Problem Statement:

- **Personalized PageRank Model**
 - Seed node
 - Random surfer to neighbors with probability \((1 - \alpha)\)
 - Jump to seed nodes with probability \(\alpha\)
 - The stable probability can be computed by the seed nodes.

- **Problem**
 - **Input**: Given a graph \(G\), a set of seed nodes \(P\), and teleport probability \(\alpha\).
 - **Output**: Find the Personalized PageRank Vector (PPV) \(r_P\) which is computed as
 \[
 r_P = (1 - \alpha)A^T r_P + \alpha u_P,
 \]
 where
 - \(A^T\) is the normalized adjacency matrix,
 - \(u_P\) is the user preference vector.

- **Challenge**
 - **Exactness**: Most existing methods focus on approximate PPV computation, exact PPV is hard to compute.
 - **Parallel**: It is hard to design scalable distributed algorithm to compute PPV that works in iteration.
 - **Costs**: It requires high time, space and network costs for distributed graph computation.

Approaches:

- **Graph Partition Based Algorithm**
 - If we choose the hub nodes that can separate the graph, the size of partial vector can be bounded inside a subgraph.

- **Hierarchical Graph Partition Based Algorithm**
 - The partial vector computation in a subgraph is to compute a "local" PPV. We can further partition the subgraph recursively.

Background:

- **From PPV to random tours**
 - PPV scores can be computed by random tours
 - Example: there are 3 random tours from \(u_i\) to \(u_j\)
 - \(t_1: u_1 \rightarrow u_2 \rightarrow u_3\)
 - \(t_2: u_1 \rightarrow u_3 \rightarrow u_4 \rightarrow u_5\)
 - \(t_3: u_2 \rightarrow u_4 \rightarrow u_5\)
 - The PPV score can be computed by adding up the weight of all possible random tours.
 \[
 r_{u_i}(u_j) = P(t_1) + P(t_2) + P(t_3)
 \]
 \[
 P(t) = \alpha(1 - \alpha)^{w(t)} \prod_{u \in t} \frac{1}{\text{in}(u)}
 \]

- **Random Tour Decomposition**
 - If we select some nodes to be hub nodes
 1. The random tours can be decomposed by these hub nodes.
 2. Result in two types of tours
 - **Partial vector**: tours passing through no hub nodes
 \[
 p_{u_i} = P(t_1) + P(t_2) = P(u_1 \rightarrow u_4) + P(u_1 \rightarrow u_2 \rightarrow u_3)
 \]
 - **Skeleton vector**: tours stop at a hub node
 \[
 s_{u_i} = P(t_2) + P(t_3) = P(u_1 \rightarrow u_3) + P(u_1 \rightarrow u_2 \rightarrow u_3) + P(u_1 \rightarrow u_2 \rightarrow u_5)
 \]
 - All possible tours can be constructed by partial vectors and skeleton vectors.

- **Example**: Consider a tour \(u_1 \rightarrow u_2 \rightarrow u_3\)
 - In skeleton vector of \(u_1\)
 - In partial vector of \(u_1\)

Experimental Results:

- **Baselines**
 - Approximate: FastPPV [Fanwei Zhu, VLDB 2013]
 - Exact: Power iteration
 - Graph Processing Systems: Pregel [Da Yan, VLDB 2014], Blogel [Da Yan, VLDB 2014]