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The Server Provisioning Problem
for Continuous Distributed Interactive Applications

Hanying Zheng and Xueyan Tang

Abstract—In this paper, we study the server provisioning
problem for continuous Distributed Interactive Applications
(DIAs) whose application states not only change because of
the operations performed by participants, but also evolve along
with the passing of time. We focus on finding the locations
of servers for hosting DIAs, with the goals of optimizing the
interactivity performance while fulfilling the consistency and
fairness requirements. We show that the server provisioning
problem is challenging by presenting its NP-hardness and non-
approximability results under several conditions. We propose
two efficient server placement algorithms and analyze their
approximation ratios. The approximation ratio of the proposed
M-BETTER algorithm is quite close to a lower bound for
any polynomial-time algorithm. We also conduct experimental
evaluations to compare the proposed algorithms with several
baseline server placements.

Index Terms—Distributed interactive application, server place-
ment, interactivity, approximation algorithm

I. INTRODUCTION

Distributed Interactive Applications (DIAs) are emerging
technologies that open up new opportunities for geographically
distributed participants to interact with each other via com-
puter networks. Examples of DIAs include networked gaming
[1], [2], distributed e-learning [3], and collaborative computer-
aided design and engineering [4]. DIAs usually operate with
client-server architectures [5] in which the servers maintain the
application states, and execute the operations submitted by the
participants who are known as clients. Owing to different ways
of maintaining the application states, DIAs can be classified
into two categories: discrete DIAs and continuous DIAs [6].
In discrete DIAs, the application states are only updated due
to the operations performed by clients. In continuous DIAs,
the application states not only change because of executing
the client-initiated operations, but also evolve along with the
elapse of time. A typical example of continuous DIAs is
networked gaming, where the states of virtual game worlds are
often updated at a fast pace even when there is no operation
input from the players.

A major barrier to the quality of experience in DIAs is the
communication latency across the network. Wide geographical
spreads of clients in large-scale DIAs necessitate distributed
deployment of servers to support the interactions among
clients [5]. Servers can be placed not only at locations in the
center of the network (e.g. cloud data centers), but also near the
edges of the network such as nano data centers [7] and smart
edge nodes [8]. The increasing elasticity of computing re-
sources at these locations allows the DIA operators to quickly
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scale up or down the capacity on demand for hosting their
applications. However, even with distributed server infrastruc-
tures, the network latency cannot be completely eliminated
from the interactions between clients in DIAs. The network
latency involved in client interactions is directly affected by
the locations where servers are placed. Thus, server placement
is of crucial importance to the interactivity performance of
DIAs.

Besides interactivity, the network latency also challenges
the consistency and fairness of DIAs. Consistency means to
create shared common views of the application state among
all clients to enable meaningful interactions [9]. Significant
divergence of the application state can seriously affect the
behavior and decisions of the participants. Fairness is to ensure
that all clients have equal chances to participate despite their
geographically dispersed locations in the network [10], [11].
This is particularly important for those DIAs in which the
participants compete with each other intensely, such as many
online games. Due to constant state updates along with time
passing, fulfilling the consistency and fairness requirements
is much tougher in continuous DIAs than in discrete DIAs.
As shall be elaborated later, the higher time-sensitivity of
continuous DIAs entails additional synchronization delays in
the interactions among clients for maintaining consistency
and fairness. In our recent work [12], [13], we have studied
server provisioning for discrete DIAs in which no synchro-
nization delay is needed. In contrast, this paper explores
server provisioning for continuous DIAs with consideration of
synchronization delays, which lead to a different optimization
objective from that for discrete DIAs. From the computability
perspective, the difference in the optimization objective gives
rise to a much richer set of non-approximability results in this
paper than in [12], [13]. New approaches are also required
to design algorithms and analyze their approximability for
continuous DIAs.

In this paper, we formally define the problem of finding
the locations of servers for hosting continuous DIAs, with
the goal of optimizing the interactivity performance while
maintaining the consistency and fairness of DIAs. Inspired
by the analysis in [12], [13], we show the NP-hardness of
the problem under any one of the following conditions which
may be prevalent in practice: (i) the network latencies do
not satisfy the triangle inequality; or (ii) the locations where
servers can be placed are restricted; or (iii) the number of
server locations to select is limited. We further prove that the
server provisioning problem cannot be approximated within
any bounded factor under condition (i), within a factor of 3/2
under condition (ii), and within a factor of 4/3 under condition
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(a) Interaction time when all servers have synchronized simulation times
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(b) Minimum achievable interaction time

Fig. 1. An example of minimum achievable interaction time.

(iii). We propose two efficient server placement algorithms and
show that they significantly outperform the baseline server
placements by means of both theoretical analysis and ex-
perimental evaluation. In particular, the proposed M-BETTER
algorithm has an approximation ratio quite close to the lower
bound of 3/2.

The rest of this paper is organized as follows. Section II
formulates the server provisioning problem for continuous
DIAs. Its hardness and non-approximability results are pre-
sented in Section III. Section IV studies the approximability
of the classical k-center server placement. Sections V and VI
propose two server provisioning algorithms and analyze their
approximation ratios. We experimentally evaluate the proposed
algorithms using real Internet latency data in Section VII.
Section VIII summarizes the related work. Finally, Section
IX concludes the paper.

II. PROBLEM FORMULATION

We model the underlying network of the DIA as a graph,
whose node set includes a set of clients C and a set of servers
S. A distance d(u, v) is associated with each pair of nodes
u and v, representing the network latency of the routing path
between them.

Each client is connected to a server to participate in the
DIA and interact with other clients [14], [15]. When a client
performs an operation, the application state of the DIA should
be updated accordingly by executing the operation at each
server and then the state update should be disseminated to all
clients to reflect the change. Consider the interaction between
two clients c and c0. In order to notify c0 of the change in
the application state caused by an operation initiated by c, c
should first send its operation to its connected server s. Then,
s would forward the operation to the connected server s0 of
client c0 if s and s0 are different. After receiving the operation,
s0 executes it and sends the resultant state update to c0 to
complete the interaction. Therefore, the interaction involves
the paths from c to s, from s to s0, and from s0 to c0. We define
the concatenation of these three paths as the interaction path
from c to c0. The network latency involved in the interaction
is given by the length of the interaction path, i.e., d(c, s) +
d(s, s0)+d(s0, c0). Note that the interaction path from a client
c to itself has length 2d(c, s), which is the network latency
involved for c to see the effect of its own operation.

In continuous DIAs, the application states change due to not
only client-initiated operations but also time passing [6]. Thus,
the progress of the application state is often measured along a
synthetic timescale known as the simulation time (for example,
the time elapsed in the virtual game world of an online
game) [16]. To ensure that all clients consistently observe
the same effect caused by a user operation, the operation
must be executed by all servers at the same simulation time.
As a result, the servers may not be able to execute user-
initiated operations immediately upon receiving them. They
may have to wait and give enough time for the operations
to be delivered to other servers [5], [15], [17]. In addition,
fairness is concerned with the order of executing user-initiated
operations [11]. To guarantee that all clients have equal chance
of participation regardless of their network conditions, the user
operations must be executed in the simulation time order of
their initiations at the clients. The execution of operations
must also preserve the simulation time interval between the
operation initiations. Due to diverse network latencies, main-
taining consistency and fairness in continuous DIAs introduce
artificial synchronization delays in the interactions among
clients.

Zhang et al. [16] have proved that the minimum achievable
interaction time between clients for fulfilling the consistency
and fairness requirements is given by the length of the longest
interaction path among all clients. Figure 1 shows a simple
example to illustrate the minimum achievable interaction time.
Suppose that two clients c1 and c2 are connected to servers s1

and s2 respectively. The latencies from c1 to s1, from c2 to
s2, and the inter-server latency are 5, 3 and 2 respectively. A
straightforward simulation time setting is to synchronize the
simulation times at the two servers (see Figure 1(a)). In this
case, if an operation is issued at simulation time 0, considering
the two possible initiating clients, the latest possible time for
all the servers to receive the operation is at simulation time
12. Thus, the earliest simulation time for the servers to execute
the operation is 12 in order to guarantee the consistency and
fairness. Therefore, the resultant state update can only be seen
by the clients after a time lag of 12. On the other hand, if
the relative offset of simulation times at s1 and s2 is set to
2 as shown in Figure 1(b), all the servers would be able to
receive an operation issued at simulation time 0 by time 10
at the latest, irrespective of the client initiating the operation.
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As a result, the interaction time is reduced to 10. This is the
minimum achievable interaction time, which is equal to the
maximum interaction path length.

In many DIAs, the clients are naturally connected to their
nearest servers, i.e., the servers having the shortest network
latency to them [2], [14], [15], [18]. Thus, given a set of
clients, the longest interaction path is primarily determined
by where the servers are placed to support client interactions.
Suppose that there is a set of candidate server locations
Z in the network where servers can be placed. The server
provisioning problem for continuous DIAs is to find a set
of locations S ✓ Z to place servers so that the maximum
interaction path length among all clients, i.e.,

max

c,c! 2C

!
d(c, n(c, S)) + d(n(c, S), n(c0, S)) + d(n(c0, S), c0)

"
,

is minimized,1 where n(c, S) denotes client c’s nearest server
in S. To focus on reducing the network latency involved in the
interaction, this basic problem definition does not assume any
server capacity limitation. Extending our proposed algorithms
to handle server capacity restrictions shall be discussed in
Section VII-B.

III. HARDNESS OF THE PROBLEM

If the network latency satisfies the triangle inequality, for
any pair of clients c and c0, it is obvious that d(c, c0) 
d(c, s) + d(s, s0) + d(s0, c0) for any two servers s and s0

regardless of their locations. Thus, the best arrangement in
this case is to have a server co-located with each client so that
all the clients connect to their co-located servers, producing
the shortest possible interaction path length between each pair
of clients. However, Internet routing is not optimal in terms
of network latency due to business-oriented strategies [19].
Normally, it is also impossible to place servers at the same
locations as clients. For example, DIA operators who cannot
afford to set up their own server infrastructures may have to
run servers at the data centers operated by cloud providers. In
addition, there might also be a limit on the number of server
locations that a DIA operator can choose due to its budget
constraints. Following similar methodology to that in [12],
[13], [16], we show that under any one of the above conditions,
the server provisioning problem for continuous DIAs is NP-
hard.

A. Hardness for Networks without Triangle Inequality
In the case that the network latency does not satisfy the

triangle inequality, the NP-hardness of the server provisioning
problem for continuous DIAs can be proved by a polynomial
reduction from the minimum set cover problem which is NP-
hard [20]. The decision version of the set cover problem is
defined as follows: Given a finite set P = {p1, p2, · · · , pn }
and a collection Q = {Q1, Q2, · · · , Qm } of its subsets, and
a positive integer k  m, decide whether Q contains a
subcollection Q0 of at most k subsets such that

#
Q2Q! Q = P .

1This optimization objective is different from that for discrete DIAs.
Without synchronization delays, the interactivity performance of discrete DIAs
is measured by the average interaction path length between all client pairs
[12], [13].
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Fig. 2. Example instances of the set cover problem and the server
provisioning problem for continuous DIAs

Given an instance R of the set cover problem, we first
construct a network comprising a set VC of n nodes and a
set VS of k disjoint groups of nodes as shown in Figure 2.
The n nodes of VC map onto to the elements in the set P
of instance R. Each node group of VS contains m cliques
of sizes |Q1|, |Q2|, . . . , and |Qm |, each of which corresponds
to a subset in the collection Q by mapping each node in the
clique onto an element in the corresponding subset.

In the constructed network, any two nodes in different
groups of VS have a latency t2 to each other. Any two nodes
in the same group of VS have a latency t2 if they belong to the
same clique or map onto the same element in P . Otherwise,
they have a latency t4. For any two nodes u 2 VS and v 2 VC ,
they have a latency t1 if both u and v map onto the same
element in P . Otherwise, they have a latency t3. Any two
nodes in VC have a latency t4 to each other. For ease of
reading, Figure 2 illustrates only the network latencies relevant
to a representative node in VS as well as the latencies among
the nodes in VC .

We assume that
• t4 > 2t1 + t2,
• t3 > t1 + t2.

The second inequality implies that the constructed network
does not satisfy the triangle inequality due to a triangle with
sides t1, t2 and t3 as shown in Figure 2.

We then define an instance T of the server provision-
ing problem in its decision version as follows: Given the
constructed network, assuming that a client is located at
each node of VC and all the nodes in the network (i.e.,
VC [VS ) are candidate server locations, can we select a set of
server locations to bound the maximum interaction path length
among all clients by 2t1 + t2?

We first prove that if there is an acceptable set cover
for instance R, then there must exist a valid solution for
the server provisioning instance T . Suppose that Q0

=

{Qx 1 , Qx 2 , · · · , Qx l } (where 1  l  k) is a set cover. We can
construct a server placement S by selecting all the nodes in
the x1-th clique in the first group of VS , the x2-th clique in the
second group of VS , . . . , and the xl -th clique in the l-th group
of VS as server locations (see Figure 2 for an example). Note
that each element of P is covered by at least one subset in Q0.
Therefore, for each client in VC , at least one clique selected
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by S should contain a server having latency t1 to the client.
Our assumption t3 > t1 + t2 implies that t3 > t1. So, each
client has latency t1 to its nearest server in S. Furthermore,
placement S selects at most one clique from each group of
VS . Thus, all the inter-server latencies in placement S are t2.
As a result, the maximum interaction path length between any
two clients is 2t1+t2. Therefore, server placement S is a valid
solution for instance T .

Next, we prove that if there is a valid solution for the server
provisioning instance T , there must exist a set cover of size at
most k for instance R. We start by showing that in any valid
solution of instance T , each client and its nearest server must
map onto the same element in P . If a client and its nearest
server do not map onto the same element, the latency between
them would be t3 if s 2 VS or would be t4 if s 2 VC . Then,
the interaction path from the client to itself is 2t3 or 2t4 long,
which exceeds the bound 2t1 + t2 since t3 > t1 + t2 and
t4 > 2t1 + t2. Therefore, each client and its nearest server
must map onto the same element. This implies that: (a) if the
nearest server s of a client c is located in VC , the latency
between c and s can only be 0, i.e., s and c must be located
at the same node; (b) if the nearest server s of a client c is
located in VS , the latency between them must be t1.

If two clients both have their nearest servers in VC , based
on (a), their interaction path length would be 0+t4+0 = t4 >
2t1 + t2. If two clients have their nearest servers in VC and
VS respectively, the inter-server latency must be t3 since the
two servers map onto different elements. As a result, based
on (a) and (b), the interaction path length between the two
clients is 0 + t3 + t1 > (t1 + t2) + t1 = 2t1 + t2. Therefore,
all the clients must have their nearest servers in VS in any
valid solution of instance T . Let S ✓ VS be a valid solution.
Without loss of generality, assume that each server in S is
connected by at least one client (any server not connected by
any clients can simply be removed from S). According to (b),
to cap the maximum interaction path length by 2t1 + t2, the
latency between any two distinct servers in S must be bounded
by (2t1 + t2) � t1 � t1 = t2. Our assumption t4 > 2t1 + t2
implies that t4 > t2. Thus, servers located in the same group
of VS must come from the same clique therein. Since there are
k groups in VS , the number of cliques with servers placed is
at most k. Therefore, the subsets in Q that correspond to the
cliques with servers placed form a set cover of size at most k
for instance R.

The above analysis establishes that a set cover of size at
most k can be found for instance R if and only if there exists
a valid solution for instance T . Therefore, server provisioning
on networks without the triangle inequality is NP-hard.

Theorem 1. If P6=NP, no polynomial-time algorithm can
achieve any constant approximation ratio for server provision-
ing on networks without the triangle inequality.

Proof: This result can be proved based on the server
provisioning instance constructed above. If there exists a set
cover of size at most k, the maximum interaction path length
under the optimal server placement is 2t1 + t2. According to
the above analysis, in a non-optimal server placement, either
(1) some client and its nearest server do not map onto the

same element, or (2) some client has its nearest server located
in VC , or (3) two servers in VS have latency t4 to each other.
In case (1), the interaction path from that client to itself is 2t3
or 2t4 long. In case (2), there exists an interaction path with
length t4 or t3+t1. In case (3), there exists an interaction path
with length at least t4. Since t3 > t1 + t2 > t1, the maximum
interaction path length under a non-optimal server placement
is at least min{2t3, 2t4, t4, t3 + t1} = min{t4, t3 + t1}. If a
polynomial-time server provisioning algorithm achieves a con-
stant approximation ratio �, by setting t3 = t4 = (2t1 + t2) ·�
in the constructed network, it is guaranteed to find a set cover
of size at most k if one exists, which contradicts P 6=NP.
Thus, server provisioning for networks without the triangle
inequality is not approximable within any constant factor.

B. Hardness for Restricted Choices of Server Locations
In the case that the choices of server locations are restricted

to a subset of nodes in the network, the server provisioning
problem is also NP-hard. Since server provisioning for net-
works without the triangle inequality has been shown to be
NP-hard in the previous section, we shall focus our discussion
here on server provisioning with restricted choices of server
locations on networks with the triangle inequality only.

The NP-hardness can be proved by a similar reduction from
the minimum set cover problem to that in the previous section.
Given an instance R of the set cover problem, we construct the
same network as shown in Figure 2. Suppose that the latency
values t1, t2, t3 and t4 satisfy the triangle inequality for the
constructed network. In addition, we also assume that

• 2t3 > 2t1 + t2,
• t4 > t2.
We restrict the choices of server locations to the nodes in

VS only and define an instance X of the server provisioning
problem as follows: assuming that a client is located at each
node of VC , can we select a set of server locations from VS

to bound the maximum interaction path length by 2t1 + t2?
It can be proved in the same way as in the previous section

that a valid solution for the server provisioning instance X can
always be derived from a set cover of size at most k. Next, we
show that a set cover of size at most k can always be derived
from a valid solution for instance X .

Note that the latency from any node in VC to any node in
VS is either t1 or t3. If any client has latency exceeding t1 to
its nearest server, it must have a latency of t3 to its nearest
server. In consequence, the interaction path length from such
client to itself is 2t3 > 2t1+t2. Thus, in any valid solution for
instance X , the latency from each client to its nearest server
can only be t1. This implies that each client and its nearest
server should map onto the same element in set P of the
set cover instance R. Consider a valid server placement S in
which each server is connected by at least one client. To cap
the maximum interaction path length by 2t1 + t2, the latency
between any two distinct servers in S must be bounded by
(2t1 + t2) � t1 � t1 = t2. Since t4 > t2, the servers located
in the same group of VS must come from the same clique
therein. Since there are k groups in VS , the number of cliques
with servers placed is at most k. Therefore, the subsets in Q
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Fig. 3. Some triangles in the constructed network for server provisioning
instance X .

that correspond to the cliques with servers placed form a set
cover of size at most k for instance R.

The above reduction implies that server provisioning with
restricted choices of server locations on networks with the
triangle inequality is NP-hard. Next, we analyze the non-
approximability for server provisioning in this case.

Theorem 2. If P6=NP, no polynomial-time algorithm can
achieve an approximation ratio within 3/2 for server provi-
sioning with restricted choices of server locations on networks
with the triangle inequality.

Proof: Consider the server provisioning instance con-
structed above. According to the above analysis, if there exists
a set cover of size at most k, the maximum interaction path
length under the optimal server placement is 2t1 + t2. On
the other hand, the maximum interaction path length is at
least min{2t3, 2t1+t4} under a non-optimal server placement.
This is because in a non-optimal server placement, either some
client and its nearest server do not map onto the same element
in set P , or the latency between some pair of servers is t4. In
the former case, that client has latency t3 to its nearest server,
so the interaction path from that client to itself is 2t3 long. In
the latter case, there exists an interaction path with length at
least t1 + t4 + t1 = 2t1 + t4. Thus, no server placement can
produce a maximum interaction path length between 2t1 + t2
and min{2t3, 2t1+t4}. Therefore, if a polynomial-time server
provisioning algorithm is able to achieve an approximation
ratio within min{2t 3 ,2t 1 +t 4}

2t 1 +t 2
, it is guaranteed to find a set cover

of size at most k if there exists one. This contradicts to the
assumption of P6=NP since the set cover problem is NP-hard.
Thus, server provisioning with restricted choices of server
locations is not approximable within a ratio of min{2t 3 ,2t 1 +t 4}

2t 1 +t 2
.

To yield the strongest non-approximability result, the la-
tency values t1, t2, t3 and t4 can be tuned to make the ratio
min{2t 3 ,2t 1 +t 4}

2t 1 +t 2
as large as possible. Note that there exist a

triangle with sides t1, t2 and t3 and another triangle with sides
t2, t2 and t4 in the constructed network (see Figure 3). By the
triangle inequality, we have 2t3  2t1 + 2t2 and t4  2t2.
Thus,

min{2t3, 2t1 + t4}
2t1 + t2

 2t1 + 2t2
2t1 + t2

= 1 +

t2
2t1 + t2

.

Furthermore, the presence of a triangle with sides t1, t1 and t2
in the constructed network (see Figure 3) implies that t2  2t1.
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Fig. 4. Example instances of the X3C problem and the server provisioning
problem for continuous DIAs

Therefore, t2  1
2 (2t1 + t2). It follows that

min{2t3, 2t1 + t4}
2t1 + t2

 1 +

t2
2t1 + t2

 1 +

1

2

=

3

2

.

So, the largest possible ratio of min{2t 3 ,2t 1 +t 4}
2t 1 +t 2

is 3
2 . This

can be achieved by setting t1 = 1, t2 = 2, t3 = 3

and t4 = 4. It is easy to verify that such latency setting
satisfies the triangle inequality for the constructed network.
Therefore, server provisioning with restricted choices of server
locations on networks with the triangle inequality cannot be
approximated with a ratio of 3

2 .

C. Hardness for Limited Number of Server Locations to Select
When there is a limit on the number of server locations

to select, the server provisioning problem is again NP-hard
even if the network latency satisfies the triangle inequality,
and there is no restriction on the choices of server locations.
This can be proved by a polynomial reduction from the Exact
Cover By 3-Sets (X3C) problem [20]. Given a set X of 3q
elements, and a collection O of X’s 3-element subsets, the
X3C problem is to decide whether O contains an exact cover
for X , i.e., a subcollection O0 ✓ O such that every element
of X occurs in exactly one subset in O0.

Given an instance U of the X3C problem, we first construct
a network composed of node sets VC and VS as shown in
Figure 4. VC is a set of 3q nodes, each corresponding to an
element in set X . VS is a set of |O| nodes, each corresponding
to a subset in O. The nodes in VS are connected to each other
by links of latency 1, and each node in VS has links of latency
1 to the three nodes in VC that represent the three elements of
its corresponding subset. Unmarked node pairs have network
latencies given by the lengths of shortest paths. Apparently,
the network latencies satisfy the triangle inequality.

An instance F of the server provisioning problem is then
defined as follows: Given the constructed network, assuming
that a client is located at each node in VC , and all the nodes in
the network are candidate server locations, can we select up to
q locations to place servers such that the maximum interaction
path length among all clients is bounded by 3?

First, we show that if there is an exact cover O0 ✓ O for
instance U , a valid solution must exist for instance F . Since
each subset in O has exactly 3 elements, it is obvious that
|O0| = q. Let S be the q nodes in VS that represent the subsets
in O0. We select these nodes as server locations (see Figure 4
for an example). Since O0 is an exact cover, each client has



6

exactly one link of latency 1 to a server in S and connects to
that server. Since all the nodes in VS are interconnected with
each other by links of latency 1, the maximum interaction path
length among all clients is bounded by 1 + 1 + 1 = 3. Thus,
placement S is a valid solution for instance F .

On the other hand, if we have a valid solution for instance
F , an exact cover for instance U can be found accordingly.
We first show that selecting any nodes in VC to place servers
would make the maximum interaction path length exceed the
bound of 3. Suppose that b (b > 0) nodes in VC are selected
as server locations. Then, the clients located at these nodes
would connect to their co-located servers. The other clients
have latency at least 2 to these servers. Among the nodes in
VS , at most (q�b) of them could be selected to place servers.
Since each node in VS has latency 1 to exactly three nodes
in VC , at most 3(q � b) clients can have latency 1 to the
servers placed in VS . The remaining 3q � 3(q � b) � b = 2b
clients would have to connect to servers with latency at least
2 from them. So, the interaction path lengths among these 2b
clients are at least 2 + 2 > 3. Therefore, in a valid solution
for instance F , all the servers must be placed in VS . In order
to cap the maximum interaction path length at 3, each client
must have latency 1 to its nearest server. Since there are 3q
clients in total, q server locations must be selected in VS and
their corresponding 3-element subsets form an exact cover.

The above reduction shows that server provisioning with a
limit on the number of server locations to select is NP-hard.

Theorem 3. If P6=NP, no polynomial-time algorithm can
achieve an approximation ratio within 4/3 for server pro-
visioning with a limit on the number of server locations to
select.

Proof: Consider the server provisioning instance F con-
structed above. If there exists an exact cover, an optimal server
placement has a maximum interaction path length 3. On the
other hand, there always exist clients having latency at least
2 to their nearest servers in non-optimal placements, giving
rise to interaction paths of length at least 4. This implies
that no server placement can produce a maximum interaction
path length between 3 and 4. Therefore, if a polynomial-time
algorithm can achieve an approximation ratio within 4/3, it
can always find a server placement with maximum interaction
path length 3 if there exists one, following which an exact
cover can be derived. Since the X3C problem is NP-hard, this
leads to contradiction to the assumption P6=NP.

In following sections, we present and analyze several server
placements for the server provisioning problem. The network
latencies between clients and candidate server locations are
needed for the computation of these algorithms. They can
be acquired with existing tools like ping and King [21]. We
start by analyzing the classical k-center server placement. We
show that, in networks with the triangle inequality, the k-
center server placement has an approximation ratio of 3 for
our server provisioning problem. We then propose an efficient
M-GREEDY algorithm that achieves an approximation ratio
of 2. Finally, an algorithm called M-BETTER is proposed to
further improve the approximation ratio to 5

3 .

IV. k-CENTER SERVER PLACEMENT

Our server provisioning problem bears some similarity to
the classical k-center problem in that both problems aim to find
server placement that minimizes a maximum latency metric
in a network of clients and servers. However, different from
our problem, the k-center problem targets at placing a given
number of k servers in the network to minimize the maximum
latency between the clients and their nearest servers. It does
not consider the latencies among the servers. When a limit k
is set on the number of server locations to select in our server
provisioning problem, we have the following approximability
result of the k-center server placement.

Theorem 4. For networks with the triangle inequality, the k-
center server placement has an approximation ratio of 3 for
the server provisioning problem with a limit k on the number
of server locations to select.

Proof: Let C be the set of clients. Suppose that the sets of
optimal server locations for our server provisioning problem
and the k-center problem are SO and SR respectively. For
each client c 2 C, denote by o(c) and r(c) the nearest servers
to c under placements SO and SR respectively. Then, for any
two clients ci and cj 2 C, their interaction path length under
placement SR is given by

lR (ci , cj ) = d(ci , r(ci )) + d(r(ci ), r(cj )) + d(r(cj ), cj ).

By the triangle inequality, we have

lR (ci , cj )  d(ci , r(ci )) +

$
d(r(ci ), ci ) + d(ci , cj )

+ d(cj , r(cj ))

%
+ d(r(cj ), cj )

= 2d(ci , r(ci )) + 2d(cj , r(cj )) + d(ci , cj ).

Let m = maxc2C d(c, r(c)) be the maximum latency from the
clients to their nearest servers under the k-center placement
SR . It follows that

lR (ci , cj )  4m+ d(ci , cj ).

By the definition of the k-center placement, m is the minimum
achievable value of the maximum latency from the clients
to their nearest servers among all possible placements of k
servers and hence among all possible placements of up to
k servers. Thus, there must exist a client cx 2 C satisfying
d(cx , o(cx )) � m under the optimal placement SO . Therefore,
by the triangle inequality, we have

lR (ci , cj )  2 ·
&
2 · d(cx , o(cx ))

'
+ d(ci , cj )

 2 ·
$
d(cx , o(cx )) + d(o(cx ), o(cx )) + d(o(cx ), cx )

%

+

$
d(ci , o(ci )) + d(o(ci ), o(cj )) + d(o(cj ), cj )

%
.

Denote by LO the maximum interaction path length under the
optimal server placement SO . Then,

d(cx , o(cx )) + d(o(cx ), o(cx )) + d(o(cx ), cx )  LO ,

and

d(ci , o(ci )) + d(o(ci ), o(cj )) + d(o(cj ), cj )  LO .
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It follows that

lR (ci , cj )  3 · LO . (1)

The above inequality holds for any two clients ci and cj . As
a result, the maximum interaction path length LR under the
k-center server placement satisfies

LR = max

ci ,cj 2C
lR (ci , cj )  3 · LO .

The approximation ratio 3 of the k-center server placement
is tight. A tight example is given in Figure 5, which consists
of four candidate server locations {s1, s2, o1, o2} and two
clients {c1, c2}. The latencies between unmarked node pairs
are given by the lengths of their shortest paths. Suppose that
" > 0 and up to 2 server locations can be selected. Then,
the set of optimal server locations for our server provisioning
problem is {o1, o2}. Under such placement, clients c1 and
c2 are connected to servers o1 and o2 respectively, so the
maximum interaction path length is 2+3". On the other hand,
the 2-center placement is {s1, s2}, which gives a maximum
latency of 1 between the clients and their nearest servers. In
this case, the maximum interaction path length is 6+3". Thus,
the ratio between the two results is 6+3!

2+3! , which can be made
arbitrarily close to lim! !0

6+3!
2+3! = 3 when " approaches 0.

!! !" !# "# "" "!�H��! �H��!�H! !

Fig. 5. The approximation ratio 3 of the k-center placement is tight.

V. M-GREEDY SERVER PLACEMENT

The k-center placement is difficult to find as the k-center
problem itself is also NP-hard [20]. In this section, we develop
an efficient heuristic called M-GREEDY that achieves an even
better approximation ratio than the k-center placement.

Algorithm 1 shows the pseudo code of the M-GREEDY
algorithm. Denote by S the set of server locations selected.
Starting from an empty set S, the algorithm iteratively adds
a candidate server location s⇤ 2 Z \ S to S in a greedy
manner that results in the largest reduction in the maximum
interaction path length M (lines 12, 13 and 18). If adding any
server location from Z\S cannot further shorten the maximum
interaction path length (lines 16-17), or when |S| reaches a
given limit k (if any) on the number of server locations to
select (line 7), the algorithm terminates and outputs the final
server placement S (line 27).

A brute force calculation of the maximum interaction path
length has a time complexity of O(|C|2), where |C| is
the number of clients. Thus, a naive implementation of the
above greedy algorithm has a computational complexity of
O(|Z| · |C|2) for each iteration and O(k · |Z| · |C|2) in total. To
efficiently compute the maximum interaction path length when
testing and selecting new server locations, we decompose the
maximum length of the interaction paths involving each server
s into two parts: a local latency L(s) and a remote latency
R(s). The local latency is defined as that from s to the furthest
client connecting to it, i.e.,

L(s) = max

n (c,S )=s
d(c, s),

1: S ! " ; //server locations selected
2: M p ! # ; //maximum interaction path length for placement S
3: for all z $ Z do
4: C(z) ! C; Rp(z) ! 0;L p (z) ! 0;Ep(z) ! " ;
5: for all c $ C do
6: n(c) ! ! ;
7: for i = 1 to k do
8: M ! ! # , s! ! ! ;
9: for all z $ Z \ S do

10: updateLR(z); //invoke Algorithm 2
11: M ! maxs" S #{ z } { L (s) + R(s)} ;
12: if M < M ! then
13: M ! ! M , s! ! z;
14: for all s $ S % {z} do
15: R! (s) ! R(s); L ! (s) ! L (s); E ! (s) ! E (s);
16: if M ! & M p then
17: break;
18: S ! S % {s! } ; M p ! M ! ;
19: for all c $ C(s! ) do
20: C(n(c)) ! C(n(c)) \ { c} ; n(c) ! s! ;
21: for all z $ Z \ S do
22: for all c $ C(z) do
23: if d(c, z) > d (c, s! ) then
24: C(z) ! C(z) \ { c} ;
25: for all s $ S do
26: Rp(s) ! R! (s); L p (s) ! L ! (s); Ep(s) ! E ! (s);
27: return S;

Algorithm 1: M-GREEDY server provisioning algorithm

where n(c, S) denotes client c’s nearest server in S. The
remote latency R(s), on the other hand, is defined as the
maximum latency from s to all the clients through their
connected servers, i.e.,

R(s) = max

c2C

!
d(c, n(c, S)) + d(n(c, S), s)

"
.

In essence, R(s) represents the longest possible latency for
server s to receive an operation issued by a client, and L(s)
represents the longest possible latency for s to deliver a state
update to its connected clients. The maximum interaction path
length among all clients can be rewritten as

max

c,c! 2C

!
d(c, n(c, S)) + d(n(c, S), n(c0, S)) + d(n(c0, S), c0)

"

= max

c2C

(
d(c, n(c, S)) + max

c! 2C

!
d(n(c, S), n(c0, S))

+d(n(c0, S), c0)
" )

= max

s2S

(
max

n (c,S )=s
{d(c, s)}

+max

c! 2C

!
d(s, n(c0, S)) + d(n(c0, S), c0)

" )

= max

s2S

!
L(s) +R(s)

"
.

The M-GREEDY algorithm makes use of the above decom-
position in computing the maximum interaction path length
(line 11). The local and remote latencies of all servers are
incrementally updated across iterations. In addition, the al-
gorithm also maintains, for each client c, its nearest server
n(c) under the current server placement S; for each selected
server location s 2 S, the set of clients C(s) whose nearest
servers are s under placement S; and for each unselected
candidate server location z 2 Z \ S, the set of clients C(z)
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updateLR(z)
1: ! S ! { n(c) | c $ C(z)} ;
2: for all s $ S \ ! S do
3: L (s) ! L p (s);
4: for all s $ ! S do
5: L (s) ! maxc" C( s) \ C( z ) d(c, s);
6: if L (s) = L p(s) then
7: ! S ! ! S \ { s} ;
8: L (z) ! maxc" C( z ) d(c, z);
9: for all s $ S do

10: if d(s, z) + L (z) > R p(s) then
11: R(s) ! d(s, z) + L (z); E (s) ! { z} ;
12: else if Ep(s) \ ! S '= " then
13: R(s) ! Rp(s); E (s) ! Ep(s) \ ! S;
14: if d(s, z) + L (z) = Rp(s) then
15: E (s) ! E (s) % {z} ;
16: else
17: R(s) ! maxx " S #{ z } { d(s, x) + L (x)} ;
18: E (s) ! { x $ S % {z} | d(s, x) + L (x) = R(s)} ;
19: R(z) ! maxx " S #{ z } { d(z, x) + L (x)} ;
20: E (z) ! { x $ S % {z} | d(z, x) + L (x) = R(z)} ;

Algorithm 2: Update local and remote latencies

whose nearest servers would become z if z is added to the
current placement S. Initially, n(c) = ! for all clients (line 6)
and C(z) = C (the whole client set) for all candidate server
locations (line 4). Since the clients always connect to their
nearest servers, if a candidate server location s⇤ is added to
the current placement S, for each client c 2 C(s⇤), c shall no
longer connect to its current server n(c) and is thus removed
from C(n(c)) (lines 19-20). Meanwhile, for each remaining
candidate location z 2 Z \ S, all the clients c satisfying
d(c, z) > d(c, s⇤) shall be removed from C(z) as it would
no longer be possible for them to connect to z even if z is
selected later (lines 21-24).

Algorithm 2 shows the subroutine for evaluating the change
in the local and remote latencies caused by adding a new server
location z. To update the local latencies, we start by finding
the set of existing servers �S which have at least one client
that will re-connect to z if z is selected as a server location
(line 1). Only the local latencies of the servers in �S need
to be recalculated (lines 4-5). Then, we remove from �S the
servers whose local latencies are not changed (lines 6-7). So,
�S eventually constitutes the servers whose local latencies
change due to the addition of z. It is obvious that the local
latencies of the servers in �S can only decrease after z is
added. Line 8 calculates z’s own local latency. The update of
remote latencies leverages the values of local latencies. Note
that the remote latency R(s) of each server s can be rewritten
as

R(s) = max

x2S

!
d(s, x) + L(x)

"
.

For each server s, we also maintain the list of servers E(s)
which give rise to the maximum remote latency of s, i.e.,

E(s) =
!
x 2 S | d(s, x) + L(x) = R(s)

"
.

Let Lp(s), Rp(s) and Ep(s) be the information of each server
s before z is added, and let L(s) be the updated local latency
of s after z is added. Since the local latencies of existing
servers cannot increase due to the addition of a new server,

after z is added, the remote latency of each existing server
s 2 S is bounded by max{d(s, z)+L(z), Rp(s)}. If d(s, z)+
L(z) > Rp(s), the R(s) and E(s) after adding z are simply
given by d(s, z) + L(z) and {z} respectively (lines 10-11).
Otherwise, if Ep(s)\�S 6= ;, the remote latency of s remains
unchanged after the addition of z (lines 12-13). In this case,
z needs to be added to E(s) if d(s, z) + L(z) = Rp(s) (i.e.,
z also gives rise to the remote latency of s) (lines 14-15).
If Ep(s) \ �S = ;, the remote latency of s is recalculated
as R(s) = maxx2S[{z}{d(s, x) + L(x)} (line 17). Finally,
lines 19-20 calculate z’s own remote latency. The subroutine
of Algorithm 2 has a time complexity of O(|C|+ k2

), where
O(|C|) is the total computational complexity of lines 4-5 for
all selected server locations s, O(k2

) is that of line 17 for all
selected server locations s, and k is the number of iterations
in Algorithm 1. Therefore, the total time complexity of the
M-GREEDY algorithm is O(k · |Z| · (|C|+ k2

)).

Theorem 5. For networks with the triangle inequality, the M-
GREEDY server placement has an approximation ratio of 2 for
the server provisioning problem.

Proof: When only one server is placed in the network,
there is no inter-server latency involved in the interactions
between clients. In this case, the longest interaction path is
the one from the client furthest away from the server to itself.

Suppose that s⇤ is the first server location selected by the
M-GREEDY algorithm. Let ci be the client furthest away from
s⇤. Then, after selecting s⇤, the maximum interaction path
length is 2 · d(ci , s

⇤
). Denote by o(ci ) the nearest server of ci

in an optimal server placement SO . There must exist a client
cj (which can be the same as ci ) satisfying

d(cj , o(ci )) � d(ci , s
⇤
) = max

c2C
d(c, s⇤).

This is because otherwise, o(ci ) would have been the first
server location selected by the M-GREEDY algorithm. Denote
by o(cj ) the nearest server of cj in the optimal server place-
ment SO . Let LO be the maximum interaction path length in
the optimal server placement. Then, by the triangle inequality,

LO � d(cj , o(cj )) + d(o(cj ), o(ci )) + d(o(ci ), ci )

� d(cj , o(ci )) + d(o(ci ), ci )

� d(cj , o(ci )).

Thus,
2d(ci , s

⇤
)  2d(cj , o(ci ))  2 · LO .

Since the maximum interaction path length finally produced
by the M-GREEDY algorithm cannot be longer than 2d(ci , s

⇤
)

(that after selecting the first location s⇤), it must also be within
two times of that in SO .

The approximation ratio 2 of the M-GREEDY algorithm
holds regardless of whether the choices of server locations
are restricted and whether there is a limit on the number
of server locations to select. The approximation ratio is also
tight. Figure 6 shows a tight example which consists of 5
nodes {c1, c2, c3, c4, s}. Suppose that a client is located at
each of the nodes c1, c2, c3 and c4, and all the nodes in the
network are candidate server locations. Then, the first server
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Fig. 6. The approximation ratio 2 of the M-GREEDY algorithm is tight.

location selected by the M-GREEDY algorithm is s, because
the maximum interaction path length is 2 if all the clients
are connected to s. If the first server is placed at any other
location, the maximum interaction path length is 2 + 2" > 2.
After s is selected, further placing a new server at any node
ci (i = 1, 2, 3, 4) would result in some client located at
cj 6= ci to connect to the server at ci with latency 1 � ".
As a result, the maximum interaction path length becomes
(1 � ") + 1 + 1 = 3 � " > 2. Therefore, the M-GREEDY
algorithm stops at the second iteration and outputs the server
placement {s}. On the other hand, the optimal placement of
this example is to place servers at nodes {c1, c2, c3, c4}. In this
way, each client is connected to the server at the same location.
Thus, the maximum interaction path length is 1 + ". When
" approaches 0, the M-GREEDY algorithm and the optimal
server placement differ by a ratio of lim! !0

2
1+! = 2 in the

maximum interaction path length.

VI. M-BETTER SERVER PLACEMENT

In this section, we propose a M-BETTER algorithm that
further improves the approximation ratio over M-GREEDY. We
first define a simple server placement SN called NEAREST that
selects the collection of all clients’ nearest candidate server
locations. Suppose that C is the set of clients and Z is the set
of candidate server locations. For each client c 2 C, let n(c)
be the nearest candidate server location to c, i.e., d(c, n(c)) =
mins2Z {d(c, s)}. Then, SN =

#
c2C n(c). The computational

complexity of NEAREST is O(|Z| · |C|).
The M-BETTER algorithm applies a heuristic to combine

the NEAREST server placement SN and the M-GREEDY server
placement SG . Suppose that LN and LG are the maximum
interaction path lengths under server placements SN and SG

respectively. The M-BETTER algorithm selects the candidate
server locations in SN if LN < LG , and selects the candidate
server locations in SG otherwise. In this way, the M-BETTER
server placement produces a maximum interaction path length
LB = min{LN , LG}. Since the M-GREEDY server placement
has higher computational complexity than the NEAREST server
placement, the time complexity of the M-BETTER algorithm
is the same as that of the M-GREEDY algorithm.

Theorem 6. For networks with the triangle inequality, the M-
BETTER server placement has an approximation ratio of 5

3 for
the server provisioning problem.

Proof: Let SN be the set of server locations selected by
the NEAREST server placement. For each client c 2 C, denote
by n(c) 2 SN the nearest server of c under placement SN .
Then, n(c) is the nearest candidate server location to c. Let
r = maxc2C d(c, n(c)) be the maximum latency from all the
clients to their nearest servers under server placement SN .

Denote by LN the maximum interaction path length under
placement SN . Suppose that LN is produced by the interaction
path between two clients cx and cy 2 C. According to the
triangle inequality, we have

LN = d(cx , n(cx )) + d(n(cx ), n(cy )) + d(n(cy ), cy )

 d(cx , n(cx )) +

$
d(n(cx ), cx ) + d(cx , cy )

+d(cy , n(cy ))

%
+ d(n(cy ), cy )

= 2d(cx , n(cx )) + d(cx , cy ) + 2d(cy , n(cy ))

 2r + d(cx , cy ) + 2r. (2)

Suppose that SO ✓ Z is a set of optimal server locations
for the server provisioning problem. For each client c 2 C,
denote by o(c) 2 SO the nearest server of c under placement
SO . Then, it follows from (2) that

LN  4r +
$
d(cx , o(cx )) + d(o(cx ), o(cy )) + d(o(cy ), cy )

%

 4r + LO , (3)

where LO is the maximum interaction path length under the
optimal server placement SO .

Next, consider the M-GREEDY server placement. Suppose
that the first server location selected by the M-GREEDY
algorithm is s⇤ 2 Z. Let t = maxc2C d(c, s⇤) be the latency
from s⇤ to the furthest client. Then, the maximum interaction
path length given by connecting all the clients to s⇤ is 2t. Note
that the M-GREEDY algorithm can only improve the maximum
interaction path length by selecting additional server locations.
Thus, the maximum interaction path length LG eventually
produced by M-GREEDY cannot be longer than 2t, i.e.,

LG  2t. (4)

Since the M-BETTER algorithm produces a maximum inter-
action path length LB = min{LN , LG}, it follows that

LB  2t. (5)

By the design of the M-GREEDY algorithm, t is the lowest
achievable value of the maximum latency from all the clients
to any single server. Therefore, for the nearest server o(ci )

of each client ci under the optimal placement SO , there must
exist a client cj 2 C (which can be the same as ci ) fulfilling
d(cj , o(ci )) � t.

If there exists a client ci such that d(ci , o(ci )) � t, we have

LO � 2d(ci , o(ci )) � 2t.

It follows from (5) that LO � LB . Thus, it must hold that
LB = LO since LO is the maximum interaction path length
of an optimal server placement. This implies that M-BETTER
must produce an optimal server placement in this case.

Otherwise, if all clients ci fulfill d(ci , o(ci )) < t, then for
each client ci , there must exist another client cj (cj 6= ci ) sat-
isfying d(cj , o(ci )) � t. Consider the client ck that is furthest
away from its nearest server under the optimal placement SO ,
i.e., d(ck , o(ck )) = maxc2C d(c, o(c)). Let ch (ch 6= ck ) be a
client satisfying d(ch , o(ck )) � t. Then, by the definition of
LO and the triangle inequality, we have

LO � d(ch , o(ch )) + d(o(ch ), o(ck )) + d(o(ck ), ck )



10

!

"! "

"

#$�0%

&

! '#" #'

$ " $ '

"

&

�0%"( )
#

�0%"( )
#

�0%*$ )
'

Fig. 7. The approximation ratio 5
3 of the M-BETTER algorithm is tight.

� d(ch , o(ck )) + d(o(ck ), ck )

� t+ d(o(ck ), ck ).

Note that for each client c, n(c) is the nearest candidate server
location to c. Thus, d(c, o(c)) � d(c, n(c)). It follows that

d(ck , o(ck )) =max

c2C
d(c, o(c)) � max

c2C
d(c, n(c)) = r.

Therefore,
LO � t+ r.

According to (3), we have

r � 1

4

·
&
LN � LO

'
.

It follows that

LO � t+
1

4

LN � 1

4

LO .

Thus,

LO � 4

5

·
$
t+

1

4

LN

%
.

Based on (4), we have

LO � 4

5

·
$
1

2

LG +

1

4

LN

%

=

2

5

· LG +

1

5

· LN

� 3

5

·min

!
LN , LG

"

=

3

5

· LB .

Therefore,
LB  5

3

· LO .

The approximation ratio 5
3 of the M-BETTER algorithm

is tight. Figure 7 illustrates a tight example. The latencies
between unmarked node pairs are given by the lengths of their
shortest paths. Suppose that two clients are located at nodes
c1 and c2 respectively, and the remaining nodes in the network
are all candidate server locations. Since each client ci (i = 1,
2) has a latency of 1 + (4 + ") = 5 + " > 5 to node oj

(j 6= i) and a latency of (1 � !
4 ) + (8 +

!
2 ) = 9 +

!
4 > 5

to node mj (j 6= i), the first server selected by the M-
GREEDY algorithm is s⇤. Connecting both clients to s⇤ gives
a maximum interaction path length of 5 + 5 = 10. If one
node oi or mi (i = 1, 2) is further selected, client ci would
re-connect to the newly selected node, and this results in an
interaction path length between c1 and c2 greater than 10.
Therefore, the M-GREEDY algorithm terminates at the second

iteration and produces the server placement {s⇤}. On the other
hand, the nearest candidate server locations of clients c1 and
c2 are m1 and m2 respectively. So, the maximum interaction
path length under the NEAREST server placement {m1,m2}
is (1 � 1

4") + (8 +

1
2") + (1 � 1

4") = 10. Therefore, the M-
BETTER algorithm also produces a maximum interaction path
length of 10. In this example, the optimal server placement
is to select nodes o1 and o2 as server locations. Under such
server placement, clients c1 and c2 are connected to servers o1

and o2 respectively. As a result, the maximum interaction path
length is 1 + (4 + ") + 1 = 6 + ". When " approaches 0, the
ratio between the maximum interaction path lengths produced
by the M-BETTER heuristic and the optimal server placement
is lim! !0

10
6+! =

5
3 .

It is worth noting that the approximation ratio 5
3 of the M-

BETTER algorithm holds regardless of whether the choices of
server locations are restricted. In the case of restricted choices,
M-BETTER is near optimal in the sense that this ratio is quite
close to the lower bound 3

2 given by an aforementioned non-
approximability result (Theorem 2). On the other hand, since
the NEAREST algorithm does not consider any restriction on
the number of server locations to select, neither is M-BETTER
able to respect such restrictions. Thus, in the case where there
is a limit on the number of server locations to select, M-
GREEDY may have to be adopted for server provisioning.

VII. EXPERIMENTAL EVALUATION

To conduct experimental evaluation, we developed a simula-
tor written in C++ that takes network latency datasets as input
to emulate underlying networks of DIAs. The experiments
are carried out on an Intel Xeon 3.2GHz workstation with
16GB RAM. Our evaluations with different datasets including
Meridian [22] and PlanetLab [23] have shown similar per-
formance trends. Due to space limitations, we shall focus on
presenting the experimental results for the Meridian dataset.
The Meridian dataset is a real Internet latency dataset collected
using the King technology [21]. To our knowledge, it is
also the largest publicly available Internet latency dataset.
The dataset provides the measurements of pairwise network
latencies among 2500 nodes. Since some measurements are not
available, we discard those nodes involved in the unavailable
measurements and keep the remaining 1796 nodes that form
a complete matrix of pairwise latencies.

We compare the M-GREEDY and M-BETTER server place-
ments against other baseline placements. To quantify the
performance difference of the algorithms, we normalize their
maximum interaction path lengths by a theoretical lower
bound. Given a set of candidate server locations Z, the shortest
possible interaction path between two client ci and cj is
minsa ,sb2Z

!
d(ci , sa) + d(sa , sb) + d(sb, cj )

"
. Thus, a lower

bound on the maximum interaction path length is given by

max

ci ,cj 2C

(
min

sa ,sb2Z

!
d(ci , sa) + d(sa , sb) + d(sb, cj )

" )
.

The above bound makes two relaxations. First, a server is
assumed to be available at every candidate server location.
Second, each client can connect to different servers for in-
teracting with different clients. Thus, this bound is a super-
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Fig. 8. Normalized interactivity of different algorithms when there are 300
candidate server locations

optimum and may not really be achievable. We refer to the
normalized maximum interaction path length as the normal-
ized interactivity.

The NP-hardness of the k-center problem indicates that it
is difficult to find the exact k-center server placement. For
comparison purpose, we implement a k-center heuristic [24]
in our experiments. Starting from an empty placement, the k-
center heuristic iteratively selects a new server location that
leads to the largest reduction in the maximum latency from
the clients to their nearest servers until exactly k servers are
placed. In addition, we also compare our algorithms against
the NEAREST server placement introduced in Section VI and a
k-favourable heuristic. The idea of the k-favourable heuristic
is developed from the above derivation of the lower bound.
It evaluates the popularity of each candidate server location
by the frequency of its involvement in the shortest possible
interaction paths among all client pairs. Then, the k-favourable
heuristic selects the k most popular candidate server locations.

A. Performance Comparison for Different Algorithms
Our experiments assume that the clients and candidate

server locations are separate. For each simulation run, we
randomly select a total of 896 nodes and assume that a client is
located at each of these nodes. Then, 75, 150, 300, 600 or 900
nodes are randomly selected from the remaining nodes as the
candidate server locations. For each setting, we perform 1000
simulation runs using different sets of clients and candidate
server locations. The results of various simulation runs are
normalized by different lower bound values derived using the
respective sets of candidate server locations.

We first study the maximum interaction path lengths of
different algorithms as a function of the limit on the number
of server locations to select. The number of candidate server
locations is set to 300 in this experiment. Figure 8 shows
the average results of 1000 simulation runs for the k-center,
k-favourable and M-GREEDY server placements. Since the
NEAREST algorithm and the M-BETTER algorithm do not
consider any limitation on the number of server locations to
select, they are not included in this experiment. Note that the
first server location selected by our M-GREEDY algorithm
constitutes the 1-center placement. Starting from the 1-center
placement, the M-GREEDY algorithm considerably reduces
the maximum interaction path length by adding more server
locations. This implies that there is significant potential for
improving the interactivity performance by distributing the
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Fig. 9. Normalized interactivity of different algorithms for different numbers
of candidate server locations.

servers hosting continuous DIAs. However, increasing the
number of server locations does not guarantee to enhance the
interactivity unless the server locations are carefully chosen.
For example, it can be seen from Figure 8 that the performance
of the k-center placement deteriorates when the number of
server locations selected becomes large. This is because the
k-center placement does not take into account the inter-server
latencies, which may increase substantially and outweigh the
reduction in the latencies from clients to servers when the
server locations are more widely dispersed. By considering
the client-to-server latencies and the inter-server latencies
together, the k-favourable heuristic is able to cut the maximum
interaction path length as more server locations are selected.
However, its performance is still far worse than the M-
GREEDY algorithm. The best achievable result of the M-
GREEDY algorithm is 1.16, indicating that it can produce near-
optimal server placements.

Next, we study the impact of the number of candidate
server locations. We remove the limit on the number of
server locations to select and run our M-GREEDY algorithm
until it terminates due to possible performance deterioration
if more servers are placed. We record the exact number of
server locations selected in each simulation run. We then
use the recorded number as the number of server locations
to pick for the k-center and k-favourable server placements
in the same simulation run. This leads to exactly the same
number of server locations selected by these three algorithms
for fair comparison. The NEAREST and M-BETTER server
placements do not have any stipulation on the number of
server locations to select. Figure 9 shows the average results
of 1000 simulation runs. It can be seen that the interactivity
performance achieved by the M-BETTER server placement
is very close to that of the M-GREEDY server placement.
This is because our M-GREEDY algorithm produces better
solutions than the NEAREST server placement in most of
the simulation runs. The performance improvement of the
M-GREEDY and M-BETTER server placements relative to
the other three placements increases with the number of
candidate server locations. This implies that M-GREEDY and
M-BETTER are effective in finding good server placements
even when the search space is large. It can also be seen from
Figure 9 that the performance of the NEAREST server place-
ment deteriorates sharply with increasing number of candidate
server locations. This indicates that aggressively shortening
the client-to-server latencies cannot contribute effectively to
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(c) 900 candidate server locations

Fig. 10. Cumulative distribution of normalized interactivity for 1000 simulation runs
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Fig. 11. Normalized interactivity of different algorithms for different
individual server capacities.

improving the interactivity performance of continuous DIAs.
Figure 10 shows the cumulative distribution of the normal-

ized interactivity for the 1000 simulation runs of different
numbers of candidate server locations. For ease of reading,
the M-BETTER server placement is not shown in the figure
since it produces almost the same curve as the M-GREEDY
server placement. When there are only 75 candidate server
locations (Figure 10(a)), our M-GREEDY algorithm finds the
optimal server placement in over 30% of the simulation runs (a
normalized interactivity of 1 implies that the output placement
must be optimal), whereas the k-center placement finds it
in just 15% of the runs and the other two placements find
even less. Our detailed investigation indicates that most of
the simulation runs in which the k-center placement finds
the optimum have only one server location selected in the
optimal placement. In this case, the M-GREEDY algorithm
outputs the same placement as 1-center. Since the 1-center
placement is optimal in only a small portion of all simulation
runs, this further suggests the necessity of distributed server
placement to achieve better interactivity for continuous DIAs.
Similar performance trends are also observed in the results for
other numbers of candidate server locations (Figures 10(b) and
10(c)). As the number of candidate server locations increases,
it becomes harder to hit a good solution due to larger search
space. Figure 10 also shows that the improvement of our M-
GREEDY algorithm is even greater in the worst case scenarios.
For example, when there are 300 candidate server locations
(Figure 10(b)), the 95th percentile results of the M-GREEDY,
k-center, k-favourable and NEAREST server placements are
1.42, 1.86, 3.86 and 6.32 respectively.

Following similar experimental setup to that in [13], we also
evaluate the impacts of server capacity and dynamic network
latency on different algorithms in Sections VII-B and VII-C.
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Fig. 12. Normalized interactivity of different algorithms for different total
server capacities.

B. Impact of Server Capacity

So far, we have not assumed any capacity limitation of the
servers. Now, we study the impact of server capacity. Suppose
that there are a certain number of servers to be allocated to
the locations selected by the algorithms. Each server has a
capacity limit on the number of clients that can connect to
it. Then, each selected server location can be allocated the
number of servers proportional to the number of clients having
it as their nearest server locations (subject to integer rounding).
The capacity of each location is given by the total capacity of
the servers allocated to it. If the nearest server location of a
client has been filled to its capacity, the client has to turn to
the next nearest server location with spare capacity.

First, we assume that the total server capacity is 900, which
is just enough to accommodate the 896 clients in our simu-
lation. Figure 11 shows the performance results for different
server capacities and numbers for the simulation runs of 300
candidate server locations. We test 36, 18, 12 and 9 servers
each with the capacity of 25, 50, 75 and 100 respectively. It
can be seen that the M-GREEDY and M-BETTER algorithms
consistently outperform the other algorithms for all the cases
tested. We can observe from Figure 11 that the performance
of each algorithm slightly deteriorates with the increase of
individual server capacity. This is because the actual number
of locations with servers deployed cannot exceed the number
of servers available. When the individual server capacity
increases, the number of servers needed to support all the
clients decreases, which implicitly limits the number of server
locations used.

Figure 12 shows the impact of the total available server
capacity. In this experiment, the capacity of each server is
fixed at 50 and we vary the number of servers available
for allocation. It can be seen that the M-GREEDY and M-
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(b) The connected servers of clients change
along with the variation of network latency.

Fig. 13. Cumulative distribution of normalized interactivity by different
algorithms under dynamic network latency

BETTER algorithms achieve better interactivity performance
than the other algorithms. In general, for all the algorithms, the
interactivity improves when the number of servers available
increases. This is because a larger number of servers increase
the capacity of each server location and allows more clients
to connect to their preferred nearest server locations. When
there are ample capacities allocated to every selected server
location, the performance of each algorithm converges to that
when there is no capacity limitation at the server locations.

C. Impact of Dynamics in Network Conditions
The network latency in the real Internet may fluctuate due

to the mutability of network conditions. Finally, we study
the effect of network latency variation on the performance
of different server placements. Since the Meridian dataset
does not contain the measurements of network latencies at
different times, we use the PlanetLab All Pairs Pings dataset
[23] in this experiment. To our knowledge, this is the largest
publicly available dataset recording the dynamics of Inter-
net latencies. We have performed simulation runs with the
PlanetLab datasets of different days and observed similar
performance trends. We present here the results for a sample
dataset of 4 June 2005. This dataset contains 96 pairwise
latency measurements among 195 PlanetLab nodes at intervals
of 15 minutes over a one-day time span.

In each simulation run, we randomly choose 80 nodes as the
candidate server locations, and assume that a client is placed
at each of the remaining 115 nodes. Each server placement is
computed based on the network latencies recorded in the first
measurement, and remains unchanged throughout the simula-
tion run. We use two mechanisms for connections between
clients and servers. The first mechanism is to connect each
client to its nearest server as indicated by the network latencies
recorded in the first measurement and keep the connection
unchanged regardless of the variation of network latency later.

The other mechanism is to ensure that each client always
connects to its nearest server based on the latest latency
measurement, i.e., the connected server of each client changes
with the variation of network latency. The theoretical lower
bound on the maximum interaction path length is recalculated
at each latency measurement for computing the normalized
interactivity. We perform 1000 different simulation runs and
plot the cumulative distribution of the normalized interactiv-
ity at the times of the 96 latency measurements in Figure
13. Since the M-GREEDY server placement outperforms the
NEAREST server placement in most of the simulation runs,
the performance of the M-BETTER server placement is close
to that of M-GREEDY. For ease of reading, the curve of M-
BETTER is not shown in the figure. It can be seen that the M-
GREEDY server placement achieves much better interactivity
than the other three server placements, for both mechanisms
of client connections. Figure 13 also indicates that the M-
GREEDY server placement is more resilient to the variation
of network latency. For example, if the client connections
are fixed (Figure 13(a)), the M-GREEDY server placement
achieves a normalized interactivity within 1.5 in 92% of the
time. In contrast, the k-center, k-favourable and NEAREST
server placements achieve it in only 79%, 69% and 68% of
the time respectively. A similar trend can also be observed
when the client connections change with the network latency
(Figure 13(b)).

By comparing Figures 13(a) and 13(b), it can be seen that
the interactivity performance of each server placement can be
slightly improved by adjusting the connections from clients to
servers according to the change of network latency. However,
the improvement achieved by carefully choosing the locations
of servers like M-GREEDY is much more significant. This
emphasizes the importance of server placement in improving
the interactivity performance of continuous DIAs.

VIII. RELATED WORK

The classical k-center and k-median problems have been
strongly advocated for server placement in the Internet [14],
[24]–[27]. These two problems aim to place k servers in the
network to minimize the maximum network latency and the
total network latency from the clients to their nearest servers
respectively. They well suit the need of web content delivery
whose performance is primarily determined by how fast the
contents stored on the servers are delivered to the clients. Both
the k-center and k-median problems are NP-hard [20], and
have been investigated extensively [27]–[29].

Nevertheless, the k-center and k-median placements have
their limitations in supporting continuous DIAs that are dis-
tinguished by the feature of real-time mutual interactions
between clients. First, the k-center and k-median placements
do not consider the inter-server latencies, which constitute
a non-negligible part of the network latency involved in the
interactions between clients. Each client in the DIA connects
to only one server but its operations need to be transmitted
to other servers for execution through its connected server.
Although the latencies from the clients to their servers can
be optimized by the k-center and k-median placements, the
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latencies between the servers may be increased at the same
time to offset or even outweigh the benefits of the former.
Second, neither the k-center nor the k-median placement gives
any consideration to maintaining consistency and fairness
for continuous DIAs. To fulfill the consistency and fairness
requirements, it is necessary to account for the combined effect
of client-to-server latency and inter-server latency [14], [16].
Zhang et al. [16], [30] studied how to optimize the assignment
of clients to servers for DIAs given a set of servers placed.
Our work here focuses on the orthogonal issue of where to
place servers in the network. It will be worth exploring the
synergy of these two tuning knobs in the future.

IX. CONCLUSION

In this paper, we have investigated the server provisioning
problem for optimizing the interactivity performance of con-
tinuous DIAs with joint considerations of their consistency and
fairness requirements. We have shown that this is a challenging
problem by analyzing its hardness under various conditions.
We have proved that the problem cannot be approximated
within any constant factor for networks without the triangle
inequality; within a factor of 3/2 if the choices of server
locations are restricted; and within a factor of 4/3 if there
is a limit on the number of server locations to select. We have
proposed two server placement algorithms M-GREEDY and
M-BETTER with approximation ratios of 2 and 5

3 respectively.
Experiments with real Internet latency data show that both
algorithms produce near-optimal server placements.
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