ACORN
Different Design Approaches:

- Fast
 - AES-NI (AEGIS)
 - SIMD (MORUS)

- Lightweight
 - Mode (JAMBU)
 - Dedicated (ACORN)
ACORN: design

• ACORN-128
 • Based on bit-oriented stream cipher
 • Encryption and authentication share the same state
 • Small state
 • 293-bit (the minimum is 256-bit)
 • IV should not be reused
 • 128-bit key, 128-bit IV, 128-bit tag
ACORN: design

• Tweaks
 • Key is introduced into 1664 steps in initialization in v2 (128 steps in v1)

 • Initialization: 1792 steps (v2) : 1536 steps (v1)
 • Assoc. Data Padding: 256 steps (v2) : 512 steps (v1)
 • Message padding: 256 steps (v2) : 512 steps (v1)
 • Finalization: 768 steps (v2) : 256 steps (v1)

• Rationale for tweaks: to provide protection against nonce-reuse
 • Non-invertible initialization so that the key cannot be recovered directly from the state (the state can be recovered when nonce is reused in encryption/decryption)
 • More steps in the initialization so as to increase the difficulty of recovering the key from the state
Figure 1.1: The concatenation of 6 LFSRs in ACORN-128. f_i indicates the overall feedback bit for the ith step; m_i indicates the message bit for the ith step.
• Initialization
 • Key and IV are injected into the state bit by bit
 • Consists of 1792 steps

• Process associated data
 • Each step one bit
 • Padding is fixed as 256 bits: 1 0^{255} (without padding to fixed length block, so suitable for bit-oriented hardware implementation)

• Process plaintext
 • Each step one bit
 • Padding is fixed as 256 bits: 1 0^{255}

• Finalization
 • Run the cipher for 768 steps
 • The last 128 keystream bits are the tag

• Two control bits are applied to the cipher to separate associated data, plaintext and the finalization
ACORN: Security

• Encryption: Analysis is the same as stream cipher analysis (no security weakness found when nonce is not reused)

• Authentication: with the use of the concatenated LFSRs, the security analysis of authentication can be done much easier
 • To eliminate the difference being injected into the state, the success rate is 2^{-189}
ACORN: Performance

• Hardware
 • Bit-oriented design, suitable for hardware implementation
 • Expected to be slightly more costly than Trivium (hardware area)
 • Fast implementation is possible due to 32 parallel steps
 • Small state-size: 293 bits
 • Energy efficient
 • Simple circuits
 • Encryption and authentication share most of the operations

• Major difference between ACORN and TriviA-ck
 • ACORN’s encryption and authentication share the same state and operations
 => smaller state and less computations
ACORN: Performance

- Software speed on Sandy Bridge

<table>
<thead>
<tr>
<th>Size (B)</th>
<th>64B</th>
<th>128B</th>
<th>256B</th>
<th>512B</th>
<th>1024B</th>
<th>2048B</th>
<th>4096B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>72.1</td>
<td>41.5</td>
<td>26.3</td>
<td>18.6</td>
<td>14.7</td>
<td>12.8</td>
<td>11.9</td>
</tr>
</tbody>
</table>
Conclusions

• **ACORN**
 • A new design very different from the other candidates
 • Lightweight
 • Reasonably fast due to 32 parallel steps
 • ACORN-128 provides 128-bit encryption and authentication security

• **ACORN v2**
 • Protection against nonce-reuse in encryption/decryption so that the key cannot be directly recovered from the state

• **ACORN provides a new approach to design lightweight MAC (using bit-oriented registers)**