Group Theory

Most lectures on group theory actually start with the definition of what is a group. It may be worth though spending a few lines to mention how mathematicians came up with such a concept.

Around 1770, Lagrange initiated the study of permutations in connection with the study of the solution of equations. He was interested in understanding solutions of polynomials in several variables, and got this idea to study the behaviour of polynomials when their roots are permuted. This led to what we now call Lagrange’s Theorem. It is Galois (1811-1832) who is considered by many as the founder of group theory. He was the first to use the term “group” in a technical sense, though to him it meant a collection of permutations closed under multiplication. Galois theory will be discussed much later in these notes. Galois was also motivated by the solvability of polynomial equations of degree n. From 1815 to 1844, Cauchy started to look at permutations as an autonomous subject, and introduced the concept of permutations generated by certain elements, as well as several notations still used today, such as the cyclic notation for permutations, the product of permutations, or the identity permutation. He proved what we call today Cauchy’s Theorem, namely that if p is prime divisor of the cardinality of the group, then there exists a subgroup of cardinality p. In 1870, Jordan gathered all the applications of permutations he could find, from algebraic geometry, number theory, function theory, and gave a unified presentation (including the work of Cauchy and Galois). Jordan made explicit the notions of homomorphism, isomorphism (still for permutation groups), he introduced solvable groups, and proved that the indices in two composition series are the same (now called Jordan-Hölder Theorem). He also gave a proof that the alternating group A_n is simple for $n > 4$.

In 1870, while working on number theory, Kronecker described in one of his papers a finite set of arbitrary elements on which he defined an abstract operation on them which satisfy certain laws, laws which now correspond to axioms for finite abelian groups. He also proved several results now known
as theorems on abelian groups. Kronecker did not connect his definition with
permutation groups, which was done in 1879 by Frobenius and Stickelberger.

Apart permutation groups and number theory, a third occurrence of group
theory which is worth mentioning arose from geometry, and the work of Klein
(we now use the term Klein group for one of the groups of order 4), and Lie,
who studied transformation groups, that is transformations of geometric objects.
The work by Lie is now a topic of study in itself, but Lie theory is beyond the
scope of these notes.

The abstract point of view in group theory emerged slowly. It took some-
things like one hundred years from Lagrange’s work of 1770 for the abstract
group concept to evolve. This was done by abstracting what was in common to
permutation groups, abelian groups, transformation groups... In 1854, Cayley
gave the modern definition of group for the first time:
“A set of symbols all of them different, and such that the product of any two of
them (no matter in what order), or the product of any one of them into itself,
belongs to the set, is said to be a group. These symbols are not in general conv-
tertible [commutative], but are associative.”

Let us start from there.

1.1 Groups and subgroups

We start by introducing the object that will interest us for the whole chapter.

Definition 1.1. A group is a non-empty set G on which there is a binary
operation $(a, b) \mapsto ab$ such that

- if a and b belong to G then ab is also in G (closure),
- $a(bc) = (ab)c$ for all a, b, c in G (associativity),
- there is an element $1 \in G$ such that $a1 = 1a = a$ for all $a \in G$ (identity),
- if $a \in G$, there is an element $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = 1$
 (inverse).

One can easily check that this implies the unicity of the identity and of the
inverse.

A group G is called abelian if the binary operation is commutative, i.e.,
$ab = ba$ for all $a, b \in G$.

Remark. There are two standard notations for the binary group operation: ei-
ther the additive notation, that is $(a, b) \mapsto a + b$ in which case the identity is
denoted by 0, or the multiplicative notation, that is $(a, b) \mapsto ab$ for which the
identity is denoted by 1.

Examples 1.1. 1. \mathbb{Z} with the addition and 0 as identity is an abelian group.
2. \mathbb{Z} with the multiplication is not a group since there are elements which are not invertible in \mathbb{Z}.

3. The set of $n \times n$ invertible matrices with real coefficients is a group for the matrix product and identity the matrix I_n. It is denoted by $GL_n(\mathbb{R})$ and called the general linear group. It is not abelian for $n \geq 2$.

The above examples are the easiest groups to think of. The theory of algebra however contains many examples of famous groups that one may discover, once equipped with more tools (for example, the Lie groups, the Brauer group, the Witt group, the Weyl group, the Picard group,...to name a few).

Definition 1.2. The order of a group G, denoted by $|G|$, is the cardinality of G, that is the number of elements in G.

We have only seen infinite groups so far. Let us look at some examples of finite groups.

Examples 1.2.
1. The trivial group $G = \{0\}$ may not be the most exciting group to look at, but still it is the only group of order 1.

2. The group $G = \{0, 1, 2, \ldots, n-1\}$ of integers modulo n is a group of order n. It is sometimes denoted by \mathbb{Z}_n (this should not be confused with p-adic integers though!).

Definition 1.3. A subgroup H of a group G is a non-empty subset of G that forms a group under the binary operation of G.

Examples 1.3.
1. If we consider the group $G = \mathbb{Z}_4 = \{0, 1, 2, 3\}$ of integers modulo 4, $H = \{0, 2\}$ is a subgroup of G.

2. The set of $n \times n$ matrices with real coefficients and determinant of 1 is a subgroup of $GL_n(\mathbb{R})$, denoted by $SL_n(\mathbb{R})$ and called the special linear group.

At this point, in order to claim that the above examples are actually subgroups, one has to actually check the definition. The proposition below gives an easier criterion to decide whether a subset of a group G is actually a subgroup.

Proposition 1.1. Let G be a group. Let H be a non-empty subset of G. The following are equivalent:

1. H is a subgroup of G.

2. (a) $x, y \in H$ implies $xy \in H$ for all x, y.
 (b) $x \in H$ implies $x^{-1} \in H$.

3. $x, y \in H$ implies $xy^{-1} \in H$ for all x, y.

Proof. We prove that 1. \Rightarrow 3. \Rightarrow 2. \Rightarrow 1.
1. ⇒ 3. This part is clear from the definition of subgroup.

3. ⇒ 2. Since \(H \) is non-empty, let \(x \in H \). By assumption of 3., we have that \(xx^{-1} = 1 \in H \) and that \(1x^{-1} \in H \) thus \(x \) is invertible in \(H \). We now know that for \(x, y \in H \), \(x \) and \(y^{-1} \) are in \(H \), thus \(x(y^{-1})^{-1} = xy \) is in \(H \).

2. ⇒ 1. To prove this direction, we need to check the definition of group. Since closure and existence of an inverse are true by assumption of 2., and that associativity follows from the associativity in \(G \), we are left with the existence of an identity. Now, if \(x \in H \), then \(x^{-1} \in H \) by assumption of 2., and thus \(xx^{-1} = 1 \in H \) again by assumption of 2., which completes the proof.

We will often use the last equivalence to check that a subset of a group \(G \) is a subgroup.

Now that we have these structures of groups and subgroups, let us introduce a map that allows to go from one group to another and that respects the respective group operations.

Definition 1.4. Given two groups \(G \) and \(H \), a **group homomorphism** is a map \(f: G \to H \) such that

\[
f(xy) = f(x)f(y)
\]

for all \(x, y \in G \).

Note that this definition immediately implies that the identity \(1_G \) of \(G \) is mapped to the identity \(1_H \) of \(H \). The same is true for the inverse, that is \(f(x) = f(x)^{-1} \).

Example 1.4. The map \(\exp: (\mathbb{R}, +) \to (\mathbb{R}^*, \cdot) \), \(x \mapsto \exp(x) \) is a group homomorphism.

Definition 1.5. Two groups \(G \) and \(H \) are **isomorphic** if there is a group homomorphism \(f: G \to H \) which is also a bijection.

Roughly speaking, isomorphic groups are “essentially the same”.

Example 1.5. If we consider again the group \(G = \mathbb{Z}_4 = \{0, 1, 2, 3\} \) of integers modulo 4 with subgroup \(H = \{0, 2\} \), we have that \(H \) is isomorphic to \(\mathbb{Z}_2 \), the group of integers modulo 2.

A crucial definition is the definition of the order of a group element.

Definition 1.6. The **order** of an element \(a \in G \) is the least positive integer \(n \) such that \(a^n = 1 \). If no such integer exists, the order of \(a \) is infinite. We denote it by \(|a| \).

Note that the critical part of this definition is that the order is the *least* positive integer with the given property. The terminology “order” is used both for groups and group elements, but it is usually clear from the context which one is considered.
1.2 Cyclic groups

Let us now introduce a first family of groups, the cyclic groups.

Definition 1.7. A group G is cyclic if it is generated by a single element, which we denote by $G = \langle a \rangle$. We may denote by C_n a cyclic group of n elements.

Example 1.6. A finite cyclic group generated by a is necessarily abelian, and can be written (multiplicatively)

$$\{1, a, a^2, \ldots, a^{n-1}\} \text{ with } a^n = 1$$

or (additively)

$$\{0, a, 2a, \ldots, (n-1)a\} \text{ with } na = 0.$$

A finite cyclic group with n elements is isomorphic to the additive group \mathbb{Z}_n of integers modulo n.

Here are some properties of cyclic groups and its generators.

Proposition 1.2. If G is a cyclic group of order n generated by a, the following conditions are equivalent:

1. $|a^k| = n$.
2. k and n are relatively prime.
3. k has an inverse modulo n, that is there exists an integer s such that $ks \equiv 1 \text{ modulo } n$.

Proof. Before starting the proof, recall that since a generates G of order n, we have that the order of a is n and in particular $a^n = 1$. The fact that $|a^k| = n$ means in words that the order of a^k is also n, that is, a^k is also a generator of G. We first prove that 1. \iff 2., while 2. \iff 3. follows from Bezout identity.

1. \Rightarrow 2. Suppose by contradiction that k and n are not relatively prime, that is, there exists $s > 1$ such that $s|k$ and $s|n$. Thus $n = ms$ and $k = sr$ for some $m, r \geq 1$ and we have

$$(a^k)^m = a^{sm} = a^{ns} = 1.$$

Now since $s > 1$, $m < n$, which contradicts that n is the order of a^k.

2. \Rightarrow 1. Suppose that the order of a^k is not n, then there exists $m < n$ such that $(a^k)^m = 1$ and $n|km$. If k and n were to be relatively prime, then n would divide m, which is a contradiction since $m < n$.

2. \Rightarrow 3. If k and n are relatively prime, then by Bezout identity, there exist r, s such that $1 = kr + ns$ and thus $kr \equiv 1 \text{ modulo } n$.

3. \Rightarrow 2. If $kr \equiv 1 \text{ modulo } n$ then $1 = kr + ns$ for some s and the greatest common divisor of k and n must divide 1, which shows k and n are relatively prime.
Corollary 1.3. The set of invertible elements modulo \(n \) forms a group under multiplication, whose order is the Euler function \(\varphi(n) \), which by definition counts the number of positive integers less than \(n \) that are relatively prime to \(n \).

Example 1.7. Consider the group \(\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} \), the group \(\mathbb{Z}_6^* \) of invertible elements in \(\mathbb{Z}_6 \) is \(\mathbb{Z}_6^* = \{1, 5\} \). We have that \(\varphi(6) = \varphi(2)\varphi(3) = 2 \).

1.3 Cosets and Lagrange’s Theorem

Definition 1.8. Let \(H \) be a subgroup of a group \(G \). If \(g \in G \), the right coset of \(H \) generated by \(g \) is

\[
Hg = \{hg, \ h \in H\}
\]

and similarly the left coset of \(H \) generated by \(g \) is

\[
gH = \{gh, \ h \in H\}.
\]

In additive notation, we get \(H + g \) (which usually implies we deal with a commutative group where we do not need to distinguish left and right cosets).

Example 1.8. If we consider the group \(\mathbb{Z}_4 = \{0, 1, 2, 3\} \) and its subgroup \(H = \{0, 2\} \) which is isomorphic to \(\mathbb{Z}_2 \), the cosets of \(H \) in \(G \) are

\[
0 + H = H, \ 1 + H = \{1, 3\}, \ 2 + H = H, \ 3 + H = \{1, 3\}.
\]

Clearly \(0 + H = 2 + H \) and \(1 + H = 3 + H \).

We see in the above example that while an element of \(g \in G \) runs through all possible elements of the group \(G \), some of the left cosets \(gH \) (or right cosets \(Ha \)) may be the same. It is easy to see when this exactly happens.

Lemma 1.4. We have that \(Ha = Hb \) if and only if \(ab^{-1} \in H \) for \(a, b \in G \). Similarly, \(aH = Hb \) if and only if \(a^{-1}b \in H \) for \(a, b \in G \).

Proof. If two right cosets are the same, that is \(Ha = Hb \), since \(H \) is a subgroup, we have \(1 \in H \) and \(a = hb \) for some \(h \in H \), so \(ab^{-1} = h \in H \).

Conversely, if \(ab^{-1} = h \in H \), then \(Ha = Hhb = Hb \), again since \(H \) is a subgroup.

While one may be tempted to define a coset with a subset of \(G \) which is not a subgroup, we see that the above characterization really relies on the fact that \(H \) is actually a subgroup.

Example 1.9. It is thus no surprise that in the above example we have \(0 + H = 2 + H \) and \(1 + H = 3 + H \), since we have modulo 4 that \(0 - 2 \equiv 2 \in H \) and \(1 - 3 \equiv 2 \in H \).
Saying that two elements $a, b \in G$ generate the same coset is actually an equivalence relation in the following sense. We say that a is equivalent to b if and only if $ab^{-1} \in H$, and this relation satisfies the three properties of an equivalence relation:

- **reflexivity**: $aa^{-1} = 1 \in H$.
- **symmetry**: if $ab^{-1} \in H$ then $(ab^{-1})^{-1} = ba^{-1} \in H$.
- **transitivity**: if $ab^{-1} \in H$ and $bc^{-1} \in H$ then $(ab^{-1})(bc^{-1}) = ac^{-1} \in H$.

The equivalence class of a is the set of elements in G which are equivalent to a, namely

$$\{b, \ ab^{-1} \in H\}.$$

Since $ab^{-1} \in H \iff (ab^{-1})^{-1} = ba^{-1} \in H \iff b \in Ha$, we further have that

$$\{b, \ ab^{-1} \in H\} = Ha,$$

and a coset is actually an equivalence class.

Example 1.10. Let us get back to our example with the group $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ and its subgroup $H = \{0, 2\}$. We compute the first coset $0 + H = H$, and thus we now know that the equivalence class of 0 is H, and thus there is no need to compute the coset generated by 2, since it will give the same coset. We then compute the coset $1 + H = \{1, 3\}$ and again there is no need to compute the one of 3 since it is already in the coset of 1. We thus get 2 cosets, and clearly they partition \mathbb{Z}_4:

$$\mathbb{Z}_4 = \{0, 2\} \cup \{1, 3\} = H \cup (1 + H).$$

It is important to notice that the right (resp. left) cosets partition the group G (that the union of all cosets is G is clear since we run through all elements of G and H contains 1, and it is easy to see that if $x \in Ha$ and $x \in Hb$ then $Ha = Hb$).

Furthermore, since the map $h \mapsto ha, h \in H$, is a one-to-one correspondence, each coset has $|H|$ elements.

Definition 1.9. The index of a subgroup H in G is the number of right (left) cosets. It is denoted by $[G : H]$.

Theorem 1.5. *(Lagrange’s Theorem).* If H is a subgroup of G, then $|G| = |H|[G : H]$. In particular, if G is finite then $|H|$ divides $|G|$ and $[G : H] = |G|/|H|$.

Proof. Let us start by recalling that the left cosets of H forms a partition of G, that is

$$G = \sqcup gH,$$
where g runs through a set of representatives (one for each coset). Let us look at the cardinality of G:

$$|G| = |\sqcup gH| = \sum |gH|$$

since we have a disjoint union of cosets, and the sum is again over the set of representatives. Now

$$\sum |gH| = \sum |H|$$

since we have already noted that each coset contains $|H|$ elements. We then conclude that

$$|G| = \sum |H| = |G : H||H|.$$

Of course, Lagrange did not prove Lagrange’s theorem! The modern way of defining groups did not exist yet at his time. Lagrange was interested in polynomial equations, and in understanding the existence and nature of the roots (does every equation has a root? how many roots?...). What he actually proved was that if a polynomial in n variables has its variables permuted in all $n!$ ways, the number of different polynomials that are obtained is always a factor of $n!$. Since all the permutations of n elements are actually a group, the number of such polynomials is actually the index in the group of permutations of n elements of the subgroup H of permutations which preserve the polynomial. So the size of H divides $n!$, which is exactly the number of all permutations of n elements. This is indeed a particular case of what we call now Lagrange’s Theorem.
1.3. COSETS AND LAGRANGE’S THEOREM

| $|G|$ | G |
|------|------|
| 1 | $\{1\}$ |
| 2 | C_2 |
| 3 | C_3 |
| 4 | $C_4, C_2 \times C_2$ |
| 5 | C_5 |

Table 1.1: C_n denotes the cyclic group of order n

Corollary 1.6.

1. Let G be a finite group. If $a \in G$, then $|a|$ divides $|G|$. In particular, $a^{|G|} = 1$.

2. If G has prime order, then G is cyclic.

Proof.

1. If $a \in G$ has order say m, then the subgroup $H = \{1, a, \ldots, a^{m-1}\}$ is a cyclic subgroup of G with order $|H| = m$. Thus m divides $|G|$ by the theorem.

2. Since $|G|$ is prime, we may take $a \neq 1$ in G, and since the order of a has to divide $|G|$, we have $|a| = |G|$. Thus the cyclic group generated by a coincides with G.

Example 1.11. Using Lagrange’s Theorem and its corollaries, we can already determine the groups of order from 1 to 5 (up to isomorphism). If $|G|$ is prime, we now know that G is cyclic.

Let us look at the case where G is of order 4. Let $g \in G$. We know that the order of g is either 1, 2 or 4. If the order of g is 1, this is the identity. If G contains an element g of order 4, then that means that g generates the whole group, thus G is cyclic. If now G does not contain an element of order 4, then apart the identity, all the elements have order 2. From there, it is easy to obtain a multiplication table for G, and see that it coincides with the one of the group $Z_2 \times Z_2 = \{(x, y) \mid x, y \in Z_2\}$ with binary operation $(x, y) + (x', y') = (x + x', y + y')$. This group is called the Klein group, and it has several interpretations, for example, it is the group of isometries fixing a rectangle.

Remark. The above example also shows that the converse of Lagrange’s Theorem is not true. If we take the group $G = C_2 \times C_2$, then 4 divides the order of G, however there is no element of order 4 in G.

Once Lagrange’s Theorem and its corollaries are proven, we can easily deduce Euler’s and Fermat’s Theorem.

Theorem 1.7. (Euler’s Theorem). If a and n are relatively prime positive integers, with $n \geq 2$, then

$$a^{\phi(n)} \equiv 1 \mod n.$$
CHAPTER 1. GROUP THEORY

Proof. Since \(a\) and \(n\) are relatively prime, we know from Proposition 1.2 that \(a\) has an inverse modulo \(n\), and by its corollary that the group of invertible elements has order \(\varphi(n)\). Thus

\[a^{\varphi(n)} \equiv 1 \mod n\]

by Lagrange’s Theorem first corollary.

Corollary 1.8. (Fermat’s Little Theorem). If \(p\) is a prime and \(a\) is a positive integer not divisible by \(p\), then

\[a^{p-1} \equiv 1 \mod p.\]

This is particular case of Euler’s Theorem when \(n\) is a prime, since then \(\varphi(n) = p - 1\).

1.4 Normal subgroups and quotient group

Given a group \(G\) and a subgroup \(H\), we have seen how to define the cosets of \(H\), and thanks to Lagrange’s Theorem, we already know that the number of cosets \([G : H]\) is related to the order of \(H\) and \(G\) by \(|G| = |H|[G : H]\). A priori, the set of cosets of \(H\) has no structure. We are now interested in a criterion on \(H\) to give the set of its cosets a structure of group.

In what follows, we may write \(H \leq G\) for \(H\) is a subgroup of \(G\).

Definition 1.10. Let \(G\) be a group and \(H \leq G\). We say that \(H\) is a normal subgroup of \(G\), or that \(H\) is normal in \(G\), if we have

\[cHc^{-1} = H,\]

for all \(c \in G\).

We denote it \(H \trianglelefteq G\), or \(H \lhd G\) when we want to emphasize that \(H\) is a proper subgroup of \(G\).

The condition for a subgroup to be normal can be stated in many slightly different ways.

Lemma 1.9. Let \(H \leq G\). The following are equivalent:

1. \(cHc^{-1} \subseteq H\) for all \(c \in G\).

2. \(cHc^{-1} = H\) for all \(c \in G\), that is \(cH = Hc\) for all \(c \in G\).

3. Every left coset of \(H\) in \(G\) is also a right coset (and vice-versa, every right coset of \(H\) in \(G\) is also a left coset).

Proof. Clearly 2. implies 1., now if \(cHc^{-1} \subseteq H\) for all \(c \in G\), it holds in particular for \(c = 1\).

Also 2. clearly implies 3. Now suppose that \(cH = Hd\). This means that \(c\) belongs to \(Hd\) by assumption and to \(Hc\) by definition, which means that \(Hd = Hc\).
Example 1.12. Let $GL_n(\mathbb{R})$ be the group of $n \times n$ real invertible matrices, and let $SL_n(\mathbb{R})$ be the subgroup formed by matrices whose determinant is 1. Let us see that $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$.

For that, we have to check that $ABA^{-1} \in SL_n(\mathbb{R})$ for all $B \in SL_n(\mathbb{R})$ and $A \in GL_n(\mathbb{R})$. This is clearly true since

$$\det(ABA^{-1}) = \det(B) = 1.$$

Proposition 1.10. If H is normal in G, then the cosets of H form a group.

Proof. Let us first define a binary operation on the cosets: $(aH, bH) \mapsto (aH)(bH)$. We need to check that the definition of group is satisfied.

- **Closure.** This is the part which asks a little bit of work. Since $cH = Hc$ for all $c \in G$, then

 $$(aH)(bH) = a(Hb)H = a(bH)H = abHH = abH.$$

 Note that this product does not depend on the choice of representatives.

- **Associativity** comes from G being associative.

- The **identity** is given by the coset $1H = H$.

- The **inverse** of the coset aH is $a^{-1}H$.

Definition 1.11. The group of cosets of a normal subgroup N of G is called the **quotient group** of G by N. It is denoted by G/N.

Let us finish this section by discussing the connection between normal subgroups and homomorphisms. The first normal subgroup of interest will be the kernel of a group homomorphism.

Recall that if $f : G \to H$ is a group homomorphism, the **kernel** of f is defined by

$$\text{Ker}(f) = \{a \in G, f(a) = 1\}.$$

It is easy to see that $\text{Ker}(f)$ is a normal subgroup of G, since

$$f(aba^{-1}) = f(a)f(b)f(a)^{-1} = f(a)f(a)^{-1} = 1$$

for all $b \in \text{Ker}(f)$ and all $a \in G$.

The converse is more interesting.

Proposition 1.11. Let G be a group. Every normal subgroup of G is the kernel of a homomorphism.
Proof. Suppose that $N \trianglelefteq G$ and consider the map $$\pi : G \rightarrow G/N, \ a \mapsto aN.$$ To prove the result, we have to show that π is a group homomorphism whose kernel is N. First note that π is indeed a map from group to group since G/N is a group by assuming that N is normal. Then we have that $$\pi(ab) = abN = (aN)(bN) = \pi(a)\pi(b)$$ where the second equality comes from the group structure of G/N. Finally $$\ker(\pi) = \{ a \in G \mid \pi(a) = N \} = \{ a \in G \mid aN = N \} = N.$$ \hfill \square

Definition 1.12. Let $N \trianglelefteq G$. The group homomorphism $$\pi : G \rightarrow G/N, \ a \mapsto aN$$ is called the natural or canonical map or projection.

Recall for further usage that for f a group homomorphism, we have the following characterization of injectivity: a homomorphism f is injective if and only if its kernel is trivial (that is, contains only the identity element). Indeed, if f is injective, then $\ker(f) = \{ a, \ f(a) = 1 \} = \{ 1 \}$ since $f(1) = 1$. Conversely, if $\ker(f) = \{ 1 \}$ and we assume that $f(a) = f(b)$, then $$f(ab^{-1}) = f(a)f(b)^{-1} = f(a)f(a)^{-1} = 1$$ and $ab^{-1} = 1$ implying that $a = b$ and thus f is injective.

Terminology.

- **Monomorphism** = injective homomorphism
- **Epi-morphism** = surjective homomorphism
- **Isomorphism** = bijective homomorphism
- **Endomorphism** = homomorphism of a group to itself
- **Automorphism** = isomorphism of a group with itself

We have looked so far at the particular subgroup of G which is its kernel. The proposition below describes more generally subgroups of G and H.

Proposition 1.12. Let $f : G \rightarrow H$ be a homomorphism.

1. If K is a subgroup of G, then $f(K)$ is a subgroup of H. If f is an epi-morphism and K is normal, then $f(K)$ is normal.
2. If K is a subgroup of H, then $f^{-1}(K)$ is a subgroup of G. If K is normal, so is $f^{-1}(K)$.

Proof. 1. To prove that $f(K)$ is a subgroup of H, it is enough to show that $f(a)f(b)^{-1} \in f(K)$ by Proposition 1.1, which is clear from

$$f(a)f(b)^{-1} = f(ab^{-1}) \in f(K).$$

If K is normal, we have to show that $cf(K)c^{-1} = f(K)$ for all $c \in H$. Since f is an epimorphism, there exists $d \in G$ such that $f(d) = c$, so that

$$cf(K)c^{-1} = f(d)f(K)f(d)^{-1} = f(dKd^{-1}) = f(K)$$

using that K is normal.

2. As before, to prove that $f^{-1}(K)$ is a subgroup of G, it is enough to show that $ab^{-1} \in f^{-1}(K)$ for $a, b \in f^{-1}(K)$, which is equivalent to show that $f(ab^{-1}) \in K$. This is now true since $f(ab^{-1}) = f(a)f(b)^{-1}$ with $a, b \in f^{-1}(K)$ and K a subgroup.

For the second claim, we have to show that

$$cf^{-1}(K)c^{-1} = f^{-1}(K) \iff f(cf^{-1}(K)c^{-1}) = K, \ c \in G.$$

For $c \in G$ and $a \in f^{-1}(K)$, then

$$f(cac^{-1}) = f(c)f(a)f(c)^{-1} \in K$$

since K is normal.

\[\square\]

1.5 The isomorphism theorems

This section presents different isomorphism theorems which are important tools for proving further results. The first isomorphism theorem, that will be the second theorem to be proven after the factor theorem, is easier to motivate, since it will help us in computing quotient groups.

But let us first start with the so-called factor theorem. Assume that we have a group G which contains a normal subgroup N, another group H, and $f : G \to H$ a group homomorphism. Let π be the canonical projection (see Definition 1.12) from G to the quotient group G/N:

\[
\begin{array}{c}
G \\
\pi
\end{array} \xrightarrow{f} H \xrightarrow{f} G/N
\]
We would like to find a homomorphism $\bar{f} : G/N \to H$ that makes the diagram commute, namely

$$f(a) = \bar{f}(\pi(a))$$

for all $a \in G$.

Theorem 1.13. (Factor Theorem). Any homomorphism f whose kernel K contains N can be factored through G/N. In other words, there is a unique homomorphism $\bar{f} : G/N \to H$ such that $\bar{f} \circ \pi = f$. Furthermore

1. \bar{f} is an epimorphism if and only if f is.
2. \bar{f} is a monomorphism if and only if $K = N$.
3. \bar{f} is an isomorphism if and only if f is an epimorphism and $K = N$.

Proof.

Unicity. Let us start by proving that if there exists \bar{f} such that $\bar{f} \circ \pi = f$, then it is unique. Let \tilde{f} be another homomorphism such that $\tilde{f} \circ \pi = f$. We thus have that

$$(\bar{f} \circ \pi)(a) = (\tilde{f} \circ \pi)(a) = f(a)$$

for all $a \in G$, that is

$$\bar{f}(aN) = \tilde{f}(aN) = f(a).$$

This tells us that for all $bN \in G/N$ for which there exists an element b in G such that $\pi(b) = bN$, then its image by either \bar{f} or \tilde{f} is determined by $f(b)$. This shows that $\bar{f} = \tilde{f}$ by surjectivity of π.

Existence. Let $aN \in G/N$ such that $\pi(a) = aN$ for $a \in G$. We define

$$\bar{f}(aN) = f(a).$$

This is the most natural way to do it, however, we need to make sure that this is indeed well-defined, in the sense that it should not depend on the choice of the representative taken in the coset. Let us thus take another representative, say $b \in aN$. Since a and b are in the same coset, they satisfy $a^{-1}b \in N \subset K$, where $K = \text{Ker}(f)$ by assumption. Since $a^{-1}b \in K$, we have $f(a^{-1}b) = 1$ and thus $f(a) = f(b)$.

Now that \bar{f} is well defined, let us check this is indeed a group homomorphism.

First note that G/N is indeed a group since $N \trianglelefteq G$. Then, we have

$$\bar{f}(aNbN) = \bar{f}(abN) = f(ab) = f(a)f(b) = \bar{f}(aN)\bar{f}(bN)$$

and \bar{f} is a homomorphism.

1. The fact that \bar{f} is an epimorphism if and only if f is comes from the fact that both maps have the same image.

2. First note that the statement \bar{f} is a monomorphism if and only if $K = N$ makes sense since $K = \text{Ker}(f)$ is indeed a normal subgroup, as proved earlier.
To show that \(\bar{f} \) is a monomorphism is equivalent to show that \(\text{Ker}(\bar{f}) \) is trivial. By definition, we have

\[
\text{Ker}(\bar{f}) = \{aN \in G/N, \bar{f}(aN) = 1\}
\]
\[
= \{aN \in G/N, \bar{f}(\pi(a)) = f(a) = 1\}
\]
\[
= \{aN \in G/N, a \in K = \text{Ker}(f)\}.
\]

So the kernel of \(\bar{f} \) is exactly those cosets of the form \(aN \) with \(a \in K \), but for the kernel to be trivial, we need it to be equal to \(N \), that is we need \(K = N \).

3. This is just a combination of the first two parts.

We are now ready to state the first isomorphism theorem.

Theorem 1.14. (1st Isomorphism Theorem). If \(f : G \to H \) is a homomorphism with kernel \(K \), then the image of \(f \) is isomorphic to \(G/K \):

\[
\text{Im}(f) \cong G/\text{Ker}(f).
\]

Proof. We know from the Factor Theorem that

\[
\bar{f} : G/\text{Ker}(f) \to H
\]

is an isomorphism if and only if \(f \) is an epimorphism, and clearly \(f \) is an epimorphism on its image, which concludes the proof.

Example 1.13. We have seen in Example 1.12 that \(SL_n(\mathbb{R}) \lhd GL_n(\mathbb{R}) \). Consider the map

\[
\det : GL_n(\mathbb{R}) \to (\mathbb{R}^*,\cdot),
\]

which is a group homomorphism. We have that \(\text{Ker}(\det) = SL_n(\mathbb{R}) \). The 1st Isomorphism Theorem tells that

\[
\text{Im}(\det) \cong GL_n(\mathbb{R})/SL_n(\mathbb{R}).
\]

It is clear that \(\det \) is surjective, since for all \(a \in \mathbb{R}^* \), one can take the diagonal matrix with all entries at 1, but one which is \(a \). Thus we conclude that

\[
\mathbb{R}^* \cong GL_n(\mathbb{R})/SL_n(\mathbb{R}).
\]

The 1st Isomorphism Theorem can be nicely illustrated in terms of exact sequences.

Definition 1.13. Let \(F, G, H, I, \ldots \) be groups, and let \(f, g, h, \ldots \) be group homomorphisms. Consider the following sequence:

\[
\cdots \xrightarrow{f} F \xrightarrow{g} G \xrightarrow{h} H \xrightarrow{} I \xrightarrow{} \cdots
\]
We say that this sequence is exact in one point (say G) if $\text{Im}(f) = \text{Ker}(g)$. A sequence is exact if it is exact in all points.

A short exact sequence of groups is of the form

$$1 \xrightarrow{i} F \xrightarrow{f} G \xrightarrow{g} H \xrightarrow{j} 1$$

where i is the inclusion and j is the constant map 1.

Proposition 1.15. Let

$$1 \xrightarrow{i} F \xrightarrow{f} G \xrightarrow{g} H \xrightarrow{j} 1$$

be a short exact sequence of groups. Then $\text{Im}(f)$ is normal in G and we have a group isomorphism

$$G/\text{Im}(f) \simeq H,$$

or equivalently

$$G/\text{Ker}(g) \simeq H.$$

Proof. Since the sequence is exact, we have that $\text{Im}(f) = \text{Ker}(g)$ thus $\text{Im}(f)$ is a normal subgroup of G. By the first Isomorphism Theorem, we have that

$$G/\text{Ker}(g) \simeq \text{Im}(g) = H.$$

since $\text{Im}(g) = \text{Ker}(j) = H$. \hfill \Box

The formulation in terms of exact sequences is useful to know, since it happens very often in the literature that an exact sequence is given exactly to be able to compute such quotient groups.

Let us state the second and third isomorphism theorem.

Theorem 1.16. (2nd Isomorphism Theorem). If H and N are subgroups of G, with N normal in G, then

$$H/(H \cap N) \simeq HN/N.$$

There are many things to discuss about the statement of this theorem.

- First we need to check that HN is indeed a subgroup of G. To show that, notice that $HN = NH$ since N is a normal subgroup of G. This implies that for $hn \in HN$, its inverse $(hn)^{-1} = n^{-1}h^{-1} \in G$ actually lives in HN, and so does the product $(hn)(h'n') = h(Nh'n').$

- Note that by writing HN/N, we insist on the fact that there is no reason for N to be a subgroup of H. On the other hand, N is a normal subgroup of HN, since for all $hn \in HN$, we have

$$hnNn^{-1}h^{-1} = hNh^{-1} \subseteq N$$

since N is normal in G.
1.6. DIRECT AND SEMI-DIRECT PRODUCTS

- We now know that the right hand side of the isomorphism is a quotient group. In order to see that so is the left hand side, we need to show that \(H \cap N \) is a normal subgroup of \(H \). This comes by noticing that \(H \cap N \) is the kernel of the canonical map \(\pi : G \to G/N \) restricted to \(H \).

Now that all these remarks have been done, it is not difficult to see that the 2nd Isomorphism Theorem follows from the 1st Isomorphism Theorem, as does the 3rd Isomorphism Theorem.

Theorem 1.17. (3rd Isomorphism Theorem). If \(N \) and \(H \) are normal subgroups of \(G \), with \(N \) contained in \(H \), then \[G/H \cong (G/N)/(H/N). \]

1.6 Direct and semi-direct products

So far, we have seen how given a group \(G \), we can get smaller groups, such as subgroups of \(G \) or quotient groups. We will now do the other way round, that is, starting with a collection of groups, we want to build larger new groups.

Let us start with two groups \(H \) and \(K \), and let \(G = H \times K \) be the cartesian product of \(H \) and \(K \), that is \[G = \{(h, k), \ h \in H, \ k \in K\}. \]

We define a binary operation on this set by doing componentwise multiplication (or addition if the binary operations of \(H \) and \(K \) are denoted additively) on \(G \):

\[(h_1, k_1)(h_2, k_2) = (h_1 h_2, k_1 k_2) \in H \times K. \]

Clearly \(G \) is closed under multiplication, its operation is associative (since both operations on \(H \) and \(K \) are), it has an identity element given by \((1_H, 1_K)\) and the inverse of \((h, k)\) is \((h^{-1}, k^{-1})\). In summary, \(G \) is a group.

Definition 1.14. Let \(H, \ K \) be two groups. The group \(G = H \times K \) with binary operation defined componentwise as described above is called the external direct product of \(H \) and \(K \).

Examples 1.14.

1. The Klein group \(C_2 \times C_2 \) of order 4 is a direct product (here \(C_2 \) denotes the cyclic group of order 2). It can also be written \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) with an additive law.

2. The group \((\mathbb{R}, +) \times (\mathbb{R}, +)\) with componentwise addition is a direct product.

Note that \(G \) contains isomorphic copies \(\hat{H} \) and \(\hat{K} \) of respectively \(H \) and \(K \), given by \[\hat{H} = \{(h, 1_K), \ h \in H\}, \ \hat{K} = \{(1_H, k), \ k \in K\}, \]
which furthermore are normal subgroups of \(G \). Let us for example see that \(\hat{H} \) is normal in \(G \). By definition, we need to check that \((h, k)\hat{H}(h^{-1}, k^{-1}) \subseteq \hat{H}, \ (h, k) \in G. \)
Let \((h', 1_K) \in \bar{H}\), we compute that
\[(h, k)(h', 1_k)(h^{-1}, k^{-1}) = (hh'h^{-1}, 1_k) \in \bar{H},\]
since \(hh'h^{-1} \in H\). The same computation holds for \(\bar{G}\).

If we gather what we know about \(G\), \(\bar{H}\) and \(\bar{K}\), we get that

- by definition, \(G = \bar{H} \bar{K}\) and \(\bar{H} \cap \bar{K} = \{1\}\),
- by what we have just proved, \(\bar{H}\) and \(\bar{K}\) are two normal subgroups of \(G\).

This motivates the following definition.

Definition 1.15. If a group \(G\) contains normal subgroups \(H\) and \(K\) such that \(G = HK\) and \(H \cap K = \{1\}\), we say that \(G\) is the **internal direct product** of \(H\) and \(K\).

The next result explicits the connection between internal and external products.

Proposition 1.18. If \(G\) is the internal direct product of \(H\) and \(K\), then \(G\) is isomorphic to the external direct product \(H \times K\).

Proof. To show that \(G\) is isomorphic to \(H \times K\), we define the following map
\[f : H \times K \to G, \quad f(h, k) = hk.\]

First remark that if \(h \in H\) and \(k \in K\), then \(hk = kh\). Indeed, we have using that both \(K\) and \(H\) are normal that
\[(hh')k^{-1} \in K, \quad h(kh'k)^{-1} \in H\]
implying that
\[hkh^{-1}k^{-1} \in K \cap H = \{1\}.

We are now ready to prove that \(f\) is a group isomorphism.

1. This is a group homomorphism since
\[f((h, k)(h', k')) = f(hh', kk') = h(h'k)k' = h(kh')k' = f(h, k)f(h', k').\]

2. The map \(f\) is injective. This can be seen by checking that its kernel is trivial. Indeed, if \(f(h, k) = 1\) then
\[hk = 1 \Rightarrow h = k^{-1} \Rightarrow h \in K \Rightarrow h \in H \cap K = \{1\}.

We have then that \(h = k = 1\) which proves that the kernel is \((1, 1)\).

3. The map \(f\) is surjective since by definition \(G = HK\).

\[\square\]
1.6. DIRECT AND SEMI-DIRECT PRODUCTS

Note that the definitions of external and internal product are surely not restricted to two groups. One can in general define them for \(n \) groups \(H_1, \ldots, H_n \). Namely

Definition 1.16. If \(H_1, \ldots, H_n \) are arbitrary groups, the external direct product of the \(H_i \) is the cartesian product

\[
G = H_1 \times H_2 \times \cdots \times H_n
\]

with componentwise multiplication.

If \(G \) contains normal subgroups \(H_1, \ldots, H_n \) such that \(G = H_1 \cdots H_n \) and each \(g \) can be represented as \(h_1 \cdots h_n \) uniquely, we say that \(G \) is the internal direct product of the \(H_i \).

We can see a slight difference in the definition of internal product, since in the case of two subgroups, the condition given was not that each \(g \) can be represented uniquely as \(h_1 h_2 \), but instead that the intersection of the two subgroups is \(\{1\} \). The next proposition shows the connection between these two points of view.

Proposition 1.19. Suppose that \(G = H_1 \cdots H_n \) where each \(H_i \) is a normal subgroup of \(G \). The following conditions are equivalent.

1. \(G \) is the internal direct product of the \(H_i \).
2. \(H_1 H_2 \cdots H_{i-1} \cap H_i = \{1\} \), for all \(i = 1, \ldots, n \).

Proof. Let us prove 1. \(\iff \) 2.

1. \(\Rightarrow \) 2. Let us assume that \(G \) is the internal direct product of the \(H_i \), which means that every element in \(G \) can be written uniquely as a product of elements in \(H_i \). Now let us take \(g \in H_1 H_2 \cdots H_{i-1}, \) which is uniquely written as \(g = h_1 h_2 \cdots h_{i-1} 1_{H_i} \cdots 1_{H_n}, h_j \in H_j \). On the other hand, \(g \in H_i \) thus \(g = 1_{H_i} \cdots 1_{H_{i-1}} g \) and by unicity of the representation, we have \(h_j = 1 \) for all \(j \) and \(g = \{1\} \).

2. \(\Rightarrow \) 1. Conversely, let us assume that \(g \in G \) can be written either

\[
g = h_1 h_2 \cdots h_n, \ h_j \in H_j,
\]

or

\[
g = k_1 k_2 \cdots k_n, \ k_j \in H_j.
\]

Recall that since all \(H_j \) are normal subgroups, then

\[
h_i h_j = h_j h_i, \ h_i \in H_i, \ h_j \in H_j.
\]

(If you cannot recall the argument, check out the proof of Proposition 1.18). This means that we can do the following manipulations:

\[
h_1 h_2 \cdots h_n = k_1 k_2 \cdots k_n
\]

\[
\iff \ h_2 \cdots h_n = (h_1^{-1} k_1) k_2 \cdots k_n \in H_i
\]

\[
\iff \ h_3 \cdots h_n = (h_1^{-1} k_1)(h_2^{-1} k_2) k_3 \cdots k_n
\]
and so on and so forth till we reach
\[h_n k_n^{-1} = (h_1^{-1} k_1) \cdots (h_{n-1}^{-1} k_{n-1}). \]

Since the left hand side belongs to \(H_n \) while the right hand side belongs to \(H_1 \ldots H_{n-1} \), we get that
\[h_n k_n^{-1} \in H_n \cap H_1 \ldots H_{n-1} = \{1\}, \]

implying that \(h_n = k_n \). We conclude the proof by iterating this process.

Let us get back to the case of two groups. We have seen above that we can endow the cartesian product of two groups \(H \) and \(K \) with a group structure by considering componentwise binary operation
\[(h_1, k_1)(h_2, k_2) = (h_1 h_2, k_1 k_2) \in H \times K.\]
The choice of this binary operation of course determines the structure of \(G = H \times K \), and in particular we have seen that the isomorphic copies of \(H \) and \(K \) in \(G \) are normal subgroups. Conversely in order to define an internal direct product, we need to assume that we have two normal subgroups.

We now consider a more general setting, where the subgroup \(K \) does not have to be normal (and will not be in general), for which we need to define a new binary operation on the cartesian product \(H \times K \). This will lead us to the definition of internal and external semi-direct product.

Recall that an automorphism of a group \(H \) is a bijective group homomorphism from \(H \) to \(H \). It is easy to see that the set of automorphisms of \(H \) forms a group with respect to the composition of maps and identity element the identity map \(\text{Id}_H \). We denote it by \(\text{Aut}(H) \).

Proposition 1.20. Let \(H \) and \(K \) be groups, and let \(\rho : K \to \text{Aut}(H), k \mapsto \rho_k \)

be a group homomorphism. Then the binary operation
\[(H \times K) \times (H \times K) \to (H \times K), ((h, k), (h', k')) \mapsto (h \rho_k(h'), kk')\]
endows \(H \times K \) with a group structure, with identity element \((1, 1)\).

Proof. First notice that the closure property is satisfied.

Identity. Let us show that \((1, 1)\) is the identity element. We have
\[(h, k)(1, 1) = (h \rho_k(1), k) = (h, k)\]
for all \(h \in H, k \in K \), since \(\rho_k \) is a group homomorphism. We also have
\[(1, 1)(h', k') = (\rho_1(h'), k') = (h', k')\]
for all \(h', k' \in K \), since \(\rho \) being a group homomorphism, it maps \(1_K \) to \(1_{\text{Aut}(H)} = 1_{\text{Id}_H} \).

(Inverse). Let \((h, k) \in H \times K\) and let us show that \((\rho_k^{-1}(h^{-1}), k^{-1})\) is the inverse of \((h, k)\). We have
\[
(h, k)(\rho_k^{-1}(h^{-1}), k^{-1}) = (hp_k(\rho_k^{-1}(h^{-1})), 1) = (hh^{-1}, 1) = (1, 1).
\]

We also have
\[
(\rho_k^{-1}(h^{-1}), k^{-1})(h, k) = (\rho_k^{-1}(h^{-1})\rho_k^{-1}(h), 1) = (\rho_k^{-1}, (h^{-1})\rho_k^{-1}(h), 1)
\]
using that \(\rho_k^{-1} = \rho_k^{-1} \) since \(\rho \) is a group homomorphism. Now
\[
(\rho_k^{-1}(h^{-1})\rho_k^{-1}(h), 1) = (\rho_k^{-1}(h^{-1}h), 1) = (\rho_k^{-1}(1), 1) = (1, 1)
\]
using that \(\rho_k^{-1} \) is a group homomorphism for all \(k \in K \).

Associativity. This is the last thing to check. On the one hand, we have
\[
[(h, k)(h', k')](h'', k'') = (hp_k(h'), kk')(h'', k''') = (hp_k(h')\rho_k'(h''), (kk')k''')
\]
while on the other hand
\[
(h, k)[(h', k')(h'', k''')] = (h, k)(h'\rho_k(h''), k'k''') = (hp_k(h'\rho_k'(h''), k'k''')).
\]
Since \(K \) is a group, we have \((kk')k''' = k(k'k'')\). We now look at the first component. Note that \(\rho_{kk'} = \rho_k \circ \rho_{k'} \) using that \(\rho \) is a group homomorphism, so that
\[
hp_k(h')\rho_{kk'}(h''') = hp_k(h')\rho_k(\rho_{kk'}(h''')).
\]
Furthermore, \(\rho_k \) is a group homomorphism, yielding
\[
hp_k(h')\rho_k(\rho_{kk'}(h''')) = hp_k(h'\rho_{kk'}(h''''))
\]
which concludes the proof.

We are now ready to define the first semi-direct product.

Definition 1.17. Let \(H \) and \(K \) be two groups, and let
\[
\rho : K \to \text{Aut}(H)
\]
be a group homomorphism. The set \(H \times K \) endowed with the binary operation
\[
((h, k), (h', k')) \mapsto (hp_k(h'), kk')
\]
is called an external semi-direct product of \(H \) and \(K \) by \(\rho \), denoted by \(H \times_\rho K \).
CHAPTER 1. GROUP THEORY

We can make observations similar to what we did for direct products. Namely, we can identify two isomorphic copies \bar{H} and \bar{K} of respectively H and K, given by

$$\bar{H} = \{(h, 1_k), h \in H\}, \bar{K} = \{(1_h, k), k \in K\},$$

and look at the properties of these subgroups.

- The subgroup $\bar{H} = \{(h, 1), h \in H\}$ is normal in $H \times_\rho K$, this can be seen by writing down the definition of normal subgroup. (We cannot claim the same for \bar{K}).
- We have $\bar{H} \bar{K} = H \times_\rho K$, since every element $(h, k) \in H \times_\rho K$ can be written as $(h, 1)(1, k)$ (indeed $(h, 1)(1, k) = (h\rho_1(1), k) = (h, k)$).
- We have $\bar{H} \cap \bar{K} = \{1\}$.

This motivates the definition of internal semi-direct products.

Definition 1.18. Let G be a group with subgroups H and K. We say that G is the internal semi-direct product of H and K if H is a normal subgroup of G, such that $HK = G$ and $H \cap K = \{1\}$. It is denoted by

$$G = H \rtimes K.$$

Example 1.15. The dihedral group D_n is the group of all reflections and rotations of a regular polygon with n vertices centered at the origin. It has order $2n$. Let a be a rotation of angle $2\pi/n$ and let b be a reflection. We have that

$$D_n = \{a^i b^j, \ 0 \leq i \leq n - 1, \ j = 0, 1\},$$

with

$$a^n = b^2 = (ba)^2 = 1.$$

We thus have that $\langle a \rangle = C_n$ and $\langle b \rangle = C_2$, where C_n denotes the cyclic group n. To prove that

$$D_n \cong C_n \rtimes C_2,$$

we are left to check that $\langle a \rangle \cap \langle b \rangle = \{1\}$ and that $\langle a \rangle$ is normal in D_n. The former can be seen geometrically (a reflection cannot be obtained by rotations) while the latter reduces to show that

$$bab^{-1} \in \langle a \rangle,$$

which can be checked using $b^2 = (ba)^2 = 1$.

Again similarly to the case of direct products, these assumptions guarantee that we can write uniquely elements of the internal semi-direct product. Let us repeat things explicitly.

Lemma 1.21. Let G be a group with subgroups H and K. Suppose that $G = HK$ and $H \cap K = \{1\}$. Then every element g of G can be written uniquely in the form hk, for $h \in H$ and $k \in K$.

1.6. DIRECT AND SEMI-DIRECT PRODUCTS

Proof. Since $G = HK$, we know that g can be written as hk. Suppose it can also be written as $h'k'$. Then $hk = h'k'$ so $h'^{-1}h = k'^{-1}k \in H \cap K = \{1\}$. Therefore $h = h'$ and $k = k'$.

The internal and external direct products were two sides of the same objects, so are the internal and external semi-direct products. If $G = H \times_{\rho} K$ is the external semi-direct product of H and K, then $\bar{H} = H \times \{1\}$ is a normal subgroup of G and it is clear that G is the internal semi-direct product of $H \times \{1\}$ and $\{1\} \times K$. This reasoning allows us to go from external to internal semi-direct products. The result below goes in the other direction, from internal to external semi-direct products.

Proposition 1.22. Suppose that G is a group with subgroups H and K, and G is the internal semi-direct product of H and K. Then $G \simeq H \times_{\rho} K$ where $\rho : K \rightarrow \text{Aut}(H)$ is given by $\rho_k(h) = khk^{-1}$, $k \in K$, $h \in H$.

Proof. Note that ρ_k belongs to $\text{Aut}(H)$ since H is normal.

By the above lemma, every element g of G can be written uniquely in the form hk, with $h \in H$ and $k \in K$. Therefore, the map

$$\varphi : H \times_{\rho} K \rightarrow G, \quad \varphi(h,k) = hk$$

is a bijection. It only remains to show that this bijection is a homomorphism.

Given (h, k) and (h', k') in $H \times_{\rho} K$, we have

$$\varphi((h,k)(h',k')) = \varphi((h\rho_k(h'), kk')) = \varphi(hkh'^{-1}, kk') = hkh'^{-1} = \varphi(h, k)\varphi(h', k').$$

Therefore φ is a group isomorphism, which concludes the proof.

In words, we have that every internal semi-direct product is isomorphic to some external semi-direct product, where ρ is the conjugation.

Example 1.16. Consider the dihedral group D_n from the previous example:

$$D_n \simeq C_n \rtimes C_2.$$

According to the above proposition, D_n is isomorphic to an external semi-direct product

$$D_n \simeq C_n \times_{\rho} C_2,$$

where

$$\rho : C_2 \rightarrow \text{Aut}(C_n),$$

maps to the conjugation in $\text{Aut}(C_n)$. Since C_n is abelian, we have explicitly that

$$1 \mapsto \rho_1 = \text{Id}_{C_n}, \quad b \mapsto \rho_b, \quad \rho_b(a) = a^{-1}.$$

Before finishing this section, note the following distinction: the external (semi-)direct product of groups allows to construct new groups starting from different abstract groups, while the internal (semi-)direct product helps in analyzing the structure of a given group.
| $|G|$ | G abelian | G non-abelian |
|-----|-------------|----------------|
| 1 | $\{1\}$ | - |
| 2 | C_2 | - |
| 3 | C_3 | - |
| 4 | C_4, $C_2 \times C_2$ | - |
| 5 | C_5 | - |
| 6 | $C_6 = C_3 \times C_2$ | $D_3 = C_3 \rtimes C_2$ |
| 7 | C_7 | - |
| 8 | C_8, $C_4 \times C_2$, $C_2 \times C_2 \times C_2$, $D_4 = C_4 \rtimes C_2$ |

Table 1.2: C_n denotes the cyclic group of order n, D_n the dihedral group

Example 1.17. Thanks to the new structures we have seen in this section, we can go on our investigation of groups of small orders. We can get two new groups of order 6 and 4 of order 8:

- $C_3 \times C_2$ is the direct product of C_3 and C_2. You may want to check that it is actually isomorphic to C_6.
- The dihedral group $D_3 = C_3 \times C_2$ is the semi-direct product of C_3 and C_2. We get similarly $D_4 = C_4 \rtimes C_2$.
- The direct product $C_4 \times C_2$ and the direct product of the Klein group $C_2 \times C_2$ with C_2.

The table actually gives an exact classification of groups of small order (except the missing non-abelian quaternion group of order 8), though we have not proven it.

1.7 Group action

Since we introduced the definition of group as a set with a binary operation which is closed, we have been computing things internally, that is inside a group structure. This was the case even when considering cartesian products of groups, where the first thing we did was to endow this set with a group structure.

In this section, we wonder what happens if we have a group and a set, which may or may not have a group structure. We will define a group action, that is a way to do computations with two objects, one with a group law, not the other one.

As a first result, we will prove the so-called Cayley’s theorem, whose proof will motivate the introduction of group action. Since the statement of this theorem uses permutation groups, we start by recalling the necessary definitions.

Definition 1.19. A *permutation* of a set S is a bijection on S. The set of all such functions (with respect to function composition) is a group called the *symmetric group* on S. We denote by S_n the symmetric group on n elements.
Example 1.18. Consider the symmetric group S_3 of permutations on 3 elements. It is given by

\[
\begin{align*}
 e & : 123 \rightarrow 123 \text{ or } () \\
 a & : 123 \rightarrow 213 \text{ or } (12) \\
 b & : 123 \rightarrow 132 \text{ or } (23) \\
 ab & : 123 \rightarrow 312 \text{ or } (132) \\
 ba & : 123 \rightarrow 231 \text{ or } (123) \\
 aba & : 123 \rightarrow 321 \text{ or } (13)
\end{align*}
\]

One can check that this is indeed a group. The notation (132) means that the permutation sends 1 to 3, 3 to 2, and 2 to 1.

Theorem 1.23. (Cayley’s Theorem.) Every group is isomorphic to a group of permutations.

Proof. Let S_G be the group of permutations of G. We will prove that every group is isomorphic to a subgroup of S_G. The idea is that each element $g \in G$ corresponds to a permutation of G, namely we need to define a map from G to S_G:

\[
\lambda : G \rightarrow S_G, \ g \mapsto \lambda(g) = \lambda_g
\]

and since λ_g is a bijection on G, we need to define what λ_g does:

\[
\lambda_g : G \rightarrow G, \ \lambda_g(x) = gx.
\]

For justifying that λ_g is indeed a bijection, it is enough to see that g^{-1} exists since G is a group (try to write down the definition of injection and surjection).

We are left to check that λ is an injective group homomorphism. Injectivity again comes from G being a group, for if $\lambda_g(x) = \lambda_h(x)$ for all $x \in G$, then it has to be true that $gx = hx$ when $x = 1$.

Now

\[
(\lambda(a) \circ \lambda(b))(x) = (\lambda_a \circ \lambda_b)(x) = a(bx) = \lambda_{ab}(x) = \lambda(ab)(x)
\]

for all x, so that $\lambda(a) \circ \lambda(b) = \lambda(ab)$ which concludes the proof.

Examples 1.19. 1. Consider the group \{0, 1\} of integers modulo 2. The group element 0 corresponds to the identity permutation, while the group element 1 corresponds to the permutation (12).

2. Let us consider the group \{0, 1, 2\} of integers modulo 3 to get a less simple example. Again 0 corresponds to the identity permutation, 1 corresponds to the permutation (123), and 2 to the permutation (132). To see that it makes sense, you may want to check that the arithmetic works similarly on both sides. For example, we can say that $1 + 1 = 2$ on the one hand, now on the other hand, we have $(123)(123) = (132)$.
3. One can check that the dihedral group D_3 of order 6 is isomorphic to S_3
(this can be done for example by working out the multiplication table for
each group).

The key point in the proof of Cayley’s Theorem is the way the function λ_g
is defined. We see that for $x \in G$, g “acts” (via λ_g) on x by multiplication.

Definition 1.20. The group G acts on the set X if for all $g \in G$, there is a
map
\[G \times X \to X, \ (g, x) \mapsto g \cdot x \]
such that

1. $h \cdot (g \cdot x) = (hg) \cdot x$ for all $g, h \in G$, for all $x \in X$.
2. $1 \cdot x = x$ for all $x \in X$.

The first condition says that we have two laws, the group law between ele-
ments of the group, and the action of the group on the set, which are compatible.

Examples 1.20. Let us consider two examples where a group G acts on itself.

1. Every group acts on itself by left multiplication. This is called the regular
action.

2. Every group acts on itself by conjugation. Let us write this action as
\[g \cdot x = gxg^{-1}. \]

Let us check the action is actually well defined. First, we have that
\[h \cdot (g \cdot x) = h \cdot (gxg^{-1}) = hgxg^{-1}h^{-1} = (hg)xg^{-1}h^{-1} = (hg) \cdot x. \]
1.7. GROUP ACTION

As for the identity, we get

\[1 \cdot x = 1x1^{-1} = x. \]

Similarly to the notion of kernel for a homomorphism, we can define the kernel of an action.

Definition 1.21. The kernel of an action \(G \times X \to X, \ (g, x) \mapsto g \cdot x \) is given by

\[\text{Ker} = \{ g \in G, \ g \cdot x = x \text{ for all } x \}. \]

This is the set of elements of \(G \) that fix everything in \(X \). When the group \(G \) acts on itself, that is \(X = G \) and the action is the conjugation, we have

\[\text{Ker} = \{ g \in G, \ gxg^{-1} = x \text{ for all } x \} = \{ g \in G, \ gx = xg \text{ for all } x \}. \]

This is called the center of \(G \), denoted by \(Z(G) \).

Definition 1.22. Suppose that a group \(G \) acts on a set \(X \). The orbit \(B(x) \) of \(x \) under the action of \(G \) is defined by

\[B(x) = \{ g \cdot x, \ g \in G \}. \]

This means that we fix an element \(x \in X \), and then we let \(g \) act on \(x \) when \(g \) runs through all the elements of \(G \). By the definition of an action, \(g \cdot x \) belongs to \(X \), so the orbit gives a subset of \(X \).

It is important to notice that orbits partition \(X \). Clearly, one has that \(X = \bigcup_{x \in X} B(x) \). But now, assume that one element \(x \) of \(X \) belongs to two orbits \(B(y) \) and \(B(z) \), then it means that \(x = g \cdot y = g' \cdot z \), which in turn implies, due to the fact that \(G \) is a group, that

\[y = g^{-1}g' \cdot z, \ z = (g')^{-1}g \cdot y. \]

In words, that means that \(y \) belongs to the orbit of \(z \), and vice-versa, \(z \) belongs to the orbit of \(y \), and thus \(B(y) = B(z) \). We can then pick a set of representatives for each orbit, and write that

\[X = \sqcup B(x), \]

where the disjoint union is taken over the set of representatives.

Definition 1.23. Suppose that a group \(G \) acts on a set \(X \). We say that the action is transitive, or that \(G \) acts transitively on \(X \) if there is only one orbit, namely, for all \(x, y \in X \), there exists \(g \in G \) such that \(g \cdot x = y \).

Definition 1.24. The stabilizer of an element \(x \in X \) under the action of \(G \) is defined by

\[\text{Stab}(x) = \{ g \in G, \ g \cdot x = x \}. \]
Given \(x \), the stabilizer \(\text{Stab}(x) \) is the set of elements of \(G \) that leave \(x \) fixed. One may check that this is a subgroup of \(G \). We have to check that if \(g, h \in \text{Stab}(x) \), then \(gh^{-1} \in \text{Stab}(x) \). Now

\[
(gh^{-1}) \cdot x = g \cdot (h^{-1} \cdot x)
\]

by definition of action. Since \(h \in \text{Stab}(x) \), we have \(h \cdot x = x \) or equivalently \(x = h^{-1} \cdot x \), so that

\[
g \cdot (h^{-1} \cdot x) = g \cdot x = x,
\]

which shows that \(\text{Stab}(x) \) is a subgroup of \(G \).

Examples 1.21.

1. The regular action (see the previous example) is transitive, and for all \(x \in X = G \), we have \(\text{Stab}(x) = \{1\} \), since \(x \) is invertible and we can multiply \(g \cdot x = x \) by \(x^{-1} \).

2. Let us consider the action by conjugation, which is again an action of \(G \) on itself \((X = G) \): \(g \cdot x = gxg^{-1} \). The action has no reason to be transitive in general, and for all \(x \in X = G \), the orbit of \(x \) is given by

\[
B(x) = \{gxg^{-1}, \; g \in G\}.
\]

This is called the **conjugacy class** of \(x \). Let us now consider the stabilizer of an element \(x \in X \):

\[
\text{Stab}(x) = \{g \in G, \; gxg^{-1} = x\} = \{g \in G, \; gx = xg\},
\]

which is the **centralizer** of \(x \), that we denote by \(C_G(x) \).

Note that we can define similarly the centralizer \(C_G(S) \) where \(S \) is an arbitrary subset of \(G \) as the set of elements of \(G \) which commute with everything in \(S \). The two extreme cases are: if \(S = \{x\} \), we get the centralizer of one element, if \(S = G \), we get the center \(Z(G) \).

Theorem 1.24. (The Orbit-Stabilizer Theorem). Suppose that a group \(G \) acts on a set \(X \). Let \(B(x) \) be the orbit of \(x \in X \), and let \(\text{Stab}(x) \) be the stabilizer of \(x \). Then the size of the orbit is the index of the stabilizer, that is

\[
|B(x)| = [G : \text{Stab}(x)].
\]

If \(G \) is finite, then

\[
|B(x)| = |G|/[\text{Stab}(x)].
\]

In particular, the size of the orbit divides the order of the group.

Proof. Recall first that \([G : \text{Stab}(x)] \) counts the number of left cosets of \(\text{Stab}(x) \) in \(G \), that is the cardinality of

\[
G/\text{Stab}(x) = \{g \text{Stab}(x), \; g \in G\}.
\]

Note that cosets of \(\text{Stab}(x) \) are well-defined since we saw that \(\text{Stab}(x) \) is a subgroup of \(G \). The idea of the proof is to build a function between the sets
1.7. GROUP ACTION

\[B(x) \text{ and } G/\text{Stab}(x) \] which is a bijection. That the cardinalities are the same will then follow.

Take \(y \in B(x) \), that is \(y = g \cdot x \) for some \(g \in G \). We define a map

\[f : B(x) \to G/\text{Stab}(x), \quad y = g \cdot x \mapsto g\text{Stab}(x). \]

Before checking that this map is a bijection, we need to check that it is well defined. Indeed, for a given \(y \), there is no reason for the choice of \(g \) to be unique (there is in general no bijection between \(G \) and \(B(x) \)). Suppose that

\[y = g_1 \cdot x = g_2 \cdot x \]

then

\[g_2^{-1}g_1 \cdot x = x \iff g_1\text{Stab}(x) = g_2\text{Stab}(x). \]

The equivalence is the characterization of having two equal cosets. This is exactly what we wanted: the image by \(f \) does not depend on the choice of \(g \), and if we choose two different \(g \)'s, their image falls into the same coset.

The surjectivity is immediate.

We conclude the proof by showing the injectivity. Let us assume that \(f(y_1) = f(y_2) \) for \(y_1 = g_1 \cdot x \in B(x) \), \(y_2 = g_2 \cdot x \in B(x) \). Thus

\[g_1\text{Stab}(x) = g_2\text{Stab}(x) \iff g_2^{-1}g_1 \in \text{Stab}(x) \iff g_2^{-1}g_1 \cdot x = x \iff g_1 \cdot x = g_2 \cdot x. \]

\[\square \]

Let \(G \) be a finite group. We consider again as action the conjugation \((X = G) \), given by: \(g \cdot x = gxg^{-1} \). Recall that orbits under this action are given by

\[B(x) = \{ gxg^{-1}, \; g \in G \}. \]

Let us notice that \(x \) always is in its orbit \(B(x) \) (take \(g = 1 \)). Thus if we have an orbit of size 1, this means that

\[gxg^{-1} = x \iff gx = xg \]

and we get an element \(x \) in the center \(Z(G) \) of \(G \). In words, elements that have an orbit of size 1 under the action by conjugation are elements of the center.

Recall that the orbits \(B(x) \) partition \(X \):

\[X = \bigsqcup B(x) \]

where the disjoint union is over a set of representatives. We get

\[|G| = \sum |B(x)| = |Z(G)| + \sum |B(x)| = |Z(G)| + \sum [G : \text{Stab}(x)], \]
where the second equality comes by splitting the sum between orbits with 1
element and orbits with at least 2 elements, while the third follows from the
Orbit-Stabilizer Theorem. By remembering that \(\text{Stab}(x) = C_G(x) \) when the
action is the conjugation, we can alternatively write
\[
|G| = |Z(G)| + \sum [G : C_G(x)].
\]
This formula is called the class equation.

Example 1.22. Consider the dihedral \(D_4 \) of order 8, given by
\[
D_4 = \{1, s, r, r^2, r^3, rs, r^2s, r^3s\},
\]
with \(s^2 = 1, r^4 = 1 \) and \(srs = r^{-1} \). We have that the center \(Z(D_4) \) of \(D_4 \)
is \(\{1, r^2\} \) (just check that \(r^2s = sr^2 \)). There are three conjugacy classes given by
\(\{r, r^3\}, \{rs, r^3s\}, \{s, r^2s\} \).
Thus
\[
|D_4| = 8 = |Z(D_4)| + |B(r)| + |B(rs)| + |B(s)|.
\]

The following result has many names: Burnside’s lemma, Burnside’s count-
ing theorem, the Cauchy-Frobenius lemma or the orbit-counting theorem. This
result is not due to Burnside himself, who only quoted it. It is attributed to
Frobenius.

Theorem 1.25. (Orbit-Counting Theorem). Let the finite group \(G \) act on
the finite set \(X \), and denote by \(X^g \) the set of elements of \(X \) that are fixed by \(g \),
that is \(X^g = \{x \in X, g \cdot x = x\} \). Then
\[
\text{number of orbits} = \frac{1}{|G|} \sum_{g \in G} |X^g|,
\]
that is the number of orbits is the average number of points left fixed by elements
of \(G \).

Proof. We have
\[
\sum_{g \in G} |X^g| = |\{(g, x) \in G \times X, g \cdot x = x\}|
\]
\[
= \sum_{x \in X} |\text{Stab}(x)|
\]
\[
= \sum_{x \in X} |G|/|B(x)|
\]
by the Orbit-Stabilizer Theorem. We go on:
\[
\sum_{x \in X} |G|/|B(x)| = |G| \sum_{x \in X} 1/|B(x)|
\]
\[
= |G| \sum_{B \in \text{set of orbits}} \sum_{x \in B} \frac{1}{|B|}
\]
\[
= |G| \sum_{B \in \text{set of orbits}} 1
\]
which concludes the proof. Note that the second equality comes from the fact that we can write X as a disjoint union of orbits.

\[\blacksquare\]

1.8 The Sylow theorems

We look at orders of groups again, but this time paying attention to the occurrence of prime factors. More precisely, we will fix a given prime p, look at the partial factorization of the group order n as $n = p^r m$ where p does not divide m, and study the existence of subgroups of order p or a power of p. In a sense, this is trying to establish some kind of converse for Lagrange’s Theorem. Recall that Lagrange’s Theorem tells that the order of a subgroup divides the order of the group. Here we conversely pick a divisor of the order of the group, and we try to find a subgroup with order the chosen divisor.

Definition 1.25. Let p be a prime. The group G is said to be a p-group if the order of each element of G is a power of p.

Examples 1.23. We have already encountered several 2-groups.

1. We have seen in Example 1.11 that the cyclic group C_4 has elements of order 1, 2, and 4, while the direct product $C_2 \times C_2$ has elements of order 1 and 2.

2. The dihedral group D_4 is also a 2-group.

Definition 1.26. If $|G| = p^r m$, where p does not divide m, then a subgroup P of order p^r is called a Sylow p-subgroup of G. Thus P is a p-subgroup of G of maximum possible size.

The first thing we need to check is that such a subgroup of order p^r indeed exists, which is not obvious. This will be the content of the first Sylow theorem. Once we have proven the existence of a subgroup of order p^r, it has to be a p-group, since by Lagrange’s Theorem the order of each element must divide p^r.

We need a preliminary lemma.

Lemma 1.26. If $n = p^r m$ where p is prime, then \(\binom{n}{p^r} \equiv m \mod p \). Thus if p does not divide m, then p does not divide \(\binom{n}{p^r} \).

Proof. We have to prove that

\[
\binom{n}{p^r} \equiv m \mod p,
\]

after which we have that if p does not divide m, the $m \not\equiv 0 \mod p$ implying that \(\binom{n}{p^r} \not\equiv 0 \mod p \) and thus p does not divide \(\binom{n}{p^r} \).

Let us use the binomial expansion of the following polynomial

\[
(x + 1)^{p^r} = \sum_{k=0}^{p^r} \binom{p^r}{k} x^{p^r-k} 1^k \equiv x^{p^r} + 1 \mod p
\]
where we noted that all binomial coefficients but the first and the last are divisible by p. Thus
\[(x + 1)^{p^r m} \equiv (x^{p^r} + 1)^m \pmod{p}\]
which we can expand again into
\[\sum_{k=0}^{p^r m} \binom{p^r m}{k} x^{p^r m - k} \equiv \sum_{k=0}^{m} \binom{m}{k} (x^{p^r})^{m-k} \pmod{p}.\]

We now look at the coefficient of x^{p^r} on both sides:
- on the left, take $k = p^r(m - 1)$, to get $\binom{p^r m}{p^r}$,
- on the right, take $k = m - 1$, to get $\binom{m}{m-1} = m$.

The result follows by identifying the coefficients of x^{p^r}. \qed

We are ready to prove the first Sylow Theorem.

Theorem 1.27. (1st Sylow Theorem). Let G be a finite group of order $p^r m$, p a prime such that p does not divide m, and r some positive integer. Then G has at least one Sylow p-subgroup.

Proof. The idea of the proof is to actually exhibit a subgroup of G of order p^r. For that, we need to define a clever action of G on a carefully chosen set X.

Take the set
\[X = \{\text{subsets of } G \text{ of size } p^r\}\]
and for action that G acts on X by left multiplication. This is clearly a well-defined action. We have that
\[|X| = \binom{p^r m}{p^r}.\]
which is not divisible by \(p \) (by the previous lemma). Recall that the action of
\(G \) on \(X \) induces a partition of \(X \) into orbits:

\[
X = \sqcup B(S)
\]

where the disjoint union is taken over a set of representatives. Be careful that
here \(S \) is an element of \(X \), that is \(S \) is a subset of size \(p^r \). We get

\[
|X| = \sum |B(S)|
\]

and since \(p \) does not divide \(|X|\), it does not divide \(\sum |B(S)| \), meaning that there is
at least one \(S \) for which \(p \) does not divide \(|B(S)|\). Let us pick this \(S \), and
denote by \(P \) its stabilizer.

The subgroup \(P \) which is thus by choice the stabilizer of the subset \(S \in X \)
of size \(p^r \) whose orbit size is not divisible by \(p \) is our candidate: we will prove
it has order \(p^r \).

\[
|P| \geq p^r.
\]

Let us use the Orbit-Stabilizer Theorem, which tells us that

\[
|B(S)| = |G|/|P| = p^r m/|P|.
\]

By choice of the \(S \) we picked, \(p \) does not divide \(|B(S)|\), that is \(p \) does
not divide \(p^r m/|P| \) and \(|P| \) has to be a multiple of \(p^r \), or equivalently \(p^r \)
divides \(|P|\).

\[
|P| \leq p^r.
\]

Let us define the map \(\lambda_x, x \in S, \) by

\[
\lambda_x : P \to S, \ g \mapsto \lambda_x(g) = gx.
\]

In words, this map goes from \(P \), which is a subgroup of \(G \), to \(S \), which is
an element of \(X \), that is a subset of \(G \) with cardinality \(p^r \). Note that this
map is well-defined since \(gx \in S \) for any \(x \in S \) and any \(g \in P \) by definition
of \(P \) being the stabilizer of \(S \). It is also clearly injective (\(gx = hx \) implies
\(g = h \) since \(x \) is an element of the group \(G \) and thus is invertible). If we
have an injection from \(P \) to \(S \), that means \(|P| \leq |S| = p^r \).

\[\square\]

Corollary 1.28. (Cauchy Theorem). If the prime \(p \) divides the order of \(G \),
then \(G \) has an element of order \(p \).

Proof. Let \(P \) be a Sylow \(p \)-subgroup of \(G \) (which exists by the 1st Sylow Theorem),
and pick \(x \neq 1 \) in \(P \). The order \(|x|\) of \(x \) is a power of \(p \) by definition of a
\(p \)-group, say \(|x| = p^{k-1} \). Then \(x^{p^{k-1}} \) has order \(p \). \[\square\]

The above corollary gives some converse to Lagrange’s Theorem. The one
below gives an alternative definition of a finite \(p \)-group. It is tempting to use it
as a definition of \(p \)-group, however it cannot be used for infinite groups.
Corollary 1.29. A finite group G is a p-group if and only if the order of G is a power of p.

Proof. If the order of G is not a power of p, then it is divisible by some other prime q, in which case G contains an element of order q by Cauchy’s Theorem, which contradicts the definition of p-group.

The converse is clear using Lagrange’s Theorem.

Now that we know that at least one Sylow p-subgroup exists, let us derive a result on the number n_p of Sylow p-subgroups in a group G.

We need again a preliminary lemma.

Lemma 1.30. Let H and K be arbitrary finite subgroups of a group G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proof. Consider the map

$$f : H \times K \to HK, \ (h,k) \mapsto hk.$$

Since f is surjective, $|HK| \leq |H \times K| < \infty$ since H and K are finite, and thus HK is finite. Let h_1k_1, \ldots, h_dk_d be the distinct elements of HK. Then $H \times K$ is the disjoint union of the $f^{-1}(h_ik_i)$, $i = 1, \ldots, d$. Now we can check that

$$f^{-1}(hk) = \{(hg, g^{-1}k), \ g \in H \cap K\}$$

and this set has cardinality

$$|f^{-1}(hk)| = |H \cap K|.$$

Thus

$$|H \times K| = d|H \cap K|$$

which concludes the proof.
Theorem 1.31. (2nd Sylow Theorem). Let G be a finite group of order p^rm, p a prime such that p does not divide m, and r some positive integer. Denote by n_p the number of Sylow p-subgroups of G. Then

$$ n_p \equiv 1 \mod p. $$

Proof. Consider the set

$$ X = \{ \text{all Sylow } p - \text{subgroups of } G \} $$

whose cardinality $|X|$ is denoted by n_p. By the 1st Sylow Theorem, this set is non-empty and there exists at least one Sylow p-subgroup P in X, whose order is p^r. We can thus let P act on X by conjugation, i.e., $g \cdot Q = gQg^{-1}$, $g \in P$, $Q \in X$. Note that in the case where P is the only Sylow p-subgroup, then we can take $Q = P$.

By the Orbit-Stabilizer Theorem, we have that the orbit $B(Q)$ of any Sylow p-subgroup Q in X has cardinality

$$ |B(Q)| = |P|/|\text{Stab}(Q)| = p^r/|\text{Stab}(Q)|. $$

In particular, the size of an orbit of any Sylow p-subgroups divides p^r, meaning it has to be either 1 or a power of p.

Let us recall that the set X is partitioned by the orbits $B(Q)$ under the action of P, so that the cardinality of X is:

$$ |X| = \sum |B(Q)| = \sum |B(Q')| + \sum |B(Q'')| $$

where Q' and Q'' denote subgroups whose orbit has respectively one element or at least two elements. Since p divides the second sum, we have

$$ |X| \equiv \text{number of orbits of size 1} \mod p. $$

To conclude the proof, we thus have to show that there is only one Sylow p-subgroup whose orbit has size 1, namely P itself (it is clear that P has an orbit of size 1, since conjugating P by itself will not give another subgroup).

Let us assume there is another Sylow p-subgroup Q whose orbit has only one element, namely (recall that one element is always in its orbit):

$$ gQg^{-1} = Q, \ g \in P, $$

which translates into

$$ gQ = Qg \ \text{for all } g \in P \iff PQ = QP. $$

This easily implies that PQ is a subgroup of G, and thus by the previous lemma

$$ |PQ| = \frac{p^rp^r}{|P \cap Q|} $$
implying that $|PQ|$ is a power of p, say p^r for some c which cannot be bigger than r, since $|G| = p^r m$. Thus

$$p^r = |P| \leq |PQ| \leq p^r$$

so that $|PQ| = p^r$ and thus $|P| = |PQ|$, saying that Q is included in P. But both Q and P have same cardinality of p^r, so $Q = P$. \qed}

The third of the Sylow Theorems tells us that all Sylow p-subgroups are conjugate.

Theorem 1.32. (3rd Sylow Theorem). Let G be a finite group of order $p^r m$, p a prime such that p does not divide m, and r some positive integer. Then all Sylow p-subgroups are conjugate.

Proof. Let P be a Sylow p-subgroup of G and let R be a p-group of G. We will prove that R (being a p-group in general) is contained in a conjugate of P.

Let R act by multiplication on the set Y of left cosets of P:

$$Y = \{gP, \ g \in G\}.$$

It is a well-defined action (it is multiplication in the group G).

We want to prove that there is an orbit of size 1 under this action. By Lagrange’s Theorem, we know that

$$|Y| = |G|/|P| = \frac{p^r m}{p^r} = m$$

and thus p does not divide $|Y|$ by assumption on m. By writing that we have a partition of Y by its orbits, we get

$$|Y| = \sum |B(y)|$$

and there exists one orbit $B(y)$ whose size is not divisible by p. By the Orbit-Stabilizer Theorem, we have that the size of every orbit divides $|R|$, which has order a power of p (by a corollary of the 1st Sylow Theorem), so every orbit size must divide p, which gives as only possibility that there is an orbit of size 1.

Let $gP \in Y$ be the element whose orbit size is 1. We have

$$h \cdot gP = gP$$

for $h \in R$, since gP belongs to its orbit. Thus

$$g^{-1}hg \in P \iff h \in gp^{-1}$$

for all h in R. We have just proved that the p-group R is contained in a conjugate of P.

All we needed for the proof is that R is a p-group, so the same proof holds for the case of a Sylow p-subgroup, for which we get that R is contained in a conjugate of P, and both have same cardinality, which concludes the proof.

We will use the fact that the proof works for R a p-group in general for proving one corollary. \qed
1.9. SIMPLE GROUPS

Corollary 1.33. 1. Every p-subgroup of G is contained in a Sylow p-subgroup.

2. The number n_p of Sylow p-subgroups divides m.

Proof. 1. Now we know that if P is a Sylow p-subgroup, then so is gPg^{-1}, $g \in G$, by the above theorem. The proof of the theorem itself shows that any p-group is included in gPg^{-1} and we are done.

2. Let the group G act by conjugation on the set of its subgroups. In particular, G acts on the Sylow p-subgroup P, and the orbit of P has size the number of Sylow p-subgroups in G, denoted by n_p. By the Orbit-Stabilizer Theorem, n_p divides $|G| = p^r m$. But p cannot be a prime factor of n_p, since $n_p \equiv 1 \mod p$, from which it follows that n_p must divide m.

\]

1.9 Simple groups

We will now see a few applications of the Sylow Theorems, in particular to determine the structure of so-called simple groups.

Definition 1.27. A group G is simple if $G \neq \{1\}$ and the only normal subgroups of G are G itself and $\{1\}$.

Finite simple groups are important because in a sense they are building blocks of all finite groups, similarly to the way prime numbers are building blocks of the integers. This will be made clearer in the coming section by the Jordan-Hölder Theorem.

The case of simple abelian groups is easy to understand. Suppose that G is a simple abelian group. Since G is not $\{1\}$, take $x \neq 1$ in G. Now G being abelian, all its subgroups are normal. On the other hand, G being simple, its only normal subgroups are $\{1\}$ and itself, leaving as only solution that G has only two subgroups, namely $\{1\}$ and G. Thus G has to be a cyclic group of prime order.

We now start looking at non-abelian simple groups. We start with some preliminary results.

Proposition 1.34. If P is a non-trivial finite p-group, then P has a nontrivial center.

Proof. Let P act on itself by conjugation. The orbits of this action are the conjugacy classes of P, and we have that x belongs to an orbit of size 1 if and only if x belongs to the center $Z(P)$.

By the Orbit-Stabilizer, the size of any orbit must divide $|P|$, which is a power of p by a corollary of the 1st Sylow Theorem.

If it were true that the center is trivial, that is $Z(P) = \{1\}$, then that means there is only one orbit of size 1, and thus all the other orbits must have size that divides p, namely they are congruent to 0 mod p. Thus

$$|P| = |Z(P)| + \sum |B| \equiv 1 \mod p,$$
where the sum is over orbits of size at least 2. This is clearly a contradiction, which concludes the proof.

Lemma 1.35. The group P is a normal Sylow p-subgroup if and only if P is the unique Sylow p-subgroup of G.

Proof. We know from the 3rd Sylow Theorem that the Sylow p-subgroups form a single conjugacy class. Then P is the unique Sylow p-subgroup means that P is the only element in the conjugacy class, and thus it satisfies

$$gPg^{-1} = P$$

for every $g \in G$, which exactly means that P is a normal subgroup of G.

Thanks to the two above results, we can now prove that a non-abelian simple group must have more than one Sylow p-subgroup.

Proposition 1.36. Let G be a finite group which is non-abelian and simple. If the prime p divides $|G|$, then the number n_p of Sylow p-subgroups is strictly bigger than 1.

Proof. Let us look at the prime factors appearing in the order of G.

- If p is the only prime factor of $|G|$, then $|G|$ must be a power of p, that is G is a non-trivial p-group (it is non-trivial by definition of simple and a p-group by a corollary of the 1st Sylow Theorem). Now the above proposition tells us that its center $Z(G)$ is non-trivial as well. Since $Z(G)$ is a normal subgroup of G and G is simple, it must be that $G = Z(G)$, which contradicts the assumption that G is non-abelian.

- We then know that $|G|$ is divisible by at least two distinct primes. So if P is a Sylow p-subgroup, then

$$\{1\} < P < G,$$

where the second inclusion is strict since the order of G is divisible by two primes.

If there were only one Sylow p-subgroup, namely $n_p = 1$, then this Sylow p-subgroup would be normal by the above lemma, which contradicts the simplicity of G.

Let us see if we can be more precise by refining the assumptions on the order of the group G we consider. The group G can be either abelian or non-abelian, though the results on simplicity are more interesting for non-abelian groups.

Proposition 1.37. Let G be a group of order pq, where p and q are distinct primes.
1.9. SIMPLE GROUPS

1. If \(q \not\equiv 1 \mod p \), then \(G \) has a normal Sylow \(p \)-subgroup.

2. If both \(q \not\equiv 1 \mod p \) and \(p \not\equiv 1 \mod q \), then \(G \) is cyclic.

3. \(G \) is not simple.

Proof.

1. By Lemma 1.35, saying that \(G \) has a normal Sylow \(p \)-subgroup is the same as saying that there is a unique Sylow \(p \)-subgroup. This is now indeed the case, since the number \(n_p \) of Sylow \(p \)-subgroups has to satisfy both \(n_p \equiv 1 \mod p \) and \(n_p | q \) by the Sylow Theorems. Since \(q \) is prime, \(n_p \) is either 1 or \(q \). It cannot be that \(n_p = q \), since it would imply that \(q \equiv 1 \mod p \) which contradicts the assumption.

2. By the previous point, the group \(G \) has a normal Sylow \(p \)-subgroup \(P \) and a normal Sylow \(q \)-subgroup \(Q \), both of them cyclic (since they are of prime order). Let us write them respectively \(P = \langle x \rangle \) and \(Q = \langle y \rangle \). Since both \(P \) and \(Q \) are normal, with \(P \cap Q = \{1\} \), we have that \(xy = yx \) (we have seen that before, but the argument goes like that: take the element \(xyx^{-1}y^{-1} \) and show that it belongs to \(P \cap Q \) by normality of \(P \) and \(Q \)). Thanks to this commutativity property, we have that \((xy)^n = x^n y^n \) and the order of \(xy \) is \(pq \), showing that \(G \) is cyclic with generator \(xy \).

3. Without loss of generality, we can assume that \(p > q \) so that \(p \) does not divide \(q - 1 \) which can be rewritten as

\[
q \not\equiv 1 \mod p.
\]

By the first point, we know that \(G \) has a normal Sylow \(p \)-group, and thus \(G \) cannot be simple.

Here is another family of groups which are not simple. The proof contains an interesting combinatorial argument!

Proposition 1.38. Let \(G \) be a group of order \(|G| = p^2 q \) where \(p \) and \(q \) are two distinct primes. Then \(G \) contains either a normal Sylow \(p \)-subgroup or a normal Sylow \(q \)-subgroup. In particular, \(G \) is not simple.

Proof. Recall that having a normal Sylow \(p \)-subgroup (resp. \(q \)-subgroup) is the same as saying there is a unique Sylow \(p \)-subgroup (resp. \(q \)-subgroup). Suppose that the claim is not true, that is both the number of Sylow \(p \)-subgroups \(n_p \) and the number of Sylow \(q \)-subgroups \(n_q \) are bigger than 1. Let us start this proof by counting the number of elements of order \(q \) in \(G \).

If a Sylow \(q \)-subgroup has order \(q \), it is cyclic and can be generated by any of its elements which is not 1. This gives \(q - 1 \) elements of order \(q \) per Sylow \(q \)-subgroup of \(G \). Conversely, if \(y \) has order \(q \), then the cyclic group it generates is a Sylow \(q \)-subgroup, and any two distinct Sylow \(q \)-subgroups have trivial intersection. Thus

\[
\text{number of elements of order } q = n_q (q - 1).
\]
Table 1.3: C_p refers to a cyclic group of prime order, and n_p counts the number of Sylow p-subgroups. The groups of order pq and p^2q are also not simple for abelian groups and are included in other groups.

Now we know from the Sylow Theorems that $n_q | p^2$, thus n_q is either p of $p^2 \ (n_q = 1$ is ruled out by the fact that we do a proof by contradiction).

- $n_q = p^2$: then the number of elements of order NOT q is

 $$\frac{p^2q - p^2(q - 1)}{q} = p^2.$$

 On the other hand, if P is a Sylow p-subgroup, then it also contains p^2 elements, and all of them have order not q, so that we can conclude that P actually contains all elements of order not q, which implies that we have only one Sylow p-subgroup, yielding the wanted contradiction.

- $n_q = p$: We know from Sylow Theorems that

 $$n_q \equiv 1 \mod q \Rightarrow p \equiv 1 \mod q \Rightarrow p > q,$$

 but also that

 $$n_p \mid q$$

 and since q is prime, that leaves $n_p = 1$ or $n_p = q$ and thus $n_p = q$. As before

 $$n_p \equiv 1 \mod p \Rightarrow q \equiv 1 \mod p \Rightarrow q > p.$$

 This concludes the proof.

We have thus shown that the situation is easy for simple abelian groups. For non-abelian groups, we have seen two cases ($|G| = pq$ and $|G| = p^2q$) where groups are not simple. To find a non-abelian group which is simple, one has to go to groups of order at least 60. Indeed, it has been proven that the smallest non-abelian simple group is the alternating group A_5 of order 60, this is the group of even permutations of a finite set. This result is attributed to Galois (1831). It is not an easy task to determine the list of simple groups, and in fact, the classification of finite simple groups was only accomplished in 1982 (there has been some controversy as to whether the proof is correct, given its length - tens of thousands of pages - and complexity).
1.10 The Jordan-Hölder Theorem

We have mentioned when introducing simple groups in the previous section that they can be seen as building blocks for decomposing arbitrary groups. This will be made precise in this section.

Definition 1.28. Let G be a group, and let G_0, \ldots, G_n be subgroups of G such that

1. $G_n = \{1\}$ and $G_0 = G$,
2. $G_{i+1} \unlhd G_i$, $i = 0, \ldots, n - 1$.

Then the series

$$\{1\} = G_n \unlhd G_{n-1} \unlhd \cdots \unlhd G_0 = G$$

is called a subnormal series for G.

Suppose that G_{i+1} is not a maximal normal subgroup of G_i, then we can refine the subnormal series by inserting a group H such that $G_{i+1} \lhd H \lhd G_i$, and we can repeat this process hoping it will terminate (it will if G is finite, it may not otherwise).

Definition 1.29. Let G be a group, and let G_0, \ldots, G_n be subgroups of G such that

1. $G_n = \{1\}$ and $G_0 = G$,
2. $G_{i+1} \lhd G_i$, $i = 0, \ldots, n - 1$, such that G_{i+1} is a maximal normal subgroup of G_i.

Then the series

$$\{1\} = G_n \lhd G_{n-1} \lhd \cdots \lhd G_0 = G$$

is called a composition series for G. The factor groups G_i/G_{i+1} are called the factors of the composition series, whose length is n.

Another way of stating the condition G_{i+1} is a maximal normal subgroup of G_i is to say that G_i/G_{i+1} is simple, $i = 0, \ldots, n - 1$. To see that asks a little bit of work. This result is sometimes called the 4th isomorphism theorem.

Theorem 1.39. (Correspondence Theorem). Let N be a normal subgroup of G and let H be a subgroup of G containing N. Then the map

$$\psi: \{\text{subgroups of } G \text{ containing } N\} \to \{\text{subgroups of } G/N\}, \ H \mapsto \psi(H) = H/N$$

is a bijection. Furthermore, H is a normal subgroup of G if and only if H/N is a normal subgroup of G/N.

Proof. We first prove that ψ is a bijection.

Injectivity. If $H_1/N = H_2/N$, then cosets in each subgroup are the same, that is, for any $h_1 \in H_1$, we have $h_1N = h_2N$ for some $h_2 \in H_2$, implying that $h_2^{-1}h_1 \in N \subseteq H_2$ and thus $h_1 \in H_2$, showing that $H_1 \subseteq H_2$. By repeating the same argument but reverting the role of H_1 and H_2, we get $H_2 \subseteq H_1$ and thus $H_1 = H_2$.

Surjectivity. Let Q be a subgroup of G/N and let $\pi : G \rightarrow G/N$ be the canonical projection. Then

$$\pi^{-1}(Q) = \{a \in G, aN \in Q\}.$$

This is a subgroup of G containing N and

$$\psi(\pi^{-1}(Q)) = \{aN, aN \in Q\} = Q.$$

We are left to prove that $H \leq G \iff H/N \leq G/N$. Assume thus that $H \leq G$. For any $a \in G$, we have to show that

$$(aN)(H/N)(aN)^{-1} = H/N.$$

Now for any $hN \in H/N$, we have

$$(aN)(hN)(aN)^{-1} = (aha^{-1})N \in H/N$$

and we are done.

Conversely, suppose that $H/N \leq G/N$. Consider the homomorphism

$$a \mapsto (aN)(H/N)$$

which is the composition of the canonical projection π of G onto G/N, and the canonical projection of G/N onto $(G/N)/(H/N)$ (the latter makes sense since $H/N \leq G/N$). We now want to show that H is the kernel of this map, which will conclude the proof since the kernel of a group homomorphism is normal.

An element a is in the kernel if and only if $(aN)(H/N) = H/N$, that is if and only if $aN \in H/N$, or equivalently $aN = hN$ for some $h \in H$. Since N is contained in H, this means aN is in H and thus so is a, which is what we wanted to prove.

Let us now go back to the composition series of G. If G/N is simple, then by definition it has only trivial normal subgroups, namely N and G/N. Now using the Correspondence Theorem, the normal subgroups N and G/N exactly correspond to the normal subgroups N and G in G, which shows that N is the maximal normal subgroup of G.

The Jordan-Hölder Theorem will tell us that if G has a composition series, then the resulting composition length n and the simple composition factors G_i/G_{i+1} are unique up to isomorphism and rearrangement. This for example shows that if G_1 and G_2 are two groups with different composition factors, then they cannot be isomorphic.
Lemma 1.40. Let G be a group with composition series

$$\{1\} = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_0 = G.$$

Then for any normal subgroup K of G, if we remove the duplicates from the series

$$\{1\} = K \cap G_n \triangleleft K \cap G_{n-1} \triangleleft \cdots \triangleleft K \cap G_0 = K,$$

the result is a composition series for K of length at most n.

Proof. We need to show that $K \cap G_{i+1} \triangleleft K \cap G_i$ and that the group $(K \cap G_i)/(K \cap G_{i+1})$ is simple for all i.

Let $x \in K \cap G_i$ and $g \in K \cap G_{i+1}$. Then $xgx^{-1} \in K$ since by assumption K is a normal subgroup of G, and $xgx^{-1} \in G_{i+1}$ since $G_{i+1} \triangleleft G_i$. Thus $xgx^{-1} \in K \cap G_{i+1}$ which proves that $K \cap G_{i+1} \triangleleft K \cap G_i$.

We now look at the quotient group $(K \cap G_i)/(K \cap G_{i+1})$. Since G_i/G_{i+1} is simple, G_{i+1} is a maximal normal subgroup of G_i, and thus the only normal subgroups of G_i that contain G_{i+1} are G_i and G_{i+1}.

Recall that $K \cap G_i$ is normal in G_i (it is the kernel of the canonical projection of G to G/K restricted to G_i), so that we get

$$G_{i+1} \triangleleft (K \cap G_i)G_{i+1} \triangleleft G_i.$$

For the first normal inclusion, compute that for $kg \in (K \cap G_i)G_{i+1}$ we have

$$kgG_{i+1}g^{-1}k^{-1} = kG_{i+1}k^{-1} \subseteq G_{i+1}$$

since $k \in G_i$ and G_{i+1} is normal in G_i. For the second normal inclusion, we have for $g \in G_i$ that

$$g(K \cap G_i)G_{i+1}g^{-1} = (K \cap G_i)gG_{i+1}g^{-1}$$

since $K \cap G_i$ is normal in G_i and

$$(K \cap G_i)gG_{i+1}g^{-1} \subseteq (K \cap G_i)G_{i+1}$$

since $G_{i+1} \triangleleft G_i$.

Thus either $G_{i+1} = (K \cap G_i)G_{i+1}$ or $(K \cap G_i)G_{i+1} = G_i$. Using the second isomorphism theorem (with $G_{i+1} \triangleleft G_i$ and $(K \cap G_i) \triangleleft G_i$, we have

$$(K \cap G_i)G_{i+1}/G_{i+1} \cong (K \cap G_i)/(K \cap G_i \cap G_{i+1}) = (K \cap G_i)/(K \cap G_{i+1}).$$

We can see that if $G_{i+1} = (K \cap G_i)G_{i+1}$, then $K \cap G_i = K \cap G_{i+1}$ and we have a duplicate to remove. If $(K \cap G_i)G_{i+1} = G_i$, then

$$G_i/G_{i+1} \cong (K \cap G_i)/(K \cap G_{i+1})$$

and thus $(K \cap G_i)/(K \cap G_{i+1})$ is simple.
\qed
Theorem 1.41. (Jordan-Hölder Theorem). Let G be a group that has a composition series. Then any two composition series for G have the same length. Moreover, if

$$\{1\} = G_n \vartriangleleft G_{n-1} \vartriangleleft \cdots \vartriangleleft G_0 = G$$

and

$$\{1\} = H_n \vartriangleleft H_{n-1} \vartriangleleft \cdots \vartriangleleft H_0 = G,$$

are two composition series for G, there exists a permutation τ such that $G_i/G_{i+1} \simeq H_{\tau(i)}/H_{\tau(i)+1}$.

Proof. The proof will be on induction on the length of a composition series. Suppose that G is a group with a composition series of length 1. Then the subnormal series

$$G \triangleright \{1\}$$

cannot be refined, so it must be a composition series. In particular $G \simeq G/\{1\}$ so G is simple. This is also the only composition series for G and so all the assertions are true for length 1.

Suppose now that $n > 1$ and that the claims are true for composition series of length up till $n - 1$. Let G be a group with composition series of length n, say

$$\{1\} = G_n \vartriangleleft G_{n-1} \vartriangleleft \cdots \vartriangleleft G_0 = G$$

(so that $G_i \neq G_{i+1}$ for each i). Now let

$$\{1\} = H_m \vartriangleleft H_{m-1} \vartriangleleft \cdots \vartriangleleft H_0 = G$$

be a composition series for G (again $H_i \neq H_{i+1}$ for each i).

We first have to show that $m = n$ after which we discuss the unicity of the decomposition.
1.10. **THE JORDAN-HÖLDER THEOREM**

(Proof that $m = n$). The idea of the proof goes as follows: to use the induction hypothesis, we need to get a composition series of length smaller than n, that is, we need to identify the first composition factors, which we will use the above lemma. Concretely, we first exclude the case when $G_1 = H_1$, then compute a composition series of length $n - 2$ for $H_1 \cap G_1$, which will indeed be the second composition factor. We then use the second composition series of G to get another composition series for $H_1 \cap G_1$ whose length depends on m, that we can compare to the known one.

If $G_1 = H_1$, then by the induction hypothesis applied to G_1, we have $n - 1 = m - 1$, we have a suitable permutation τ of the $n - 1$ factors, and we are done.

Suppose then that $H_1 \neq G_1$. Since both G_1 and H_1 are maximal normal in G, we see that $H_1 \triangleleft G_1 H_1 \triangleleft G$ with $H_1 \neq G_1 H_1$ since we assumed $H_1 \neq G_1$. Thus $G_1 H_1 = G$, from which we conclude by the 2nd isomorphism theorem that

$$G_1 H_1 / H_1 \cong G / H_1 \cong G_1 / (H_1 \cap G_1).$$

Since G / H_1 is simple, we get that $G_1 / (H_1 \cap G_1)$ is simple as well. Now by the above lemma, upon removing duplicates from the series

$$\{1\} = H_1 \cap G_n \trianglelefteq \cdots \trianglelefteq H_1 \cap G_0 = H_1,$$

we get a composition series for H_1 of length at most n and thus upon removing duplicates

$$\{1\} = H_1 \cap G_n \trianglelefteq \cdots \trianglelefteq H_1 \cap G_1$$

is a composition series for $H_1 \cap G_1$ of length at most $n - 1$. Since $G_1 / (H_1 \cap G_1)$ is simple, it follows that upon removing duplicates

$$\{1\} = H_1 \cap G_n \trianglelefteq \cdots \trianglelefteq H_1 \cap G_1 \triangleleft G_1$$

is a composition series for G_1. But then

$$G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n = \{1\}$$

and

$$G_1 \triangleright H_1 \cap G_1 \triangleright H_1 \cap G_2 \triangleright \cdots \triangleright H_1 \cap G_n = \{1\}$$

are both composition series for G_1, with the first series of length $n - 1$. By induction hypothesis, both series have the same length. Since $G_1 \neq H_1 \cap G_1$ (recall that we assumed $H_1 \neq G_1$), any duplication must occur later in the series. Let

$$G_1 = K_1 \triangleright K_2 = H_1 \cap G_1 \triangleright K_3 \triangleright \cdots \triangleright K_n = \{1\}$$

denote the composition series for G_1 of length $n - 1$ that results from removing the duplicates. By hypothesis, there exists a permutation α such that $G_i / G_{i+1} \cong K_{\alpha(i)} / K_{\alpha(i)+1}$ for each $i = 1, \ldots, n - 1$. Set α not to move the index 0, then

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n = \{1\}$$
and
\[G = K_0 \triangleright G_1 = K_1 \triangleright K_2 = H_1 \cap G_1 \triangleright K_3 \triangleright \cdots \triangleright K_n = \{1\} \]
are composition series of length \(n \) for \(G \) and \(\alpha \) is a permutation such that \(G_i/G_{i+1} \simeq K_{\alpha(i)}/K_{\alpha(i)+1} \) for each \(i = 0, \ldots, n-1 \). Moreover, we have found a composition series for \(H_1 \cap G_1 \) of length \(n - 2 \).

Let us now repeat similar computations for the composition series
\[G = H_0 \triangleright H_1 \triangleright \cdots \triangleright H_m = \{1\} \]
and the normal subgroup \(G_1 \) of \(G \). Again by the above lemma, upon removing the duplicates from the series
\[G_1 = H_0 \cap G_1 \triangleright H_1 \cap G_1 \triangleright \cdots \triangleright H_m \cap G_1 = \{1\} \]
we obtain a composition series for \(G_1 \), so that upon removing the duplicates
\[H_1 \cap G_1 \triangleright \cdots \triangleright H_m \cap G_1 = \{1\} \]
yields a composition series for \(H_1 \cap G_1 \). Now since \(H_1 \cap G_1 \) has a composition series of length \(n - 2 \), namely
\[K_2 = H_1 \cap G_1 \triangleright \cdots \triangleright K_n = \{1\}, \]
we apply the induction hypothesis to \(H_1 \cap G_1 \) to conclude that all composition series of \(H_1 \cap G_1 \) have length \(n - 2 \), and so in particular the preceding composition series
\[H_1 \cap G_1 \triangleright \cdots \triangleright H_m \cap G_1 = \{1\} \]
has length \(n - 2 \). We cannot conclude yet, since we do not know how many terms there are in function of \(m \) in the above composition series (we need to get rid of the duplicates).

Since we know from the 2nd isomorphism theorem that \(H_1/(H_1 \cap G_1) \simeq H_1G_1/G_1 = G_0/G_1 \), which is a simple group, it follows that \(H_1/(H_1 \cap G_1) \) is simple. Thus upon the removal of the duplicates from
\[H_1 \triangleright H_1 \cap G_1 \triangleright \cdots \triangleright H_m \cap G_1 = \{1\} \]
the result is a composition series for \(H_1 \) of length \(n - 1 \) (we added the term \(H_1 \) to the composition series for \(H_1 \cap G_1 \) of length \(n - 2 \)). Also
\[H_1 \triangleright H_2 \triangleright \cdots \triangleright H_m = \{1\} \]
is another composition series for \(H_1 \). Since the first series has length \(n - 1 \), by our induction hypothesis, the second series must also have length \(n - 1 \). Since its length is \(m - 1 \), it follows that \(m = n \).

(Unicity of the composition factors). Again by induction hypothesis on \(H_1 \), we have a permutation \(\beta \) of the \(n - 1 \) composition factors (which can be
1.10. THE JORDAN-HÖLDER THEOREM

extended to \(n \) factors by setting \(\beta(0) = 0. \) Namely, let \(\gamma_i, i = 1, 2, \ldots, n - 1 \) denote the distinct factor groups in the series

\[H_1 < H_1 \cap G_1 < H_2 \cap G_1 < \cdots < H_n \cap G_1 = \{1\} \]

so that \(L_1 = H_1 \) and \(L_2 = H_1 \cap G_1. \) Then we have composition series

\[G = H_0 < H_1 < \cdots < H_n = \{1\} \text{ and } G = L_0 < L_1 < \cdots < L_n = \{1\} \]

of length \(n \) for \(G \) and there exists a permutation \(\beta \) of \(\{0, 1, \ldots, n - 1\} \) such that \(H_i / H_{i+1} \cong L_{\beta(i)}/L_{\beta(i)+1} \) for each \(i = 0, 1, \ldots, n - 1. \)

We are almost done but for the fact that we need an isomorphism between \(H_i / H_{i+1} \) and \(G_{\beta(i)}/G_{\beta(i)+1} \) instead of having \(H_i / H_{i+1} \cong L_{\beta(i)}/L_{\beta(i)+1}. \)

Finally, since \(K_2 = L_2 = H_1 \cap G_1, \) we have two composition series for \(G: \)

\[
\begin{align*}
G &< G_1 < H_1 \cap G_1 < K_3 < \cdots < K_{n-1} < K_n = \{1\} \\
G &< H_1 < H_1 \cap G_1 < L_3 < \cdots < L_{n-1} < L_n = \{1\}.
\end{align*}
\]

We may apply the induction hypothesis to \(H_1 \cap G_1 \) to obtain the existence of a permutation \(\gamma \) of \(\{2, 3, \ldots, n - 1\} \) such that for each \(i \) in this set we have \(K_i / K_{i+1} \cong L_{\gamma(i)}/L_{\gamma(i)+1}. \) We have already seen that \(G / G_1 \cong H_1 / (H_1 \cap G_1) \) and \(G / H_1 \cong G_1 / (H_1 \cap G_1) \), so we may extend \(\gamma \) to a permutation of \(\{0, 1, \ldots, n - 1\} \) by setting \(\gamma(0) = 1 \) and \(\gamma(1) = 0. \) Then since

\[K_0 = G = L_0, \; K_1 = G_1, \; L_1 = H_1, \; K_2 = L_2 = H_1 \cap G_1, \]

we have

\[K_i / K_{i+1} \cong L_{\gamma(i)}/L_{\gamma(i)+1}, \; i = 0, \ldots, n - 1. \]

In summary, we have \(m = n, \) and for \(\tau = \beta^{-1} \gamma \alpha, \) we have

\[G_i / G_{i+1} \cong H_{\tau(i)}/H_{\tau(i)+1}, \; i = 0, \ldots, n - 1. \]

This concludes the proof. \(\square \)

Corollary 1.42. (Fundamental Theorem of arithmetic). Let \(n > 1 \) be a positive integer. Then there exist unique primes \(p_1 < p_2 < \cdots < p_k \) and unique positive integers \(r_1, \ldots, r_k \) such that \(n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}. \)

Proof. Let \(G = \langle g \rangle \) be a cyclic group of order \(n. \) Then every subgroup of \(G \) is normal, and there is a unique subgroup of size \(d \) for each positive divisor \(d \) of \(n. \) Let \(d \) be the largest proper divisor of \(n, \) and let \(G_1 \) be the unique subgroup of \(G \) of size \(d. \) Then \(G / H \) is simple and cyclic, hence of prime order. We may repeat this construction on the cyclic subgroup \(H, \) so by induction, we obtain a composition series

\[G = G_0 < G_1 < G_2 < \cdots < G_m = \{1\} \]
for G with G_i/G_{i+1} of prime order p_i for each i. Thus
\[
n = |G| = \frac{|G|}{|G_1|} = \frac{|G_1|}{|G_2|} \cdots \frac{|G_{m-1}|}{|G_m|} = p_1 p_2 \cdots p_{m-1}.
\]
The uniqueness of the prime decomposition of n follows from the Jordan-Hölder Theorem applied to G.

1.11 Solvable and nilpotent groups

Let us start by introducing a notion stronger than normality.

Definition 1.30. A subgroup H of the group G is called characteristic in G if for each automorphism f of G, we have $f(H) = H$.

We may write $H \text{ char } G$.

This is stronger than normal since normality corresponds to choose for f the conjugation by an element of g.

Note that f restricted to H a characteristic subgroup (denoted by $f|_H$) is an automorphism of H (it is an endomorphism by definition of H being characteristic).

Here are a few immediate properties of characteristic subgroups.

Lemma 1.43. Let G be a group, and let H, K be subgroups of G.

1. If H is characteristic in K and K is characteristic in G, then H is characteristic in G (being characteristic is transitive).

2. If H is characteristic in K, and K is normal in G, then H is normal in G.

Proof. 1. Let ϕ be an automorphism of G. Since K is characteristic in G, then $\phi(K) = K$ by definition, and thus $\phi|_K$ is an automorphism of K. Now $\phi|_K(H) = H$ since H is characteristic in K. But $\phi|_K$ is just the restriction of ϕ, so $\phi(H) = H$.

2. Consider the automorphism of K given by $k \mapsto gkg^{-1}$, $g \in G$, which is well defined since K is normal in G. For any choice of g, we get a different automorphism of K, which will always preserve H since H is characteristic in K, and thus $gHg^{-1} \subset H$ which proves that H is normal in G.

Let us introduce a new definition, that will give us an example of characteristic subgroup.
Definition 1.31. The commutator subgroup G' of a group G is the subgroup generated by all commutators

$$[x, y] = xyx^{-1}y^{-1}.$$

It is also called the derived subgroup of G.

Note that the inverse $[x, y]^{-1}$ of $[x, y]$ is given by $[x, y]^{-1} = [y, x] = yxy^{-1}x^{-1}$.

Here are a list of properties of the commutator subgroup G'.

Lemma 1.44. Let G' be the commutator subgroup of G.

1. G' is characteristic in G.
2. G is abelian if and only if G' is trivial.
3. G/G' is abelian.
4. If N is normal in G, then G/N is abelian if and only if $G' \leq N$.

Proof. 1. To show that G' is characteristic in G, we have to show that $f(G') = G'$ for any automorphism of G. Now

$$f([x, y]) = f(xyx^{-1}y^{-1}) = f(x)f(y)f(x)^{-1}f(y)^{-1} = [f(x), f(y)].$$

2. We have that G' is trivial if and only if $xyx^{-1}y^{-1} = 1$ which exactly means that $xy = yx$.

3. Since G' is characteristic, it is also normal in G, and G/G' is a group. We are left to prove it is an abelian group. Take two elements (that is two cosets) $G'x$ and $G'y$ in G/G'. We have that $G'xG'y = G'yG'x \iff G'xy = G'yx$ by definition of the law group on G/G'. Now

$$G'xy = G'yx \iff xy(yx)^{-1} \in G' \iff xyx^{-1}y^{-1} \in G',$$

which holds by definition.

4. Let us assume that N is normal in G. We have that G/N is a group, and G/N is abelian if and only if for Nx, Ny two cosets we have

$$NxNy = NyNx \iff Nxy = Nyx \iff xy(yx)^{-1} \in N \iff xyx^{-1}y^{-1} \in N$$

which exactly tells that each commutator must be in N.

We can iterate the process of taking commutators:

$$G^{(0)} = G, \ G^{(1)} = G', \ G^{(2)} = (G')', \ldots, G^{(i+1)} = (G^{(i)})', \ldots$$

The process may or may not reach $\{1\}$.

\[\square\]
Definition 1.32. The group G is said to be solvable if $G^{(r)} = 1$ for some r. We then have a normal series
\[\{1\} = G^{(r)} \trianglelefteq G^{(r-1)} \trianglelefteq \cdots \trianglelefteq G^{(0)} = G \]
called the derived series of G.

We have already seen the notion of subnormal series in the previous section. By normal series, we mean a serie where not only each group is normal in its successor, but also each group is normal in the whole group, namely each $G^{(i)}$ is normal in G. We have indeed such serie here using the fact that the commutator subgroup is a characteristic subgroup, which is furthermore a transitivity property.

Let us make a few remarks about the definition of solvable group.

Lemma 1.45. 1. Every abelian group is solvable.

2. A group G both simple and solvable is cyclic of prime order.

3. A non-abelian simple group G cannot be solvable.

Proof. 1. We know that G is abelian if and only if G' is trivial. We thus get the normal series
\[G^{(0)} = G \triangleright G^{(1)} = \{1\}. \]

2. If G is simple, then its only normal subgroups are $\{1\}$ and G. Since G' is characteristic and thus normal, we have either $G' = \{1\}$ or $G' = G$. The latter cannot possibly happen, since then the derived serie cannot reach $\{1\}$ which contradicts the fact that G is solvable. Thus we must have that $G' = \{1\}$, which means that G is abelian. We conclude by remembering that an abelian simple group must be cyclic of order a prime p.

3. If G is non-abelian, then G' cannot be trivial, thus since G is simple, its only normal subgroups can be either $\{1\}$ or $\{G\}$, thus G' must be either one of the other, and it cannot be $\{1\}$, so it must be G. Thus the derived series never reaches $\{1\}$ and G cannot be solvable.

There are several ways to define solvability.

Proposition 1.46. The following conditions are equivalent.

1. G is solvable, that is, it has a derived series
\[\{1\} = G^{(r)} \trianglelefteq G^{(r-1)} \trianglelefteq \cdots \trianglelefteq G^{(0)} = G. \]

2. G has a normal series
\[\{1\} = G_r \trianglelefteq G_{r-1} \trianglelefteq \cdots \trianglelefteq G_0 = G \]
where all factors, that is all quotient groups G_i/G_{i+1} are abelian.
3. G has a subnormal series

\[\{1\} = G_r \leq G_{r-1} \leq \cdots \leq G_0 = G \]

where all factors, that is all quotient groups \(G_i/G_{i+1} \) are abelian.

Proof. That 1. \(\Rightarrow \) 2. is clear from Lemma 1.44 where we proved that \(G/G' \) is abelian, where \(G' \) is the commutator subgroup of \(G \).

That 2. \(\Rightarrow \) 3. is also clear since the notion of normal series is stronger than subnormal series.

What we need to prove is thus that 3. \(\Rightarrow \) 1. Starting from \(G \), we can always compute \(G' \), then \(G^{(2)} \), To prove that \(G \) has a derived series, we need to check that \(G^{(r)} = \{1\} \). Suppose thus that \(G \) has a subnormal series

\[1 = G_r \leq G_{r-1} \leq \cdots \leq G_0 = G \]

where all quotient groups \(G_i/G_{i+1} \) are abelian. For \(i = 0 \), we get \(G_1 \unlhd G \) and \(G/G_1 \) is abelian. By Lemma 1.44, we know that \(G/G_1 \) is abelian is equivalent to \(G' \leq G_1 \). By induction, let us assume that \(G^{(i)} \leq G_i \), and see what happens with \(G^{(i+1)} \). We have that \(G^{(i+1)} = (G^{(i)})' \leq G_i' \) by induction hypothesis, and that \(G_i' \leq G_{i+1} \) since \(G_i/G_{i+1} \) is abelian. Thus \(G^{(r)} \leq G_r = \{1\} \).

Let us see what are the properties of subgroups and quotients of solvable groups.

Proposition 1.47. Subgroups and quotients of a solvable group are solvable.

Proof. Let us first consider subgroups of a solvable groups. If \(H \) is a subgroup of a solvable group \(G \), then \(H \) is solvable because \(H^{(i)} \leq G^{(i)} \) for all \(i \), and in particular for \(r \) such that \(H^{(r)} \leq G^{(r)} = \{1\} \) which proves that the derived series of \(H \) terminates.

Now consider \(N \) a normal subgroup of a solvable group \(G \). The commutators of \(G/N \) are cosets of the form \(xNyNx^{-1}Ny^{-1}N = xNy^{-1}N \), so that the commutator subgroup \((G/N)' \) of \(G/N \) satisfies \((G/N)' = G'N/N \) (we cannot write \(G'N \) since there is no reason for \(N \) to be a subgroup of \(G' \)). Inductively, we have \((G/N)^{(i)} = G^{(i)}N/N \). Since \(G \) is solvable, \(G^{(r)} = \{1\} \) and thus \((G/N)^{(r)} = N/N = \{1\} \) which shows that \(G/N \) is solvable.

Example 1.24. Consider the symmetric group \(S_4 \). It has a subnormal series

\[\{1\} \triangleleft C_2 \times C_2 \triangleleft A_4 \triangleleft S_4, \]

where \(A_4 \) is the alternating group of order 12 (given by the even permutations of 4 elements) and \(C_2 \times C_2 \) is the Klein group of order 4 (corresponding to the permutations 1, (12)(34), (13)(24), (14)(23)). The quotient groups are

- \(C_2 \times C_2/\{1\} \cong C_2 \times C_2 \) abelian of order 4
- \(A_4/C_2 \times C_2 \cong C_3 \) abelian of order 3
- \(S_4/A_4 \cong C_2 \) abelian of order 2.
We finish by introducing the notion of a nilpotent group. We will skip the general definition, and consider only finite nilpotent groups, for which the following characterization is available.

Proposition 1.48. The following statements are equivalent.

1. G is the direct product of its Sylow subgroups.

2. Every Sylow subgroup of G is normal.

Proof. If G is the direct product of its Sylow subgroups, that every Sylow subgroup of G is normal is immediate since the factors of a direct product are normal subgroups.

Assume that every Sylow subgroup of G is normal, then by Lemma 1.35, we know that every normal Sylow p-subgroup is unique, thus there is a unique Sylow p_i-subgroup P_i for each prime divisor p_i of $|G|$, $i = 1, \ldots, k$. Now by Lemma 1.30, we have that $|P_1P_2| = |P_1||P_2|$ since $P_1 \cap P_2 = \{1\}$, and thus $|P_1 \cdots P_k| = |P_1| \cdots |P_k| = |G|$ by definition of Sylow subgroups. Since we work with finite groups, we deduce that G is indeed the direct product of its Sylow subgroups, having that $G = P_1 \cdots P_k$ and $P_i \cap \prod_{j \neq i} P_j$ is trivial.

Definition 1.33. A finite group G which is the product of its Sylow subgroups, or equivalently by the above proposition satisfies that each of its Sylow subgroup is normal is called a nilpotent group.

Corollary 1.49. Every finite abelian group and every finite p-group is nilpotent.

Proof. A finite abelian group surely has the property that each of its Sylow subgroup is normal, so it is nilpotent.

Now consider P a finite p-group. Then by definition P has only one Sylow subgroup, namely itself, so it is the direct product if its Sylow subgroups and thus is nilpotent.

Nilpotent groups in general are discussed with solvable groups since they can be described with normal series, and one can prove that they are solvable.
The main definitions and results of this chapter are

- **(1.1-1.2).** Definitions of: group, subgroup, group homomorphism, order of a group, order of an element, cyclic group.

- **(1.3-1.4).** Lagrange’s Theorem. Definitions of: coset, normal subgroup, quotient group

- **(1.5).** 1st, 2nd and 3rd Isomorphism Theorems.

- **(1.6).** Definitions of: external (semi-)direct product, internal (semi-)direct product.

- **(1.7).** Cayley’s Theorem, the Orbit-Stabilizer Theorem, the Orbit-Counting Theorem. Definitions of: symmetric group, group action, orbit, transitive action, stabilizer, centralizer. That the orbits partition the set under the action of a group

- **(1.8).** Definition: p-group, Sylow p-subgroup. The 3 Sylow Theorems, Cauchy Theorem

- **(1.9).** Definition: simple group. Applications of the Sylow Theorems.

- **(1.11).** Definitions: characteristic subgroup, commutator subgroup, normal and derived series, solvable group, finite nilpotent group.