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Abstract

Where there are alternative roads to the same destination, compe-
tition between profit maximizing road operators is possible. Tolls
on such roads could perform two welfare enhancing functions; dis-
couraging excessive driving and allocating drivers between roads.
The second of these functions will typically require some roads
to be more expensive to drive on, and to be less congested, than
others. Bertrand equilibrium will not always peform this second
function. It may fail to allocate the most impatient drivers to less
congested roads, as it does not always deliver toll differentiation.
The performance of this second function is dependent on the first.
That is, whether or not competing roads will be differentiated by
tolls and congestion, will depend in part on the importance of
discouraging marginal drivers. The equilibrium will not gener-
ally be fully efficient, but will often provide efficiency gains over
other decentralized options.
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1 Introduction

When motorists do not have to pay to use roads, they may not have incentives

to drive efficiently. One reason is well understood. Too many people may

choose to drive, and drive too much, because they don’t take into account

the increased congestion experienced by other drivers. However, there is

also a second reason. Impatient drivers may be willing to pay more, to

use ‘Lexus lanes’ or roads with minimal congestion. Toll differentiation can

increase welfare, by encouraging patient and impatient drivers to select roads

with high and low congestion respectively (Verhoef & Small 1999, Small &

Yan 2001, Parry 2002).

One approach to pricing congestion is to allow private companies to op-

erate roads and toll drivers. For example, a single private company might

operate both roads. A private company might operate one road and the

other road might not be tolled. Or competing firms might each operate one

of the roads. Verhoef & Small (1999) examined the first two of these three

options, with results that were discouraging. Both options reduced efficiency

from a benchmark of no tolls.

The current paper examines the third option, competition. Unfortu-

nately, no general result on the efficiency consequences is available. This

is not surprising as even a single-road monopolist might charge an efficient

toll (Edelson 1971). However, an example is presented, in which duopoly out-

performs untolled roads as well as the other two options mentioned above.

Recall the two ways that tolls can raise efficiency; discouraging excessive

driving and allocating drivers between roads. Competition will typically de-

liver positive tolls, and hence perform the first function. But the prospects

for the second function are not so clear. The following discussion ex-
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amines whether toll differentiation is required for efficiency, and

whether it can be expected as a result of a duopoly equilibrium.

It is a standard result that Bertrand competition between providers of

non-differentiated goods leads to a symmetric equilibrium (all firms charge

the same price) and to efficiency. But this result is not applicable to con-

gestible networks. The reason is that otherwise identical networks have

different levels of congestion when they charge different prices (Häckner

& Nyberg 1996). Engel, Fischer & Galetovic (1999) examine a roading

oligopoly, finding that equilibria are not generally efficient. de Palma &

Lindsey (2000) present an example in which a duopoly equilibrium is more

efficient than one or both roads being untolled.

Previous research does not provide a compelling reason to expect com-

peting roads to deliver different levels of congestion. de Palma &

Lindsey (2000), Häckner & Nyberg (1996) and Lee & Mason (2001) all find

symmetric equilibria. However none of these studies address the same ques-

tion as the current paper. de Palma and Lindsey consider queue rather flow

congestion. While queue congestion is a suitable assumption for some issues,

it is not appropriate for examining differentiation between high and low con-

gestion roads. de Palma and Lindsey’s duopolists charge time varying tolls

that completely remove congestion. Furthermore, the benefits from differen-

tiation, identified by Verhoef and Small, are not relevant when drivers are

homogeneous. Häckner & Nyberg (1996) find that equilibria must be sym-

metric if there are only two firms or if the disutility of congestion is only

significant for high levels of utilitization. However, like de Palma & Lindsey,

they assume homogeneous consumers.

Lee & Mason (2001) do allow consumers to have heterogeneous prefer-
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ences, and do not assume that congestion takes the form of queues. They also

find there will always be a symmetric equilibrium. Furthermore, they argue

that competition in congested networks cannot deliver asymmetric equilibria.

However, they assume that firms do not anticipate that changes in tolls will

affect drivers’ expectations about congestion.2

Previous literature has identified benefits from toll differentiation, but

does not suggest that competition will deliver such benefits. Models of com-

petition either do not incorporate all benefits, predict no differentiation in

equilibrium, or both. In the following discussion, the possibility of toll dif-

ferentiation is re-examined in a Bertrand model of a roading duopoly. It will

be assumed that roads are subject to flow rather than queue congestion, that

drivers (and sometimes roads) are heterogeneous and that drivers anticipate

more expensive roads to be less congested.

Unfortunately, heterogeneous drivers and rational expectations are not

easy to model. A firm’s payoff need not be quasi-concave in its toll, and its

best-response may be discontinuous (Verhoef & Small 1999, Lee & Mason

2001). Furthermore, games will not generally be supermodular. As a result,

pure strategy equilibria need not exist. In addition, the analysis can be

intractable. However, it is possible to obtain some results.

The assumptions of the model are outlined in the following section. Sec-

tion 3 focuses on the second function of tolls - allocating drivers among roads

- and abstracts from decisions about whether to drive at all. In this frame-

work, some toll differentiation would be welfare improving, but unregulated

duopoly may not deliver it. Even when competition does lead to toll dif-

2They emphasize applications in which this assumption is reasonable, such

as when firms cannot commit to prices in advance.
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ferentiation, the wrong road may be more expensive. However these

pessimistic results depend on the absence of marginal consumers, who are

introduced in section 4. An equilibrium will not generally deliver a first best

outcome, but we can expect some toll differentiation when tolls actively re-

duce the amount of driving. An example is presented in section 5, illustrating

the symmetric equilibria of section 3 and the asymmetric equilibria of section

4. Conclusions are drawn in section 6.

2 The model

Two roads connect the same two points. Each road is owned by a different

firm. Firms 1 and 2 simultaneously choose tolls p1 ∈ R+ and p2 ∈ R+ respec-

tively. Firms incur no extra costs from more drivers, and so firms maximize

revenues. Consumers observe the announced tolls and then simultaneously

choose which if any of the roads to drive on.

The two roads have utilization Q1 and Q2. Congestion is an increasing

and differentiable function of utilization, i.e., z′
i(Qi) > 0. Roads are hetero-

geneous when z1(·) and z2(·) are different functions.

Consumers are heterogeneous but anonymous. That is, they differ accord-

ing to their disutility from congestion, but this disutility does not depend on

the identity of other drivers on the road. A consumer in group i with taste

parameter θi receives utility ui(z; θi)− p from driving on a road with conges-

tion z and paying a toll of p. She receives a reservation utility of uo if she

does not drive.

Utility from travel is twice differentiable in z and θi, strictly decreasing

in z and has a negative cross partial derivative. That is, motorists
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are willing to pay to avoid congestion, and motorists with higher

values of θi are willing to pay more. In principle, a strong aversion

to congestion could be either positively or negatively related to the

value of travel. It could be the most patient or the most impatient

that choose not to drive. We allow for both possibilities by dividing

motorists into i = 1, .., n subpopulations, where ui(z, θi) is increasing

in θi for some subpopulations i and decreasing for others. Subpop-

ulation i has mass µi. The taste parameter, θi, is distributed according

to Fi, which is continuously differentiable and strictly increasing on [0, 1].

Although homogeneity of drivers is ruled out by the assumption that Fi is

increasing, it will be possible to examine some implications of homogeneity.

3 Results when everyone prefers to drive

If uo is high enough, then some consumers will not drive in equilibrium. But

in this section, we consider the case in which uo is so low that everyone

strictly prefers to drive. In this case, the only function that tolls need to

perform is to allocate drivers between roads. The efficient allocation requires

different tolls to be charged on the two roads.

Proposition 1 Assume that p1 = p2 and every driver strictly prefers to

drive. The outcome will not be a local total surplus maximum.

The proof is presented in Appendix C. But the intuition is straight-

forward. If both roads charge the same toll, then they will also have the

same level of congestion. Otherwise drivers would switch to the less con-

gested road. In an efficient outcome, each driver would impose the same
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marginal external cost on other drivers, no matter which road she chose.

The two roads will not generally have the same marginal externality when

they are equally congested, if either roads or drivers are heterogeneous. So

it will not be efficient for roads to be equally congested.

Consider the case in which drivers are homogeneous but roads are het-

erogeneous. All drivers would have the same willingness to pay to reduce

congestion. Total surplus would vary inversely with aggregate congestion,

z1 · Q1 + z2 · Q2. So long as the two roads have different elasticities of con-

gestion with respect to utilization when z1 = z2, aggregate congestion can

be reduced by moving drivers to the road with the lower elasticity. This

reallocation of drivers can only be accomplished by differentiating the tolls.

Now consider the case in which roads are homogeneous, but drivers differ

from each other. In this case, the findings of Verhoef & Small (1999) apply.

Impatient drivers are willing to pay enough to compensate patient drivers

for using the other road. Again there would be gains to price differentiation.

Although toll differentiation is required for efficiency, it need not result

from competition. This is particularly clear when the roads are identical.

Proposition 2 Assume that the two roads are identical (i.e. that z1(·) ≡

z2(·)). Assume further that there is a pure strategy Bertrand equilibrium in

which every consumer strictly prefers driving to staying at home. Then both

firms will charge the same toll, and have the same level of congestion.

To see why this proposition holds, consider how the equilibrium

is determined. Because of the assumption that higher θi implies

stronger aversion to congestion, motorists’ choices between the two

roads can be characterized with thresholds. Let θi
M be the thresh-
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old for subpopulation i, so that motorists with θi > θi
M will prefer

to drive on the less congested and more expensive road and those

with θi < θi
M will prefer the more congested one. Then θi

M is char-

acterized as the value of θi for which a consumer is indifferent.3

ui(z2(Q2), θ
i
M)− ui(z1(Q1), θ

i
M) = p2 − p1 (1)

Demands for the two roads are given by the following equations.

Q1 =
∑

i

µiFi(θ
i
M), Q2 = 1−

∑
i

µiFi(θ
i
M) (2)

The tolls only enter equation (1) in terms of the toll difference,

and so dQ2/dp1 = −dQ2/dp2. Equation (2) implies that dQ1/dp1 =

−dQ2/dp1. By transitivity, it follows that dQ1/dp1 = dQ2/dp2. This

equality is substituted into the two firms’ FOCs,

Q1 + p1
∂Q1

∂p1

= 0, Q2 + p2
∂Q2

∂p2

= 0 (3)

to imply that Q1/p1 = Q2/p2. This means that if p1 < p2, then Q1 < Q2.

But if the roads are identical, this is impossible. It would mean that some

drivers were choosing road 2 even though it was more expensive and more

congested. So there cannot be an equilibrium with p1 < p2, or by a similar

argument, with p1 > p2.

The problem is more general than just with identical roads. If there is

an asymmetric equilibrium, the more expensive road must have higher uti-

lization. This is clearly impossible if the roads are identical, but it may be

3unless everyone in the subpopulation strictly prefers one of the two roads. Such

subpopulations do not affect the result
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suboptimal even when it is possible. Imagine that one road has greater ca-

pacity than the other. Efficiency may require the larger road to be more

expensive, or it may require the smaller road to be more expensive. It de-

pends on the elasticities of congestion and on the distributions, Fi. But only

the former type of outcome could be a competitive equilibrium.

Proposition 2 supports the pessimism about asymmetric equilibria ex-

pressed by Häckner & Nyberg (1996), de Palma & Lindsey (2000), and Lee

& Mason (2001). However, it does rely on a strong assumption. The

prospect of staying at home is so unattractive, that everyone will choose to

drive. This assumption is critical, and will be relaxed in the following section.

4 Results when not everyone drives

We now allow some potential drivers to stay at home. Non-drivers are

divided from drivers by the thresholds θi
L and θi

M . In subpopula-

tions in which ui(z, θi) is increasing in θi, high θi motorists always

drive (θi
H = 1), but low θi motorists may not. If they do all drive,

then θi
L = 0. Otherwise, the motorist with θi = θi

L is indifferent

whether or not to drive; ui(z1, θ
i
L)− p1 = u0. Conversely, when util-

ity is decreasing in θi, low θi motorists always drive (θi
L = 0), but

high θi motorists may not (ui(z2, θ
i
H) − p2 = u0 or θi

H = 0). As a

result, demand is characterized in the following generalization of

equation (2).

Q1 =
∑

i

µi

(
Fi(θ

i
M)− Fi(θ

i
L)

)
, Q2 =

∑
i

µi

(
Fi(θ

i
H)− Fi(θ

i
M)

)
(4)

Toll differentiation is still required for efficiency.
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Proposition 3 If the two tolls are equal, the outcome is not efficient.

The efficient tolls maximise total surplus.

S = u0 (1−Q1 −Q2) +
∑

i

µi

∫ θi
M

θi
L

ui(z1, θi)dFi +
∑

i

µi

∫ θi
H

θi
M

ui(z2, θi)dFi.

Incremental increases in p2 have the following effect on surplus.

∂S

∂p2

=
∑

i

∂S

∂θi
L

∂θi
L

∂p2

+
∑

i

∂S

∂θi
M

∂θi
M

∂p2

+
∑

i

∂S

∂θi
H

∂θi
H

∂p2

(5)

An increase in p2 will sometimes increase total surplus, and some-

times decrease it. But, it is shown in Appendix C, that if we start

from the highest total surplus that is attainable without toll dif-

ferentiation, then surplus increases further when one of the tolls is

increased incrementally.

Proposition 3 is analogous to proposition 1. A symmetric outcome con-

tinues to be inefficient, even when some potential drivers choose to stay at

home. However, there is no analog for proposition 2. Competing duopolists

may charge different tolls, even when roads are identical.

Proposition 4 Assume that the two roads are identical. Any pure strategy

Bertrand equilibrium, in which some people do not drive, is asymmetric.

This proposition is demonstrated in Appendix D. The rationale is that

there is an upward kink in the demand curve when p1 = p2, and hence

an upward jump of marginal revenue. This means that there cannot be a

profit maximum at this point, and so the two firms charge different tolls in

equilibrium. Recall that the rationale for proposition 2 was based

on an identity between ∂Q1/∂p1 and ∂Q2/∂p2. This identity will not
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generally hold when higher tolls convince some potential drivers to

stay at home.4

Although Bertrand duopoly can deliver toll differentiation, and hence

some benefits, it does not generally deliver an efficient outcome. Efficient

tolls reflect the disutility of congestion experienced by inframarginal drivers.

In contrast, competing duopolists only care about marginal drivers - those

at the thresholds. Although we do not have an analytic result about the

efficiency consequences of duopoly, it is possible to calculate equilibrium tolls

for simple examples. One such example is illustrated in the following section.

5 A simple example

Assume two identical roads and a single population, in which θ is

distributed uniformly on [0, 1]. Utility from driving is θ ·(1−Q)−p. As a

consequence, θM is determined in the following counterpart to equation (1).

θM · (1− θM + θL)− p1 = θM
2 − p2 (6)

Equilibria fall into four categories. When uo is low enough (eg. uo =

−.6), there is a symmetric equilibrium as described in Section 3. In such

an equilibrium, θL = 0 and θM is characterized by equation (6). When uo

is a little higher (eg. uo = −.3), then there is an asymmetric equilibrium

(p1 6= p2) in which everyone drives (Q1 + Q2 = 1).5 When uo is higher again,

4The sign of ∂θi
M/∂p1 + ∂θi

M/∂p2 depends on the sign of ∂u/∂θ. But whether

this effect is overwhelmed by the effect on the other threshold also depends

on this sign. Tabuchi & Thisse (1995) also find asymmetric equilibria in some

spatial models, driven by kinked demand curves.
5This second type of equilibrium only arises because the example does not
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there is an asymmetric equilibrium in which some people stay at home, as

described in Section 4. The two thresholds are determined by the intersection

of (6) and the following condition showing indifference of the person with

θ = θL, between driving ans staying at home.

θL · (1− θM + θL)− p1 = uo (7)

Finally, if uo is too high, then no-one drives (θL = 1). Bertrand equilibria

can be found numerically. A range of equilibria, for various values of uo, are

presented in Table 1.

Duopoly equilibria are compared with three alternatives, (i) a monopoly

owning both roads, (ii) a private firm operating one road with the other

road untolled, and (iii) both roads untolled. As in Verhoef & Small (1999),

the efficiency consequences of one tolled and one untolled road are very

poor. However, in contrast to Verhoef and Small, the outcomes with a

two-road monopoly are typically more efficient than those with two

untolled roads, except when everyone drives. Furthermore, the

outcomes in a duopoly equilibrium dominate the alternatives in terms of effi-

ciency. Bertrand duopoly generally delivers greater total surplus than either

monopoly or one untolled road, and (usually), a greater surplus than un-

tolled roads. However, Bertrand equilibria are not first best efficient even

when some drivers stay at home. Tolls tend to be too high and total utiliza-

tion tends to be too low.

satisfy the assumption that ∂u/∂z < 0 when θ = 0. In such an equilibrium,

there are marginal drivers (at θ = 0) even though everyone actually drives.

Consequently, proposition 2 does not apply. Furthermore, total surplus is not

monotonic in uo over this region
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6 Conclusion

The main result of the paper is that vertical differentiation, a requirement

for efficiency, can be expected in a Bertrand equilibrium in a wide range of

cases. However, these cases do not include a totally inelastic total demand

for commutes. While competition is unlikely to deliver full efficiency, it can

lead to efficiency gains over other decentralized options.

Despite the encouraging results, some caution is in order. First, overall

efficiency in a duopoly was only assessed in an example, and the example

was chosen for tractability rather than plausibility. Even so, the encouraging

results are consistent with de Palma & Lindsey (2000), and suggest that the

competitive option may be worthy of consideration where possible.

A second reason for caution is the complexity of duopoly models. Best

response functions are discontinuous when there are some potential drivers

that stay at home. As a consequence, Bertrand equilibria may not exist.

Furthermore, theoretical equilibria may seem more plausible as predictions

when they are simple. Policymakers and private agents may find it difficult to

predict outcomes in realistic settings. Perhaps, policymakers should proceed

slowly, until more is known about how roading duopolies function in practice.
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Appendix

A Demand functions at p1 = p2

When p1 = p2, θM is not well defined. The limiting allocations of drivers

as p1 approaches p2 are different, depending on whether p1 approaches p2

from above or below. However, both these limiting allocations are possible

outcomes when p1 = p2. Furthermore, every allocation with p1 = p2 has the

same Q1 and Q2. Hence the demand functions are continuous at p1 = p2.

B Slopes of demand functions

Consider subpopulations with uθ > 0, and some non-drivers. θi
H ≡ 1. θi

L and

θi
M are determined by (1) and ui(z1, θ

i
L)− p1 = u0. As p2 approaches p1 from

above, we get the following.

∂θi
L

∂p1

= −fi(θ
i
M)

(z′
2 + z′

1)u
iM
z − uiL

z z′
1

∆i

,
∂θi

L

∂p2

=
−fi(θ

i
M)uiL

z z′
1

∆i

∂θi
M

∂p1

= −(uiM
z − uiL

z )fi(θ
i
L)z′

1 + uiL
θ

∆i

,
∂θi

M

∂p2

= −uiL
z z′

1fi(θ
i
L)− uiL

θ

∆i

where ∆i = fi(θ
i
M)uiM

z (z′
1z

′
2u

iL
z fi(θ

i
L)− (z′

1 + z′
2)u

iL
θ ) > 0. In subpopulations

with uθ < 0 and some nondrivers, θi
L ≡ 0, and θi

M and θi
H are determined by

(1) and ui(z2, θ
i
H)− p2 = u0. As p2 approaches p1 from above, we get:

∂θi
M

∂p1

=
uiH

z z′
2fi(θ

i
H) + uiH

θ

∆i

,
∂θi

M

∂p2

=
(uiM

z − uiH
z )z′

2fi(θ
i
H)− uiH

θ

∆i

∂θi
H

∂p1

=
fi(θ

i
M)uiH

z z′
2

∆i

,
∂θi

H

∂p2

= fi(θ
i
M)

(z′
1 + z′

2)u
iM
z − uiH

z z′
2

∆i

where ∆i = fi(θ
i
M)uiM

z

(
(z′

1 + z′
2)u

iH
θ + z′

1z
′
2u

iH
z fi(θ

i
H)

)
> 0.
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C Efficiency

To show that total surplus is not maximised when p1 = p2, we first find

the best symmetric outcome, i.e., the highest total surplus attainable with a

single price. Let p1 = p2 = p, and z1 = z2 = z, so:

S = u0 (1−Q1 −Q2) +
∑

i

µi

∫ θi
H

θi
L

ui(z, θi)dFi

Then the best price satisfies the following FOC:

∂S

∂p
=

∑
i

∂S

∂θi
L

∂θi
L

∂p
+

∑
i

∂S

∂θi
H

∂θi
H

∂p
= 0

The implication is that p? = −1
2

∑
i µi

∫ θi
H

θi
L

∂ui(Q,θi)
∂Q

dFi. If we let p1 = p2 = p?,

then equation (5) can be rephrased in the following way,

∂S

∂p2

= ν
∑

i

µi

(
fi(θ

i
L)

2

∂θi
L

∂p2

− fi(θ
i
M)

∂θi
M

∂p2

+
fi(θ

i
H)

2

∂θi
H

∂p2

)
where ν =

∑
i

µi

∫ θi
H

θi
M

∂ui(z2, θi)

∂z
dFi −

∑
i

µi

∫ θi
M

θi
L

∂ui(z1, θi)

∂z
dFi < 0

Now plug in the comparative statics results from Appendix B. Subpopu-

lations who all drive have ∂θi
L/∂p2 = ∂θi

H/∂p2 = 0, and −∂θi
M/∂p2 < 0. For

subpopulations with uθ > 0 and some non-drivers, ∂θi
H/∂p2 = 0 and

fi(θ
i
L)

2

∂θi
L

∂p2

− fi(θ
i
M)

∂θi
M

∂p2

=
−uiL

θ fi(θ
i
M) +

fi(θ
i
L)fi(θ

i
M )uiL

z z′
1

2

∆i

< 0.

For subpopulations with uθ < 0 and some non-drivers, ∂θi
L/∂p2 = 0 and

−fi(θ
i
M)

∂θi
M

∂p2

+
fi(θ

i
H)

2

∂θi
H

∂p2

=

fi(θ
i
H)

2

(
uiM

z z′
1 + (uiH

z − uiM
z )z′

2

)
+ uiH

θ

∆i

< 0.

Recall from Appendix B that ∆i > 0. Therefore, as ν < 0, total surplus

increases if p2 is raised incrementally from the highest level of total surplus

attainable with a symmetric outcome.

14



D Equilibrium

Consider identical roads with p1 ≤ p2. If there was a symmetric equilibrium,

then there should be no incentive to reduce p1 or raise p2, i.e., Q1 +

p1∂Q1/∂p1 ≥ 0 and Q2 + p2∂Q2/∂p2 ≤ 0 with p1 = p2. Therefore:∑
i

µifi(θ
i
M)

(
∂θi

M

∂p1

+
∂θi

M

∂p2

)
≥

∑
i

µi

(
fi(θ

i
L)

∂θi
L

∂p1

+ fi(θ
i
H)

∂θi
H

∂p2

)
But the results of Appendix B show that this is not possible if some peo-

ple do not drive. Subpopulations with no non-motorists have ∂θi
M/∂p1 =

−∂θi
M/∂p2, and ∂θi

L/∂p1 = ∂θi
H/∂p2 = 0. Subpopulations with uθ > 0,

and some nondrivers, have ∂θi
L/∂p1 = 0 and fi(θ

i
M) (∂θi

M/∂p1 + ∂θi
M/∂p2) ≤

fi(θ
i
H)∂θi

H/∂p2, as uiM
z < uiL

z . Finally, subpopulations with uθ < 0, and

some nondrivers, have ∂θi
H/∂p2 = 0 and fi(θ

i
M) (∂θi

M/∂p1 + ∂θi
M/∂p2) ≤

fi(θ
i
L)∂θi

L/∂p1, as uiM
z > uiH

z .
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