fundamental economic principal katg all undergraduatés

It should be emphasized that the relative profitability is murposely but unconsciously achieved by a firm who
adopts a dynamic Walrasian strategy. If a firm rival interedsiximize its profit relative to a price-taker by adopting

any relative-profitability strategy, both firms will end uftlvproducing at the residual Walrasian equilibrium level.

When a firm’s production technology exhibits constant negup scale, or, equivalently, the firm’s marginal cost
is constant, the firm cannot behave as a price-taker withubwtptermined by (6). The following complement to

Theorem 3 can be similarly proved.

THEOREM 4. For an oligopolistic economy consisting of N firms that produce an homogeneous product,
assume Firm X has a constant marginal cost ¢ and adopts the following dynamic Walrasian strategy so that

its output at period t is determined by
zr=z1+9(D7" (c) - th@hj - T-1), 9)
j=2

where g is a monotonically increasing function with g (0) = 0, h; > 1 is the information lag for firm j’s output,

(4)

and q¢,”, 7 = 2,..., N, are the lagged outputs of other N — 1 firms. When an intertemporal equilibrium is
reached, we have the following:

i)Firm X makes normal profit at the equilibrium, so do any firm has positive equilibrium output;

it)Any firm equipped with the same technology as Firm X but adopt traditional strategies such as Cournot
best-response or Stackelberg leader strategy will be driven out the market in general due to loss of profit in

equilibrium.
Proof. i) Let the equilibrium output vector be (Z, G2, @3, ..., qn). Eq. (9) then implies
c=D(Z+q@+...+qn) (10)

so that the profits for all firms having cost function C (¢) = ¢g must enjoy normal profits in equilibrium.

ii) Without loss of generality, assume that Firm 2 has the same cost function C (gq) = ¢g and adopts
Cournot best-response (with or without knowledge of the exact outputs of other firms) so that its output y;
is determined from

N N
D@, +y+ Y a0 )+ D @, +ve+ Y20 2) y=c, (11)
Jj=3 Jj=3
where I; > 0, j = 1,3, ..., N are the information lags for Firm Y.

When an intertemporal equilibrium (Z, 7, @s, ..., gn) is reached, (11) simplifies to

DEZ+y+q@G+..+qn) +D'@+J+G+...+aqn) - =c. (12)

4Needless to say, if duopoly game is just played with finite rounds (before reaching the equilibrium), then which firm has
the relative profitability depends on the length of game as well as the strategies adopted by the sophisticated firm.
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However, we know from (10) that ¢ = D(Z+ § + G3 + ... + @) so that identity (12) suggests that
D((Z+g+@+..+4v)-J=c

that is, ¥ = 0 so long as D’ # 0.

The proof for all other conventional Stackelberg leader strategy follow the same reasoning. Q.E.D.
4.2. Static Walrasian strategy

We can infer directly from the relative-profitability regié®s depicted in x-y plane that committing to the residual
Walrasian residual equilibrium output( = ¢,,) is itself a simplest relative-profitability strategy. Weadl refer it as
thestatic Walrasian strategy

In a residual duopoly, defing, andy, as the solutions ta¥ (¢.,y1) = 0 and7® (q.,y2) = 0 respectively.
Referring to Figure 4.2, we see that when Firm X commits itpouto q,,, the following inequalities exist between
the profits of the two firms:

i) 7 > ¥ > 0wheny < y,

i) 7@ > 0> 7Y wheny; <y < ys,

i) 0> 7% > 7¥ wheny > ys.

The beauty of adopting static Walrasian strategy is moreemigted when the residual demand is linear.

PROPOSITION 5. (Efficiency Theorem) When the residual demand function is linear, p = D (Q) =
a — bQ, so long as C" > 0 is satisfied, the static Walrasian strateqy is the efficient relative-profitability

strategy that maximizes the relative profit, regardless of the actual function form of C.

Proof. Since the efficient relative-profitability strategy x = R, (y) is derived from (4), substituting
D(x+y)=a—b-(z+y) into it yields
C'(z) = a— 2bx. (13)

The efficient relative-profitability strategy is therefore to fix its output at a constant that is solved from (13).

However, the residual Walrasian equilibrium outputs x,, = y4, = qy is determined from
c’ (Qw) = a — 2bqy. (14)

Comparing (14) with (13) leads to the conclusion. Q.E.D.

Therefore, committing to static Walrasian strategy presid firm with unbeatable commitment advantage. Given
this information, its rival who is a profit maximizer, has nlwoice but to produce at* = R, (q.,), whereR, is the
Cournot best response for Firm Y.

Apparently, the relative-profitability as well as the effioty of static Walrasian strategy only holds true when the

outputs of all other firms (whether they have same technabogt) are fixed.
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FIG. 4 Static Walrasian strategy

On the other hand, if all firms have identical céstthen the static Walrasian strategy, i.e., producing atlves
Walrasian equilibrium output amounts to producing at thepetitive equilibrium level. In fact, if we denotey. as

the competitive equilibrium output level so that
c’ (QC) = D (ch)

then we can see that = ¢,,. Therefore, the relative profitability of static Walrasstrategy applies to the symmetric

oligopoly where all firms have identical cost in the sense tha
D((N = k) ge+ k) gc — C (gc) > D((N = k) gc + kq) 3 — C (q). (15)

forall g # g.andl <k < N.

Inequality (15) was first provided in Vega-Redondo (199 Here it was shown that the competitive equilibrigm
is aglobal stable evolutionary stratedy the sense that, starting with all firms producing at anfidahg., if & firms
change to defect and produce at another identical outpet dethey will definitely make less profit than those who
remain in producing aj.. Extending (15) to am-residual oligopoly, by replacingy with n < N andD with D, we
arrive at an analogous conclusion: the static Walrasiategty (producing &, determined byC’ (¢.,) = D (nqy) )

is a global stable strategy from the evolutionary game #t@opoint of view.

5Producing at the competitive level is commonly referred to as “Walrasian strategy”

evolutionary game-theoretic literatures.

or “Walrasian behavior” directly in
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5. EVOLUTIONARY STABILITY OF DYNAMIC WALRASIAN STRATEGIES

For the static Walrasian strategy, in comparison to the ahyo&Valrasian strategy, an noticeable short-coming is
the former demands more information than the latter beceusempute the residual Walrasian equilibrium output
or competitive output, extra information such as (resifidamand and number of firms are needed. Moreover, the
evolutionary stability of static Walrasian strategy is ®vhat misleading. To see this, we should first note that qunce
of “strategy” adopted in either classical game theory ol@imnary game theory is a “static” concept and is more
often defined as an option of action variable so that theegjia$ space consists of either a finite or infinite number of
such choicés A “strategy” in game-theoretic sense is said to be evohaidy stable (ESS) if it, once adopted by all
players, will not be discarded in favor of another “strateghen a small fraction of players (mutants) choose another
singledifferent “strategy”, as implied by (15), where the relative-profit of producingre competitive equilibrium
output is checked against one mutant strategy (output)lgvat a time. If more than one mutant strategies appear
simultaneously, such relative profitability may disappéaiother words, ifk; mutants produce at; andk, mutants

produce at, then it may lead to the following opposite conclusion

D((N — ki — k) g + k131 + k232) ¢c — C (qe) < D (N — k1 — k2) g + k1Gu + k2G2) @ — C (i)

1 =1,0r2.
Such examples can be easily constructed.

ExaMPLE 3. Consider a symmetric oligopoly consisting of three firms, X, Y and Z, the output bundle is
a vector of (z,y, z). Assume that the market inverse demand is given by D (Q) =3/Q, where Q =x+y+ 2
and that the identical cost is quadratic: C (q) = ¢*/2 for ¢ > 0.

It follows from D (3¢.) = C’ (q.) that the Walrasian equilibrium output level g. = 1.

Now z = ¢., for any positive y and z, we have the profit ratio

atirt it =b—y—z:y(6—y(l4+y+2):2(6—2z(14+y+2).

6Such usage is different from the much broader “strategy” understood in common sense. In particular, in other fields of
economics, “strategy” is commonly refer to some kind of behavioral rule in response to changes resulted from rival’s actions,
market condition or external environment. In dynamic framework, it is usually expressed as a reaction function, such as the
Cournot-best response (responding to rival’s output or price), price-taking strategy and/or Cobweb strategy (responding to
market price), adaptive and/or cautious-strategy (responding to unstable economy). This distinction is particularly clear for
“Cournot-best response” that used both in game theory and in oligopolistic dynamics. In the former, all the quantities resulted
from the response function are “strategies”, while in the latter, the “best-reponse” itself is a strategy (like price-taking strategy),
one of many “strategies” formed by different responses .

"The principal notions of evolutionary stability have evolved constantly. The idea of Evolutionarily stable strategies can be
at least traced back to Ronald Fisher (1930). the formal definition were introduced by John Maynard Smith and George R.
Price in a 1973 Nature paper, in which a strategy S is defined as an ESS if and only if, for all T # S, either i) E(S, S) > E(T, S),
or ii) E(S,S) = E(T,S) and E(S,T) > E(T,T), where T stands for any strategy and E(-,-) is the expected payoff.

The first condition is sometimes called a strict Nash equilibrium condition or equilibrium property to indicate that the best
strategy to face strategy S is also strategy S. The second is sometimes referred to as Maynard Smith’s second condition or
stability property, which emphasizes that if 7' does just as well against S as does S itself, then S will only be stable if it does
better against T' than T does against itself. In consequence, although the adoption of strategy T is neutral with respect to the
payoff against strategy .S, the population of players who continue to play strategy S have an advantage when playing against
T.

There are many alternative definitions of ESS in different applications. They are not precisely equivalent to each other. For
instance, Thomas (1984) changed the above two conditions to i) E(S,S) > E(T,S), and ii) E(S,T) > E(T,T) for all T # S.
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FIG. 5 Illustration of Example 3

We see that 7% > 7” when (1 — y) (y* 4+ yz + 2y — 5 + z) > Oand that 7* > 7% when (1 — 2) (22 + yz + 22 =5+ y) >
0. Therefore, there exist infinitely many (y, z) combinations such that make one of Firm Y and Z makes
more profit than Firm X. Figure 5 illustrates the situation.

On the other hand, given any z, residual demand left for Firm X and Y is D (Q) = 3/ (Q + 2) and the
residual Walrasian equilibrium is obtained from the equilibrium condition D (2¢,,) = C’ (g ), which yields

qw = (V22 + 24 — 2)/4. Now for z = q,,, we have

1 (4y+2— V22 +24)2(4y + 2 + 3V22 + 24)
2 V22 +24+ 32+ 4y

for arbitrary y and z, where the equality holds if and only if y = qy,.

7 —n¥ = 20

Suppose, instead, Firm X behaves as a price-taker, then for any given y and z, the equilibrium output Z is
obtained from the equilibrium condition D (Z +y + z) = C’ (z), which leads to Z = (\/(y + 2)* + 12—y—2)/2

and
(B+y2) \/(y+2)° +12+y%(y+ 2) — (15y + 32) L

1
2 2
(y+2)°+12+y+=2

where the equality holds if and only if y = T = g,,. Similarly, 7% > 7¥ and the equality holds if and only

7 — ¥ =

Z2=T = Q-

In additional to its weakness to against multiple mutaritgjcsWalrasian strategy has another two shortcomings:
i) Robustnessissue: according to Proposition 4, when the (residual) marketalgrchanges or when entry or exit

occur, the relative-profitability frontier shifts outwaod inward, leading to the displacement of relative-profligb
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regime. Therefore, relative-profitability advantage imenitting at the original Walrasian equilibrium output Iéve
may not be maintained;

il) Heterogeneous costs: unlike the dynamic Walrasian strategy defined in Definitipthe relative profitability
of the static Walrasian strategy cannot be generalizedstadim-symmetric oligopoly where firms have heterogeneous
costs.

The implication between the dynamic and static Walrasieategjies can be seen straightforwardly by comparing
(15) with the conclusions drawn in Theorem 3. When all firmgeh@entical convex cost/, assume that firms
producing at arbitrary amounig, ¢, ...qx, While remainN — k firms produce at the dynamical equilibrium lewel

determined from
k
C' () =D((N —k)z + Z (16)

then Theorem 3 implies that, for al= 1, 2..., k, so long asj; # x, we have
k k
(N —k)z+ Z > D((N = k) g + )43 — C (@), (17)
j=1 =1

The distinctions between (15) and (17) are apparent. Howtheimplications from (17) is far broader than the
one from (15) in the sense that the latter can be logicallgriefd from the former either when “imitation” is assumed
or when a payoff monotone evolutionary selection mechars@nforced. As in the evolutionary game analysis where
all firms seek to maximize relative profit, firms intend to iaté the successors by changing to the output levels that
brings greater relative profit, (15) is then a long-run etiohary outcome from (17) due to the fact that, along with the
increasing number of “price-takers”, the equilibrium auitpevel z derived from (16) will approach the competitive
equilibriumg.. After all firms become price-takers,= q., any arbitrary deviation from,. by any number of firms
may promote short-term relative-profitability againstpiiee-takers (here the price-takers will react to theséadien
instead of sticking t@.) but definitely ends up with a relative disadvantage statusrims of relative profit, should a
new equilibrium be arrived. At this new equilibrium, the raots may profit more or less than they do at the original
equilibrium. Regardless of which case it is, in terms of thlative profitability, the mutants still performs worsetha
the “price-takers”. In the long-run, by repeated imitaar selections, the competitive equilibrium is converged.
The converse implication, that is, from (15) to (17), does exdst. For instance, for a duopoly, (15) refers to the
relative-profitability ofg,, while (17) refers to the relative profitability ¢f,,.

Just as the concepts of “static strategy” defined in the gé&mery should be distinguished with the “dynamic
strategy” defined in our model, the distinctions betweencthrecept of “strategy equilibrium” adopted in game the-
oretical analysis and the concept of “intertemporal efjtilim” adopted in dynamical analysis should also be noted.
“Equilibrium” in game theory is interpreted in terms of stdtstrategies”. A ESS is essentially a Nash-equilibrium
with respect to the relative payoffs, which refers to thaation in which that you have no incentive to change your
“strategy” (i.e., the output level in quantity-competitjovhen your rival sticks to his current “strategy”. Howeube

“intertemporal equilibrium” that we concern here is a dym@aooncept. It is nothing but a “steady state” resulted from
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mutual adjustments. When an intertemporal equilibriurodzlly stable, if you change, your rival will react, and then
the game will revert to whatever it was before. So it is notause you don’t have incentive to change but because
your rival always reacts properly to your change so as to ngakechange in vain and force you to adjust back to the
original equilibrium status. The intertemporal equilibri coincides with Nash-equilibrium if and only if all player
adopted their respectively best-response strategieb éau€ournot reactiofy)

Nevertheless, the conventional concept of evolutionalyibty for static Walrasian strategy can be generalized to
the dynamic Walrasian strategy as well. As we have empltsiggmeatedly, except adopting Walrasian reaction di-
rectly, Walrasian strategy in general does not guaranteeethtive profitability at each period of interaction. VWhén
impatient imitator may not switch to the Walrasian stratdgying the dynamical adjustment course, rational imittor
will soon realize that it is always the long-run outcome #hatounts and hence only imitate the strategy that can bring
relatively higher profit when the system converges to aiwet stable state, i.e., a dynamical equilibrium. Along
with the course of evolution, more and more firms becomemationitators and the Walrasian strategy evolves into

an evolutionary stable strategy.

6. CONCLUSIVE REMARKS

We have proved that there exists a unique downward-sloplatjve-profitability frontier, which together with 45-
degree diagonal line, divides the output space into synicaditr located relative-profitability regimes for each firm
All relative-profitability reactions for a particular firmust pass through the residual Walrasian equilibrium, which
happens to be the unique vertex that separates differeivesprofitability regimes. Regardless of what strategie
its rival may take, a firm behaving as a price-taker can aehtieg relative profitability if an equilibrium is reached.
Producing at the Walrasian output constantly, however,earg about the relative profit at each and every period.
Moreover, when the residual demand is linear, such committoénvariant output turns out to be the efficient reaction
in the sense that it unconsciously maximizes the relatioétm@gainst its rival.

These fundamental facts provide a direct economic inteapom and intuitive justification for the appreciation of
Walrasian behavior from the different perspectives andigea linkage between them. They do not only clarify the
confusions and misunderstandings due to the differentagssafjsame terminologies under different frameworks but
also help to generalize the available results to a new level.

The relative profitability gained by a price-taker is conti@nally interpreted as a consequence of betrayal and
free-riding (Stigler 1950). It is well-known that in a cdrtany member has an incentive to increase its output above
the agreed level so as to gain extra profit. The higher relgtrofit enjoyed by a betrayer (a price-taker) is achieved
through hurting those who remain in the collusion more thamihg itself. In other words, the price paid for betraying
is the reduction in instantaneous absolute profit. Suchrehens lead to the questioning of the rationale of price-

taking strategy, in particular for the economists who halithe absolute profitability is what a firm should concern.

8The price-taking reaction can be regarded as a best-response strategy in boarder sense: it is the reaction best-response to
the price instead to the outputs of rivals.
9This behavior is described as “spiteful” in Schaffer (1989).
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However, when the number of firms in an oligopoly is relati&egk, a firm may prefer to behave as a “price-taker”
not just for the higher relative profit compared to the restdisio for higher instantaneous profit. In the terminology
of game-theory, the “price-taking” can be a dominant sgat®r some firms when the oligopoly is composed of
price-takers and sophisticated firms that adopt Courndtresponse strategy and the price-takers. Such obsanvatio
is first revealed in Huang (2002) and will be further exploirethe second part of this research, where the advantage
of price-taking strategy against conventional sophigtidatrategies such as Cournot best-response and colluglion

be further explored.
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8. APPENDIX A: PROOFS

Proof of Theorem 1

Without loss of generality, we proceed with the case in which z since the proof for the case in whigh> =
follows directly due to the symmetry afandy.

Lety = f., (x) be the inverse function of the Walrasian reaction defined)nThis implies that the curve on x-y
plane satisfies the following identity:

D (z+ fu(2))=C"(x).

First, we shall show thaf. (z) > f, (z) for all z € Q and the equality holds only whefy (z) = z. In other
words, given any level of, f. lies on the right-hand side ¢f,.

Notice that by the definition oA™Y (z, f. (z)) = 0, we have

A (x, fe () = (& = fe (2)) D (x + fe () = (C (x) = C(fe (x))) = 0.

So f. () has an implicitly defined solution of

or, equivalentlyD (« + f. () = (C (z) = C (f. () / (¢ — f. ().

With the convexity ofC', we have

C(z) = C(fe(z))
x — fe(x)

< C'(z) forx > f. (z),
where the equality holds only whefa (z) = «, therefore
D(x+fe(z) <C'(z) = D(x+ fu (2)).

The downward-sloping property db implies thatf,, (x) < f. (z), with the equality being held whefi (z) = z.
Therefore, for a giver and f. < x, we havef. lies abovef,,. This is equivalent to saying thgt lies on the
right-hand side off,, for any given'y.

To prove the uniqueness ¢if, we first show that for any fixed, A*Y (z, y) is a monotonically decreasing function
ofzforz > f 1 (y).

Given a fixedr, we haveD (z +y) < C’ (z) wheny 2 f,, (z), or, equivalently, given g, D (z +y) < C’' (x)

whenz = f; ! (y). However, for any fixed;, we have

oA™Y (CL‘, Y) o / /
5 =D—-C'(z)+ (x—y)D".
Due tox > y (by assumption) and the fact thAt(z + y) < C’ (z) forz = f* (y), we know that

OA™ (z,y)

-1
o < O0whenz > f, " (v).
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This implies thatA®¥ (z, y) is @ monotonically decreasing functionofor z > f! (y). Therefore, for any fixed,
whenz is greater than the value implied by the cuwve= f! (y) (A®Y (z,y) = 0), A% (z,y) is always negative.
Since it is impossible to havA®¥ (z,y) = 0 for z > f.! (y), uniqueness of. is ensured.

if) The downward sloping characteristics ff follows straightforwardly from the uniqueness ff If not, there
must exist ary such thatf! (zo) = 0 with f/ (z¢) > 0. This in turn implies the existence ofea— 0* such that for
ye = .1 (zo) + ¢, £ ! (ye) has multiple values, a contradiction.

iii) The intersection of the trivial equal profitability cue and the relative-profitability frontier gives rise to=

Yy = qw. The rest of conclusions are obvious. Q.E.D.

Proof of Proposition 1

Proof. (2) is obtained by rearrangement after taking derivative with respect to & over both sides of the
identity

D(x+fe) (@ = fe) = C(x) = C(fe) .

Consider the segment of y = f. (z) below the 45-degree line, we have y < z and C’ (z) > D > C’ (y),
which implies that f/ < 0 for y < z. In particular, when z — ¢, and f. — ¢y, we have C’ (z) — D — 0, so

that

C'(x)—D—(x— f) D . C'(x)—D )
= = im —5—— =-L
t=qu, y—=aqw ¢ C'(f) =D+ (x— fo) D' a>qu, y—aw C' (fe) — D

Q.E.D.

Proof of Proposition 3

Proof. For an arbitrary D that satisfies D (0) > b, when C (¢) = a + bq + cq® and y = f. (x), we have
A" (z,y) =D(z+y)-(z—y)—b-(z—y)—c- (z° —y*) = 0.

Therefore, for x # y, we have
D(x+y)—c-(z+y)=b (18)

which implies that

D(z+y)=D""(b)

where D! is the inverse function defined by D (2) =D (z) — cz. Therefore, the equal-profitability curve f,
is always linear, regardless of the residual demand D.
When ¢ = 0, (18) simplifies to
D(x+y)=b=C"(z) =C(y)

which is nothing but the Walrasian reaction curve for both Firm X and Y. It is also the normal-profitability

curves for both firms due to zero fixed cost. Q.E.D.
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Proof of Proposition 4

Proof. i) For a given z, denote C? () = (1 4+ «a) C™ (z). When a # 0, the equal-profitability curve

fe (a, x) is implicitly defined by
(x = fe (o, 2)) D (x + fe(a,2)) = (1 + @) (C(z) = C(fe (o, 2))). (19)

Taking derivative with respect to a over both sides of (19) and rearranging yields

6fe (O‘VT) _ C(CL‘)—C(fe (O‘VT))
dox (1+a)C" (fe (a,2)) + (# — fe (o, x)) D' — D
C(z) = C(fe(a,x))
(1+a) (¢ (fe(a,z)) — ¢ (32 : z((f (xo;,:c))

)+ (z = fe (o, ) D

Since the convexity of C' implies that

C(x)_C(fe(a7x))Z ! o, T Wel’lxZ o,
z — fe (o, @) 2 O (Je (@) when z 2 fe (o),

Ofe (o, x)

«
ii) Since for any given z = x+y, we are able to define a 3 (z) such that D® (2) = (14 3(z)) DM (2), the

we thus have < 0 for all a.
proof can be accomplished by showing that f., which is a function of 3 (z), shifts rightwards with increasing
B (z) when the residual demand function is given by (1 + 3) D (z). Now the equal-profitability curve f. (8, z)

is implicitly defined by

(z—fe(B,2) A+ B) D (x+ fe (B,2)) = C(x) = C(fe (8,2)). (20)

Taking derivative with respect to 3 over both sides of (20) and rearranging would suggest that

0fe (# — fe(B,2)) D (x + fe (B,x))

= >0

7 CEZCUBI) o (b)) o £ () (14 9) D

for all 3. Q.E.D.

Proof of Proposition 9
Proof. Verification of i) and iii) are straightforward by noticing that when (21) is satisfied, the profit from
Firm X is given by 7@ (2, fo, (¢)) = C' (&) 2—C (2) and A% (2,) |y— . 2y = €' (2) (2 — )~ (C (&) — C (fu (2))).
ii) Since y = fy (z) and 7Y (z, fy, (z)) = C' (z) fuw (x) — C (fw (x)), we thus have

dr? (2,y)
—ar =tu@ = " @)y + (€ (2) = C" (y)) [, (),
substituting f/, (z) = C” (z) /D’ — 1 into which yields

T = 2 W () D'+ (C (@)~ € () (€ (&) ~ D).
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¥ (x,y)
dz
must have at least one local maximum between ¢, and z* = R, (0). One of such local maximum occurs at
dm¥ (x5, ys)
dx
Moreover it can be verified that

Therefore so long as ¢ < ¢, (z < y) we have > 0. Since 7Y (qw, qw) > 0 and 7¥ (z*,0) = 0, 7Y

Zs > g with ly.=fu(z.) = 0, that is, Eq. (22).

d?*m¥ (z,y
T )|, oy = DO (@) (2C" (&) 2D — yD") = € () (" (&) ~ D)’
+(D'(C" () + D) = 2D"C" (2)) (C" (x) — C" (y))
which is negative for all y = f,, () when conditions (23) are satisfied. Q.E.D.

Proof of Proposition 2

Proof. Notice that R,,, R, and R. meet the following identities, respectively.

C'(Ry (y)) = D (Rw (y) +9),
C' (R, (y)) = D (R, (y) +y) + (R (y) —y) D' (R, (y) + v),

C' (R (y)) =D (Re (y) +y) + Re (y) D' (Re (y) + v) -

It is easy to see that for any given y, we have R, (y) < Ry (y) and R, (y) < R, (y). However, R, (y) and
R, (y) intersect at © = y = ¢, Moreover, as can be seen from Figure 6 that, for a given y, the function
of G(z)=D(x+y)+ (r —y) D' (x +y) lies above (below) D (z +y) for z <y (x > y), which implies that
R, (y), the intersection of G and C’, is greater (less) than R, (y) if x <y (z > y). Q.E.D.

9. APPENDIX B: ISO-PROFIT CURVE AND RELATIVE-PROFITABILITY FRONTIER

In this appendix, we shall reveal some relations among iséitcurve, the normal-profit curves and the equal-
profitability curve. The information revealed is importémt the analysis of interactions of various strategies aelbp

by the duopolistic firms.

DEFINITION 8. Iso-profit curve and normal-profit curve for Firm i
Iso-profit curve for Firm i is the curve in the z-y plane that depicts the relationship between x and y so
that the profit for Firm i is fixed at a constant level 7 (x,y) = 7o, where 7 is a constant. In particular,

when 7y = 0, the iso-profit curve will be referred to as the normal-profitability curve.

Let ¢,, be the residual Walrasian equilibrium output such tBdRq.,) = C’ (¢,,) and denoteZ,, = (guw, ¢w) 8S
the residual Walrasian equilibrium point in the x-y planairtRermore, le,, represents the maximumsuch that

T (qny qn) = 7Y (¢n, qn) = 0, that is,q,, satisfies the identity

gnD (2Qn) =C (Qn) .
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FIG. 6 Relative magnitudes of R,, R, and R,,

The analytical relationship between iso-profit curve andadgrofitability curves is summarized in the following

proposition:

PROPOSITION 6. i) Along the 45-degree line, only at residual Walrasian equilibrium (qu, ¢ ) will the slope
of iso-profit curves of both firms equal —1. In other words, at the residual Walrasian equilibrium (Guw, quw),

the iso-profit curves (for both firms) are tangent to the equal-profitability curve.

Proof. For the iso-profit curve of Firm X, we have

m (2,y) = 2D (z,y) — C (x)

The slope of 7® (z,y) is given by

0
D (z,y) + 2D’ (z,y) (1 + 6—i> —-C'(z)=0
or,
Oy _ C'(x)—D 1
or D' (x,y) '
Since y = x along the 45-degree line, we thus have dy/dx = —1 if and only if C’ (z) = D, i.e., if and only
if at the residual Walrasian equilibrium. Q.E.D.

Whenz € (quw, ¢n), the profitis positive. The iso-profit curve will interseaiite with the equal-profitability curve

fe. The following proposition indicates that these two inégtgon points are anti-symmetric.

PROPOSITION 7. If ¢, > quw, then for any q¢ € (qw,qn), there exists a pair (qu, fe (q1)), (fe (1), q1) on
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the equal profitability curve y = f, (x) such that

A (qu, fe (@) = A (fe (@), @) = A™ (¢, q)

and

T (g1, fe (1)) = 7" (fe (@) ,q1) = 7 (4, q) fori=z,y.

Proof. As depicted in Figure7.(a), the normal-profit curve 7% (z,y) = 0 passes (¢”, ¢"), (¢*,0) and (0, ¢*)
three points.

For any ¢" > § > qu, 7 (4,§) > 0, we are able to identify a g; on the lower segment of y = f. (x) such
that 7% (q1, fe (q1)) = 7* (G, ¢). By the symmetricity of 7% (z,y) and 7¥ (y,x) and the anti-symmetricity of
A" = 0, we must have

7 (qu, fe (@) = 7 (fe (@1) 1) = 7 (fe (@), q1)

where the first equality follows from the symmetricity of 7% (z,y) and #¥ (z,y) and the second one from

A = (. Q.E.D.

Remark 3. The profits levels along y = f. (x) thus ranges from 0 to m,. Unless y = x, any strategy that

results in y # x and consequently A*¥ = 0 results in a profit that is less than the Walrasian profit.

To see the relationship between iso-profitability curve eadprofits curves for the case of residual Walrasian
equilibrium, Cournot equilibrium and collusive equilibm, we letg. denote the identical Cournot equilibrium output

when both firms adopt Cournot strategy whereatisfies the following identity:

D (2(10) + qcD/ (2q0) = (QC) s

then it can be shown that
or (z,x)
oz e =0

On the other hand, denotg as the average collusive output when both firms collude asrelCahereq, is

determined from

D (2QU) + 2QUDI (2QU) =C (QU) )

then it can be verified that the iso-profit curve is tangent® 45degree line at, (at whichr (z,z) reaches its
maximum value).

Figure 7 (a) and (b) illustrate the relationship betweeragéguofitability curve and iso-profits curves for the case of
residual Walrasian equilibrium, Cournot equilibrium amdlesive equilibrium in x-y plane for the iso-elastic resal
demand D (Q) = 1/Q) and the linear residual demahtl(Q) = 1 — @ , respectively. To see how profit level changes

along the 45-degree line, the profit functions are depictatbtneath the respective graphs.
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Notice that, when there is no fixed cost, the intercepts oktheal-profitability curvey = f. (x) atz andy axes,

denotes as* andy* respectively, satisfy the following identities:
D(z*)=C(2") /z", D(y") = C(y") Jy",

and consequently, we haxé = 7% = 0 at these two extreme points. In other words, we know the nepmadit curve

for X (Y) must intersect at* (y*).

10. APPENDIX C: CHARACTERIZATION OF WALRASIAN REACTION

In a residual-duopoly in which Firm X exercises the Walrastiategy, regardless of whether the production tech-
nology exhibits constant return or decreasing return tes@dalrasian reaction defined by (1) is where an equilibrium

outcome(z, ) lies on. The following proposition characterizes the shafp#/alrasian reaction curve.

PROPOSITION 8. When D' < 0 and C” > 0 are satisfied, the inverse of the Walrasian reaction y = f,, (x)
implicitly defined by
D(z+ fu(z)) =C' () (21)

has the following properties'®:

i) fuw is a downward sloping curve with a slope greater than unity in absolute value, i.e.,

i (@)=C"(z) /D —1< —1;

w

ii) 1 (7) = —

=5 ((C” (z) /D')*> D" —C™ (f)), which is positive if D" >0 and C" < 0.

Proof. Direct verification.

Remark 4. |fl, (Z)| > 1 implies that when z increases, the reduction of y exceeds the increment of = so

that the industrial output decreases and the market price increases.

Remark 5. Conditions D” > 0 and C" < 0 are just sufficient but not necessary conditions for the
convexity of f,. For instance, when D =1 — @ and C (q) = ¢*, we have C"” (¢) > 0 but f! (z) = 2z=* > 0.
The graph of f,, is depicted in Fig. 2.(c).

Since we are more interested in the relative change of panfilshe relative profits along the Walrasian reaction

curve, we have

PROPOSITION 9. Along the Walrasian reaction curve whose inverse is given by y = fu, (z), we have
dr®
i) ™ is a monotonically increasing function of x with %|y:fw(x) = zC" (z) so that ™ achieves its

mazimum at ¥ = Ry, (0);

10For the Walrisian reaction, we have
R, (y) = D'/ (C" (z) — D)
and " 1" (=)\2 N2 i
" D" (C" (z))” — (D))" C" ()
(C" (x) = D)
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it) ™Y is a monotonically increasing function of x when x < y (i.e, x < qu) and it achieves a local

mazximum at Ts > G that is implicitly defined by
(C"(25) = C" (fu (4))) (C" (x5) = D') = = fu (25) D'C” (xs) - (22)

Moreover, if

D' +D"y<0,D">0and C" <0, (23)

then x is the unique maximum.

iii) M%f%:fw(w) = C" (@) (x —y) — (C' (x) = C" () [, 50 that
dA™ (Z,§)
dx
The relative profit between two firms, however, is a monotalhidncreasing and decreasing functioruoivhen
x is greater or less thap,, respectively which is consistent with the fact that thatieé profit difference reaches to
its minimum (zero) at the residual Walrasian equilibriiy.
Finally, it is worthwhile to point out that for a symmetric gjpoly with Firm X exercising Walrasian strategy, a
local maximum profit is achieved when Firm Y behaves as a efstaikelberg leader in the way that the Walrasian
reaction curveR,, is known to Firm Y and is taken into consideration in its proféximization strategy. Instead of

proceeding to the relevant proof, we introduce a more géresalt related to strategically related parameter.

ProrosiTiON 10. Comparative statics for a strategic parameter ~;

When D’ < 0 and C"” > 0 is satisfied, for an equilibrium established by (21) and
D—h ({71} » T, g) =C (g) (24)

where {7;} is a set of strategic parameters that do not appear in both D and C, then we have

oz D’ oh
il 2
0 H O (25)
oy D'—C"(x) Oh
oy H 0 (26)
where
H=C" (z)C" (y) — D' (C" (z) + C" (y)) + (0h/dx — Oh/Dy) D', (27)
is monnegative if
Oh/0x < Oh/dy. (28)

As an application of Proposition 10, we examine the tradalareaction by Firm Y that can be unified with

conjectural variation formulation. In general, assumé Eiam Y's reaction curve is implicitly defined by
D+ (a+ BR, () yD' = C' ()
with a > 8 > 0.
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While Cournot best-response corresponds to the case irhwhie 1 andg = 0, Stackelberg-alike strategy is
characterized by = 5 = 1.
For fixedo andg, leth (o, 8, z,y) = —yD’ (z + y) (o + BR., (y)), thenwe havé (a, 3, z,y) > 0if 0 < 8 < «

(dueto|R], (y)| < 1).
(+)

—_———
Oh)dx — )y = [a + BR., (y) +BIR. () D'

It follows from Proposition 8 that ifD” > 0 andC” < 0, we haveR! (y) > 0, which in turn implies that

Oh/0x < Oh/0y.

Due to the facts that
oh (aaﬁaxvy) _ oh (oz,ﬁ,x,y) N
¥ — gD =250 I) gD
5a yD" > 0, R yD'R,, (y) <0,
for 8 < o and
oh
(aéi—’ 20 - gD (14 R, () > 0

for a = 3, we are able to get the following comparative statics imragdy from Theorem 9 and Proposition 10:

B<a a=0

0/0p8 | 9/0a | 9]0«
x - + +
Yy + - -
T - + +
Ar®Y — + +

In particular, fora. = 8 = 1, substitutingD with C’ (z) in (24) and rearrange gives us

/

e —
C'(z)+yD (1+7C,, @ =D

)=C" (1)

which is nothing but the first-order maximization condition ¥ given by (22). That is to say that Stackelberg alike
strategy (taking into account the reaction cuf¥g) leads to the maximum profit for Firm Y, which is at least true

when Walrasian reaction curve is convex.
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