Sniffing out clues in Down syndrome

Condition could be key in treating ageing-related diseases and cancer, says Professor Dean Nizetic

Professor Dean Nizetic, 55, and his team recently discovered two genetic markers of acute lymphoblastic leukaemia that could aid treatment of the disease.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1985 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.

In 2008, Prof Nizetic and his team discovered the outlines of these markers while studying brain cells in embryonic stem cells, which they found were triggered by the extra copy of a particular gene called DYRK1A on chromosome 21, which is found only in people with Down syndrome. Molecular changes of Down syndrome have been done in Britain, at the University of Cambridge, and in Germany.

Prof Nizetic and his wife decided to move here after their son, David, was born. David was diagnosed with Down syndrome in Zagreb in 1982. Professor Nizetic then did research for his PhD at the University of Zagreb in 1989 and in 1989 he moved to the Max Planck Institute for Biomedicine in Germany.

Tai, a professor in molecular biology at the National University of Singapore, said Prof Nizetic’s work has also led to breakthroughs. He found certain chemical compounds could potentially be used to improve brain function in people with Down syndrome.

Clinical trials are ongoing.