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Contextual Modeling of Functional MR Images With
Conditional Random Fields
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Abstract—This paper presents a conditional random field
(CRF) approach to fuse contextual dependencies in functional
magnetic resonance imaging (fMRI) data for the detection of
brain activation. The interactions among both activation (ac-
tivated/inactive) labels and observed data of brain voxels are
unified in a probabilistic framework based on the CRF, where the
interaction strength can be adaptively adjusted in terms of the
data similarity of neighboring sites. Compared to earlier detection
methods, including statistical parametric mapping and Markov
random field, the proposed method avoids the suppression of
high frequency information and relaxes the strong assumption of
conditional independence of observed data. Experimental results
show that the proposed approach effectively integrates contextual
constraints within the detection process and robustly detects brain
activities from fMRI data.

Index Terms—Brain activation, conditional random field (CRF),
functional magnetic resonance imaging (fMRI), Markov random
field (MRF), statistical parametric mapping (SPM).

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) is a
popular technique that noninvasively studies brain func-

tions under various cognitive and behavioral tasks. Functional
brain studies acquire a time-series of brain scans while the sub-
ject is alternatively performing an experimental task and a base-
line task (so that the input stimulus to the brain takes the form
of an on-off box-car pattern). Brain regions of interest are then
detected through measuring the oxygenation level variations in
blood vessels near the neurons activated by the input stimulus,
i.e., the blood-oxygenation-level-dependent (BOLD) contrast.
In fMRI experiments, the BOLD signal changes resulted from
neural activities are usually close to the noise level. Hence, it
is important to develop analysis methods that can robustly de-
tect activated brain regions from the noisy fMRI time-series.
Both model-based approaches and model-independent (or data-
driven) approaches that classify or segment brain voxels into
active and inactive areas have been extensively studied for the
analysis of fMRI data.

In model-based methods, a statistical parametric map of brain
activation is built by examining the time-series response of each
voxel in the brain, given the information about the stimula-

Manuscript received March 3, 2006; revised March 22, 2006. Asterisk indi-
cates corresponding author.

Y. Wang is with the BioInformatics Research Centre, School of Computer En-
gineering, Nanyang Technological University, Singapore 639798 (e-mail: yang.
wang@ieee.org).

J. C. Rajapakse is with the BioInformatics Research Centre, School of Com-
puter Engineering, Nanyang Technological University, Singapore 639798, and
also with Biological Engineering Division, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139 USA (e-mail: asjagath@ntu.edu.sg).

Digital Object Identifier 10.1109/TMI.2006.875426

tion. The significance of activation can be assessed using var-
ious statistical models including correlation analysis [2], [10],
t-test or F-test [12], permutation [22], and mixture model [8],
[28]. Recently, probabilistic graphical models such as Bayesian
network and hidden semi-Markov event sequence model have
also been employed to characterize fMRI time-series [9], [20].
On the other hand, data-driven methods such as clustering anal-
ysis [13], principal component analysis [14], and independent
component analysis [5] attempt to reveal components of interest
from the fMRI data without requiring the knowledge of the acti-
vation temporal response. However, the physiological meaning
of the results is usually hard to explain, and it is difficult to
perform statistical significance analysis based on data-driven
methods. This paper deals with fMRI analysis from a proba-
bilistic point of view by using a model-based method.

Besides local information measured at individual brain
voxels, the strategy to effectively fuse contextual dependencies
within functional imaging data is a key factor for the detection
of brain activation [15]. For instance, it is known that the
regions of interest usually consist of a number of contiguous
brain voxels [6]. Since neighboring sites are likely to belong
to the same class, spatial smoothing or filtering can be used
in the preprocessing of fMRI data to enhance the overall
signal-to-noise ratio (SNR) in activated regions. However,
linear filtering suppresses high frequency information in fMRI
data and may cause small activated regions undetectable. The
notion of Markov random field (MRF), which is originally
proposed for direct modeling of spatial interaction in image
data [3], has been introduced to encourage contiguous results
of activity detection by defining pairwise potentials between
neighboring activation (activated/inactive) labels [7], [24], [25].
In these MRF approaches, spatial regularization and activity
detection are simultaneously handled to enhance the perfor-
mance of fMRI data analysis. MRF has also been employed to
impose smoothness constraint on brain regions with different
characteristics of hemodynamic response function (HRF) [26].
However, conditional independence of observations is usu-
ally assumed in MRF approaches so that interactions among
observed data are ignored when activation labels are given. Be-
cause of the interconnection within brain areas, the time-series
of an activated brain voxel is highly dependent on its activated
neighbors. Therefore, the strong assumption of conditional
independence is too restrictive for the modeling of functional
images in fMRI analysis.

Compared to generative models including MRF and hidden
Markov model, the conditional random field (CRF) models the
contextual dependencies in a probabilistic discriminative frame-
work that directly considers the posterior distribution over la-
bels given observations [18], which relaxes the strong inde-
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pendence assumption and captures neighborhood interactions
among observations. Originally proposed for one-dimensional
text sequence labeling, CRF has been applied to image and
video labeling recently [17], [27].

Based on the CRF, this paper presents a probabilistic ap-
proach for the detection of brain activity from fMRI data. The
contextual dependencies of both activation labels and observed
data of brain voxels are unified in a probabilistic discriminative
framework, where the interaction strength is adaptively adjusted
according to the similarity between neighboring sites. The de-
pendencies of data in functional MRI may come from spatial
coupling of hemodynamic responses or correlated noises. Given
the observed data, the posterior distribution over the activation
labels is maximized by mean field approximation. Experimental
results show that the proposed approach effectively integrates
contextual constraints in functional images and significantly im-
proves the robustness of the activity detection in fMRI data.

The rest of the paper is arranged as follows: Section II
presents the CRF approach and compares it with the MRF
method for the contextual modeling of functional imaging data.
Section III proposes the activity detection algorithm for fMRI
analysis. Section IV describes the implementation details. Sec-
tion V discusses the experimental results. Then our technique
is concluded in Section VI.

II. MODEL REPRESENTATION

For a pixel (or voxel) within a two-dimensional (2-D) [or
three-dimensional (3-D)] image, the activation label and ob-
served data of the point are denoted by and respectively.
Label assigns each point to one of
regions (or classes) composing the scene. Here (
in this paper), , and is the spatial domain of the scene.
The observation consists of measured information at the site

. The entire activation pattern (or label field) and observed data
over the scene are compactly expressed as and , respectively.

Given the observed data, there are two ways to estimate the
activation labels. The probabilistic generative framework con-
siders the joint distribution over labels and observations. Using
the Bayes’ rule, the posterior probability of the activation pattern
is expressed as . Hence, the prior

and the likelihood should be formulated individually
to estimate the posterior . Alternatively, the probabilistic
discriminative framework directly considers the posterior distri-
bution of the activation pattern . In this paper, the contex-
tual constraints for the activity detection are imposed through
a discriminative framework of statistical dependencies among
neighboring sites.

A. CRF Formulation

To incorporate interactions among both labels and observa-
tions into the detection of brain activation, the posterior prob-
ability is formulated by a CRF. CRF is originally pro-
posed in the discriminative framework avoiding the formulation
of observation model. The definition of CRF is given by Laf-
ferty et al. [18]. For observed data and corresponding labels

over the scene, is a CRF if, when conditioned on , the
random field obeys the Markov property:

, where set denotes the neighboring sites

Fig. 1. (a) The 8-pixel neighborhood. (b) The 6-voxel neighborhood.

of point (e.g., see Fig. 1). Using the Hammersley-Clifford the-
orem and considering up to pairwise clique potentials, the pos-
terior distribution can be expressed as a Gibbs distribution with
the following form [4]:

(1)
The one-pixel potential imposes the local constraint for
a single site. Meanwhile the two-pixel potential
models the contextual information (or pairwise constraint) be-
tween neighboring sites. Strength of the constraints is depen-
dent on the observed data. The potential functions are further
expressed as

(2a)

(2b)

In the one-pixel potential, the first term reflects the prior knowl-
edge for different label classes, and the second term reflects
the observed information from individual sites. In the two-pixel
potential, the first term imposes the connectivity constraint in-
dependent of the observations, and the second term imposes
the neighborhood interaction dependent on the observed data.
Thus, during the detection process both the data-independent
and data-dependent contextual dependencies are unified in a
probabilistic discriminative framework based on the CRF. The
CRF approach will degenerate into a MRF approach when the
data-dependent pairwise potential is set to zero (see the next part
in this section), which is equivalent to the conditional indepen-
dence assumption of the observed data (i.e., ignore interactions
among observations when labels are given) used in previous ap-
proaches [24], [25].

B. Motivation

In a generative framework, the prior probability of the acti-
vation pattern can be formulated by a MRF to model con-
textual dependencies among activation labels. It is assumed that
the conditional distribution of an activation label at site is to-
tally determined by the labels from its neighborhood , i.e.,

. The prior probability
is given by a Gibbs distribution defined on one-pixel and

two-pixel potentials as well

(3)
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For computational tractability, the likelihood (or observation)
model is usually factorized as the product of local likeli-
hoods at individual sites

(4)

Combining the prior model and the likelihood model
, it can be seen that the generative framework considers

only the data-independent smoothness constraint. The data-de-
pendent interaction between neighboring sites (the second term
in the pairwise potential (2b)) is ignored in the generative frame-
work due to the assumption of conditional independence of ob-
served data in (4). However, the connectivity of neural systems
makes the observation from a brain voxel highly dependent on
its neighboring sites of the same class. Comparing to the MRF
formulation, the CRF approach relaxes the strong assumption
of conditional independence for contextual modeling of func-
tional imaging data. The interaction strength between neigh-
boring sites can be adaptively adjusted in terms of their simi-
larity, which enables the CRF approach further explore the con-
textual dependencies in functional images.

III. BRAIN ACTIVITY DETECTION

In a fMRI time-series with total image scans,
the time-series response of a point is represented by

, and the input stimulus to the
brain is denoted by a binary time-series .
The expression of observation is given later in this section.
For the detection of brain activity, each voxel in the brain
is labeled as either activated or inactive. The activation label
equals one if the site is activated, otherwise the label equals
zero.

The one-pixel potential function is set as
so that the posterior distribution becomes

the product of local posterior probability at each
site if the two-pixel potential is ignored. Since

, the two terms in the
one-pixel potential (2a) become and

. The prior information of individual
classes can be expressed by the following data-independent
one-pixel potential

(5)

The smaller is, the more likely a site will be labeled as the
th class.

In the detection of brain activity, the temporal response from
regions of interest should be impacted by the stimulus signal.
Consider the correlation coefficient between the stimulus and
the response at a site

(6)

where , , is the cor-
relation coefficient, and . The value of correla-
tion coefficient will be positive if the brain voxel is activated
by the input stimulus. Otherwise its value will be close to zero
for an inactive brain voxel. Considering the hemodynamic re-
sponse of neuron activities, the input stimulus is replaced by
the convolution of the stimulus signal and synthetic HRF (the
HRF used in the statistical parametric mapping software from
http://www.fil.ion.ucl.ac.uk/spm/) when calculating correlation
coefficients. The multiple correlation analysis or canonical cor-
relation analysis is employed to compute the correlation co-
efficient when dealing with varying HRFs and multiple stim-
ulus conditions [10]. We represent the observation by using the
Fisher’s Z transformation

(7)

The posterior probability of the observation can be ap-
proximated by a zero-mean Gaussian distribution when the site
is inactive [1]. Hence

(8)

where represents a Gaussian distribution with vari-
able , mean , and variance . When the site is activated by
the input stimulus, a uniform distribution is simply assumed as
the true distribution of activated voxels is not known

(9)

where , , and
.

Since activated regions usually consist of contiguous brain
voxels, neighboring sites tend to have the same label. The con-
nectivity constraint is imposed by the following data-indepen-
dent pairwise potential to encourage contiguous detection result

(10)

where
if
otherwise

is the Kronecker delta function. The pairwise smoothness con-
straint is imposed only when the two activation labels are dif-
ferent. Thus, neighboring points are more likely to belong to the
same class than to different classes.

The data-dependent pairwise potential can be expressed as
, so

that the pairwise constraint encourages data similarity between
two neighboring sites when they have the same activation label.
However, under heavy noises, neighboring sites may become
quite different even though they belong to the same class. To
prevent this problem when dealing with the noisy fMRI data, the
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data-dependent pairwise potential is replaced by the following
normalized term

(11)

where for a set of points , denotes the size (number of
points) of the set, denotes . The pairwise po-
tential models the neighborhood interaction dependent on the
observed data. Naturally, the potential imposes an adaptive con-
textual constraint that adjusts the interaction strength according
to the similarity between neighboring observations.

Given the one-pixel and two-pixel potential functions, the
maximum a posteriori estimation of the activation pattern is
given by .

IV. PARAMETERS AND OPTIMIZATION

The potential functions of the posterior probability are
expressed as the following:

if

if
(12a)

(12b)

where . controls the sensitivity of activity detec-
tion, and , respectively, weigh the importance of data-in-
dependent smoothness constraint and data-dependent neighbor-
hood interaction. To balance the potential terms for the contex-
tual constraints, we assume that

(13)

The parameter reflects the influence of prior information for
brain activation. The smaller the value of , the more likely
activated regions will be detected. It is empirically set as

in our experiments. Meanwhile, the parameter reflects
the influence of contextual constraint from neighboring sites.
The higher the value of , the stronger contextual constraints are
utilized. In our experiments, it is found by trial that
produces the visually optimal activation pattern for the analysis
of fMRI data.

Given the potential functions, the optimization for the pos-
terior probability of the activation pattern is generally difficult
due to the data-dependent interactions among neighboring sites.
Here, the mean field approximation scheme is employed to get
the suboptimal estimate of the activation pattern [19]. The mean
field algorithm suggests that when estimating the label mean at

a single site, the influence from neighboring sites can be ap-
proximated by that of their means. The activation pattern can be
estimated as

(14a)

(14b)

where the mean field local probabilities are
computed from an iterative procedure (see the Appendix).

V. RESULTS AND DISCUSSION

The present approach was tested on both synthetic and
real functional time-series and compared with earlier detection
methods. Three brain activity detection algorithms were studied
in our experiments: the statistical parametric mapping (SPM)
algorithm [12], the MRF algorithm (the proposed algorithm
ignoring the data-dependent pairwise potential), and the pro-
posed CRF algorithm. The detected activation by SPM is given
by significance values using t-test, whereas those by MRF and
CRF are given by the probabilities of activation. The 24-pixel
neighborhood for 2-D images and 124-voxel neighborhood
for 3-D images were utilized in the experiments (when appli-
cable). All the fMRI data were corrected for motion artifacts
as described in [11]. Spatial smoothing was performed with a
Gaussian filter of 6 mm FHWM in the SPM approach.

A. Synthetic Data

A 2-D dataset with 64 64 pixels per image scan was gen-
erated by using the synthetic functional time-series. The syn-
thetic data totally had 96 images, where the input stimulus con-
sisted of six cycles, each having eight rest samples followed
by eight task samples, and the duration between two scans was
two seconds . A box-car time-series was designed
for activated pixels, while inactive pixels remained unchanged
over time. Then, the response of the activated pixels was gener-
ated by convolving the box-car time-series with a gamma HRF
( and ). Gaussian random noises
were then added to the time-series of both activated and inac-
tive pixels. Pixel intensities of image scans are shown in Fig. 2.
The SNR is defined as , where is the am-
plitude of the box-car time-series, and is the standard devia-
tion of the noise. Synthetic image series with independent iden-
tically distributed (i.i.d.) noises and spatially correlated noises
(the average of neighboring i.i.d. Gaussian noises) have been
both tested in the synthetic experiments.

Figs. 3–6 show the detection results by SPM, MRF, and CRF
approaches for the synthetic functional data under two different
noise levels. It can be seen that the three methods show sim-
ilar performances when the SNR is high. Although most acti-
vated points are detected by the SPM approach, details (or high
frequency information) of activated regions are blurred by sta-
tistical parametric mapping especially under correlated noises
when the SNR is low. The MRF approach generates relatively
contiguous results by simultaneously performing activity detec-
tion and spatial regularization, but the boundaries are still inac-
curate due to the neglect of data interaction among neighboring
sites. By incorporating interactions of both activation labels and
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Fig. 2. The synthetic functional images under i.i.d. Gaussian noises with
SNR = 1:2: (a) activated regions (in bright), (b) the 40th image scan, and (c)
the 80th image scan.

Fig. 3. Detected activation from synthetic functional data by (a) SPM, (b) MRF,
and (c) CRF methods under independent noises with SNR = 2:0.

Fig. 4. Detected activation from synthetic functional data by (a) SPM, (b) MRF,
and (c) CRF methods under correlated noises with SNR = 2:0.

Fig. 5. Detected activation from synthetic functional data by (a) SPM, (b) MRF,
and (c) CRF methods under independent noises with SNR = 1:2.

Fig. 6. Detected activation from synthetic functional data by (a) SPM, (b) MRF,
and (c) CRF methods under correlated noises with SNR = 1:2.

observed data, the accuracy of activity detection is significantly
improved by the proposed CRF approach under noisy environ-
ments.

The detection results were also evaluated quantitatively by
comparing to the ground-truth image shown in Fig. 2(a). The

Fig. 7. ROC curves of SPM, MRF, and CRF methods under (a) independent
noises and (b) correlated noises with SNR = 2:0.

corresponding receiver operating characteristic (ROC) curves
for the three algorithms under two different noise levels are
shown in Figs. 7 and 8, where the vertical axis and horizontal
axis represent the true positive rate (the portion of activated
points that are detected) and the false negative rate (the portion
of inactive points that are misclassified) respectively. Compared
to the SPM approach and the MRF approach, the CRF approach
takes advantage of data-dependent neighborhood interactions,
which helps avoid the suppression of high frequency informa-
tion in functional images and relaxes the strong assumption of
conditional independence among observations. The substantial
increase of the detection accuracy under correlated noises indi-
cates that the CRF approach effectively fuses contextual con-
straints in functional images.

Comparing with the SPM algorithm and the MRF algorithm,
the CRF algorithm is computationally more complex since it
considers contextual constraints among both labels and obser-
vations besides the data information at individual sites. Hence
the proposed method enhances the performance of activation de-
tection in functional imaging data with a tradeoff in relatively
high computational load. The MRF algorithm and the CRF al-
gorithm are both implemented by Visual C. In the experiment,
the processing of the synthetic image series respectively took
about 2.5 seconds for the MRF algorithm and 4 seconds for the
CRF algorithm on a Pentium 4 1.7-GHz PC. The SPM algo-
rithm is implemented by Matlab, and it took about 9 seconds to
process the same data.
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Fig. 8. ROC curves of SPM, MRF, and CRF methods under (a) independent
noises and (b) correlated noises with SNR = 1:2.

B. Visual Stimulation Task

The detection algorithms were tested on real fMRI data gath-
ered on visual stimulation task where for each subject, 64 brain
scans with three 2-D T2-weighted slices (128 64 points in
each slice, zero filled to 128 128 points) per image scan were
acquired by using a gradient-echo FLASH sequence ( ,

). In the experiment, ON and OFF stimuli were
presented at a rate of 5.16 s per sample. Each stimulation pe-
riod had four successive stimulation ON samples followed by
four stimulation OFF samples. The stimulations were repeated
for eight cycles, and experiments were carried out at different
sessions with different subjects. An 8-Hz alternating checker-
board pattern with a central fixation point was projected on a
LCD system, and the subject was asked to fixate on the point
during stimulations. Further details of the visual simulation ex-
periments can be found in [23].

Fig. 9 shows the detected activation from fMRI data gath-
ered on the visual stimulation task performed by a representa-
tive subject. The results of other subjects were similar. Although
activated visual cortex areas were detected by all the three ap-
proaches, the detection by the CRF method is relatively elabo-
rate due to the relaxation of the strong assumption of conditional
independence among observed data. Fig. 10 shows the normal-
ized neighborhood interactions (the exponential of the data-de-
pendent pairwise potential) for some activated and inactive brain
voxels within their neighborhoods. It can be seen that the inter-
action strength is adaptively adjusted according to the similarity

Fig. 9. Detected activation on three axial brain slices by (a) SPM, (b) MRF,
and (c) CRF methods from fMRI data of a representative subject performing
the visual stimulation task.

Fig. 10. Data-dependent interactions of brain voxels within their neighbor-
hoods.

between the central point and its neighboring sites, resulting in
various interaction patterns within the detection process.

C. Memorial Retrieval Task

In this experiment, for each subject a fMRI time-series of 864
brain scans with eight slices ( voxels per scan) was
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Fig. 11. Detected activation on four axial brain slices by (a) SPM and (b) CRF
methods from fMRI data of a representative subject performing the memory
retrieval task.

acquired using a gradient-echo EPI sequence ( ,
). In the experiment, subspan sets of 3–6 alphabet letters

excluding the letter Y were presented visually for two seconds,
then a probe letter appeared after a variable delay length. Sub-
jects were required to decide if the probe letter belonged to a
previously presented subspan set. All trial combinations were
presented randomly in a single run, at an inter-trial interval of
18 s. Further details of the experiments can be found in [16].

Fig. 11 shows the detected activation from fMRI data gath-
ered on the memory retrieval task by the proposed approach
and the statistical parametric mapping approach. Expected brain
areas such as middle frontal gyrus (BA 9/46), inferior frontal
gyrus (BA 44/45), superior parietal cortex (BA 5/7), supplemen-
tary motor area (BA 6), and primary motor cortex (BA 4) were
detected by both methods. As seen, compared to the results by
SPM, the activated areas detected by the CRF approach are rela-
tively contiguous and concentrative. Furthermore, the activation
patterns detected by the proposed method contain less spurious
noises.

D. Silent Reading Task

In this experiment, for each subject, 360 brain scans with 35
slices ( voxels per scan) were acquired using an
EPI sequence ( , ). The experimental
task involved alternative reading of words and pseudo-words
with variable presenting frequencies, and the resting condition
involved fixating a cross in the middle of the screen. Each trial
lasted 21 s and was followed by a resting period of 16 s. More
details of the experiments can be found in [21].

Fig. 12 shows the results of activity detection from fMRI data
gathered on the silent reading task by the CRF approach and
the SPM approach. It can be seen that the detection results by
the proposed algorithm are consistent with those by the statis-
tical parametric mapping method. Expected activation in related
brain regions including extrastriate cortex (BA 18/19), superior
parietal lobule (BA 7), middle temporal cortex (BA 21/22), in-
ferior frontal gyrus (BA 44/45), and middle frontal gyrus (BA
9/46) were found by both methods.

Due to the lack of ground truth, it is hard to quantitatively
determine which method is more accurate by mere visualiza-
tion of the detection results with real functional imaging data.
Overall, the CRF approach outperforms the other two methods
in the synthetic experiments and robustly detects brain activities
in the real fMRI data with less spurious noises and more elabo-
rate boundaries by integrating contextual constraints within both
activation labels and observed data.

VI. CONCLUSION

We presented a probabilistic discriminative approach to fuse
contextual constraints in functional images based on the CRF
and applied it to the detection of brain activation from both
synthetic and real fMRI data. The neural activities are mod-
ulated by hemodynamic responses and corrupted by scanner
noises. Thus far, the temporal correlation of activation responses
has been considered. The spatial dependencies of the data are
caused by the coupling of homodynamic responses and correla-
tion of scanner noises. The CRF provides an effective approach
to model the contextual dependencies of both labels and data.
Compared to earlier work including SPM and MRF approaches,
the CRF approach takes the advantage of data-dependent in-
teractions within functional imaging data and significantly im-
proves the performance of the detection of brain activity. In our
experiments with synthetic data, the ROC curves showed that
detection accuracy was substantially increased especially under
correlated noises. With the real fMRI data, the detection results
by the proposed method were visually either similar or better
in the sense of details and localization to cortical areas, com-
pared to the other methods. The improvement indicates that it
is important to consider contextual dependencies of the obser-
vations in addition to those among the labels or neural activities
when studying fMRI data. To further enhance the efficiency of
the proposed technique, our future work focuses on automati-
cally determining all the parameters and applying the algorithm
to the study of connectivity among activated regions.

APPENDIX

The mean field local energy for site is defined as

(15)

where denotes the expectation or ensemble average. The con-
ditional probability for site is approximated by the mean field
local probability

(16)

where is called the mean field local partition

(17)
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Fig. 12. Detected brain activation by (a) SPM and (b) CRF methods from fMRI data of a representative subject performing the silent reading task.

Hence, the mean of an activation label is computed as

(18)

It can be seen that in order to find the mean of a site, one has to
know the means of its neighbors. Therefore, the mean of the ac-
tivation pattern can be iteratively estimated using (15), (17), and
(18). Initially, is set as for all and . Given the
label means, the posterior distribution of the activation pattern
is approximated by the product of mean field local probabilities

(19)
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