Syngas production by catalytic partial oxidation of methane over (La_{0.7}A_{0.3})BO_3 (A = Ba, Ca, Mg, Sr, and B = Cr or Fe) perovskite oxides for portable fuel cell applications

Ma Su Su Khine^{a,b}, Luwei Chen^{a,**}, Sam Zhang^{c}, Jianyi Lin^{a}, San Ping Jiang^{d,*}

^{a}Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833 Singapore, Singapore
^{b}Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 Japan
^{c}School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore, Singapore
^{d}Fuels and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, WA 6102, Australia

ABSTRACT

Hydrogen is a clean energy carrier for the future. More efficient, economic and small-scale syngas production has therefore important implications not only on the future sustainable hydrogen-based economy but also on the distributed energy generation technologies such as fuel cells. In this paper, a new concept for syngas production is presented with the use of redox stable lanthanum chromite and lanthanum ferrite perovskites with A-site doping of Ba, Ca, Mg and Sr as the pure atomic oxygen source for the catalytic partial oxidation of methane. In this process, catalytic partial oxidation reaction of methane occurs with the lattice oxygen of perovskites, forming H_2 and CO syngas. The oxygen vacancies due to the release of lattice oxygen ions are regenerated by passing air over the reduced non-stoichiometric perovskites. Studies by XRD, temperature-programmed reduction (TPR) and activity measurements showed the enhanced effects of alkaline element A-site dopants on reaction activity of both LaCrO_3 and LaFeO_3 oxides. In both series, Sr and Ca doping promotes significantly the activity towards the syngas production most likely due to the significantly increased mobility of the lattice oxygen in perovskite oxide structures. The active oxygen species and performance of the LaACrO_3 and LaAFeO_3 perovskite oxides with respect to the catalytic partial oxidation of methane are discussed.

* Corresponding author. Tel.: +61 892669804.
** Corresponding author.
E-mail addresses: chen.luwei@a-star.edu.sg (L. Chen), s.jiang@curtin.edu.au (S.P. Jiang).
1. Introduction

Low cost production of hydrogen as a clean fuel is receiving increasing attention under the background of the resources depletion and the high price of petroleum oil [1]. A transition from fossil fuels to hydrogen and fuel cell technology in the next 50 years could diversify energy source, increase national security, and reduce environmental pollution and greenhouse gas emission. Under such situation, H2 will then be produced not only in large scale in industrial areas, but also in fueling stations and customers’ on-site applications in distributed scale [1,2]. There are currently three ways of converting methane to syngas, including the steam reforming of methane (SRM) [3,4], the carbon dioxide reforming of methane (CRD) [5] and the catalytic partial oxidation of methane (CPO) [6]. Current commercial H2 production is mainly based on SRM technology, an energy intensive and high CO2 emission process. However, CPO has become the focus of researches in recent years due to its obvious advantages, such as high energy efficiency, suitable CO/H2 ratio for methanol synthesis and Fischer–Tropsch processes [7]. However, pure O2 via conventional, cryogenic separation of air is a major expensive capital investment for CPO-based syngas and hydrogen production, and it becomes increasingly expensive as unit size is scaled down. In general, these technologies, though highly optimized over years of development, remain probably too expensive and thus are not applicable for small-scale production of syngas for portable fuel cells.

Perovskite-type oxides with formula ABO3 have received much attention over the past decades due to their high oxygen mobility and extensive applications in oxygen separation membranes [8–10], fuel cells [11–14], sensors [15], catalysts [16,17], etc. In ABO3 perovskite structure, A-site cation can be rare earth, alkaline earth, alkali and other large ions such as La3+ that will fit into the dodecahedral site of the framework, and B-site cation can be 3d, 4d or 5d transition metal ions which occupy the octahedral sites. These oxides can tolerate significant partial substitution and non-stoichiometry, while still maintaining the perovskite structure [18]. One of the unique properties of perovskites as catalysts is that perovskite-type oxides enable the generation of catalysts with active metals finely segregated onto a matrix or oxide surface produced in situ from an oxide precursor after reduction [19–22]. The highly dispersed metal particles diminishes deactivation of the catalysts and perovskite-type oxides have been extensively applied as catalysts for the partial oxidation of methane with CO2 and O2 [19,20,23–26].

It is also well known that lattice oxygen, O2-, due to the oxygen-deficient nonstoichiometry in perovskites and oxygen conducting oxides plays an important role in the catalysis process such as dehydrogenation reactions and partial oxidation of methane [19,27–30]. Watanabe et al. [27] shows that reaction rate of dehydrogenation of ethylbenzene increases remarkably with the increase in the release rate of lattice oxygen of lanthanum barium manganite perovskite. In the case of partial oxidation of methane in the absence of gaseous oxygen, methane could react with mobile lattice oxygen via partial oxidation route, forming H2 and CO. The oxygen vacancies, VO generated during the catalytic oxidation reaction can be refilled by regenerating the oxygen-deficient perovskite oxides in oxygen or air, returning to normal stoichiometry composition. The generation and re-generation steps continue, forming a cyclic operation to directly convert methane to syngas as shown below.

In generation step: \[\text{CH}_4 + \text{ABO}_3 \rightarrow \text{CO} + 2\text{H}_2 + \text{ABO}_{3-d} \] (1)

In re-generation step: \[\text{ABO}_{3-d} + \text{O}_2/\text{N}_2 \text{ (air)} \rightarrow \text{ABO}_3 + d\text{O} \] (air) (2)

The syngas production and regeneration steps with redox stable ABO3 perovskites as atomic oxygen source are schematically shown in Fig. 1.

The proposed process as described here is simple and also low cost because the process does not require pure O2 as oxidants and is reversible due to the high structural stability of perovskite oxides. Since the oxidation reaction occurs between CH4 and lattice oxygen, O2- there is no risk of explosion which may be caused by mixtures of CH4 and gaseous pure O2. The selectivity of CO and H2 would be expected to be higher than conventional CPO process since further oxidation of CO and H2 (e.g., to CO2 and H2O) is limited due to the fact that there is no presence of gaseous oxygen.

To demonstrate the feasibility of the process, we selected lanthanum chromite and lanthanum ferrite perovskite oxides, (La1-xA)xCrO3 and (La1-xA)xFeO3 where A = Ba, Ca, Mg and Sr as oxygen source for the partial oxidation of methane for the syngas production. LaCrO3 and LaFeO3 are orthorhombic derivatives of the perovskite structure and exhibit high structural stability, oxygen ion conductivity and high catalytic activity for the application of interconnect and cathodes of solid oxide fuel cells [31–35]. It has been well known that the catalytic activity and ionic conductivity of perovskite oxides can also be improved by partial substitution on A- and/or B-sites [14,36,37].

2. Experimental

2.1. Synthesis of perovskite-typed oxides

Lanthanum oxide and the alkaline earth metal oxide, all of which were analytical reagent grade with purity >99%, were
used as initial materials for preparation of the (La_{1-x}A_x)BO_3 powders (A = Ba, Ca, Mg and Sr and B = Cr or Fe). The A-site substitution was 30 mol% for Mg, Ca and Ba and 25 mol% for Sr. The perovskite oxides were synthesized by solid-state reaction process, and the oxides with stoichiometric ratios were mixed by grinding and ball-milling in isopropanol for 5 h, followed by calcination at 1200 °C for 5 h in air.

2.2. Material characterization

Phase identification and crystal structures were investigated by X-ray powder diffraction (XRD, Philips 1710), with a Cu-Kx radiation and a Ni filter, in the range of 2θ = 15–85°. Specific surface area of the as-prepared perovskite oxide powders were determined by Brunauer, Emmett and Teller (BET) single point method over a QUANTACHROME Autosorb-6 instrument. Prior to analysis, the samples were degassed under vacuum, overnight. About 0.1–0.2 g of sample was used for each measurement. The changes in the oxygen deficiency of oxide samples were measured by temperature-programmed H_2 reduction (TPR), performed on Thermo TPD/RO 1100 Catalyst Analyzer System. A perovskite oxide sample of 50 mg was placed in a quartz micro-reactor and a 5% H_2/95% argon gas mixture with a flow rate of 50 ml/min was used as the reducing gas. The temperature was raised at a constant rate of 10 °C/min from 50 to 900 °C and maintained for 10 min before the test. Prior to the TPR testing the powder samples were pretreated at 300 °C for 30 min in air.

2.3. Measurement

Partial oxidation of methane over perovskites was studied by two experimental techniques, i.e., temperature-programmed surface reaction (TPSR) and steady state reaction (SSR) at 850 °C. The experimental setup is shown in Fig. 2. For TPSR, 100 mg of the oxide sample was packed in a quartz tube micro-reactor (Ø = 4 mm), between layers of quartz wool. The sample was heated in the stream of 5 vol% CH_4 in Ar gas at a constant rate of 10 °C/min from room temperature to 950 °C. The effluent gas was analyzed on-line by mass spectroscopy (MS, Hiden HPR – 20 QIC). The reacted sample powders were then regenerated at 950 °C in 5% O_2/Ar at a flow rate of 50 ml/min with no change in the set up conditions.

Steady state reaction (SSR) was carried out in a continuous-flow fixed bed quartz micro-reactor (inner diameter = 10.3 mm, outer diameter = 12.0 mm) at atmospheric pressure. A gas mixture of 5% methane in argon (carrier gas) with a total flow rate of 100 ml/min was passed through the sample in the quartz tube. The reaction products were detected by an online gas chromatography on a Shimadzu GC-2010 equipped with both a thermal conductivity detector (for H_2, CO, CH_4, CO_2 and N_2) and a flame ionizing detector (for C_2H_6 and other products). Ar was used as the internal standard.

The conversion of CH_4, X_{CH_4}, is defined as follows:

\[
X_{CH_4} = \frac{mol_{CH_4 in} - mol_{CH_4 out}}{mol_{CH_4 in}} \times 100\%
\]

3. Results and discussions

3.1. BET and XRD

Table 1 lists the composition and BET surface area for the as-prepared (La_{1-x}A_x)CrO_3 and (La_{1-x}A_x)FeO_3 perovskite samples. Due to the high calcination temperatures used in the sample preparation, the surface areas of the samples are generally low (≤ 5 m²/g). Among the oxides used, the lanthanum ferrite series have a higher surface area than that of chromite series.

Fig. 3 displays the X-ray diffraction patterns of the as-prepared LaCrO_3 and LaFeO_3 in the forms of as-prepared after the catalytic oxidation (i.e., generation reaction (1)) and the regeneration reaction (2)). The as-prepared LaCrO_3 and LaFeO_3 show typical well-crystallized perovskite structures, indicating the successful synthesis of the LaCrO_3 and LaFeO_3 perovskite structure by the solid-state reaction method. After partial oxidation reaction in 5% CH_4 (Ar balanced) at 900 °C, traces of La_2O_3, La(CrO_4) and La(CrO_4) were observed in addition to LaCrO_3 perovskite main phase (Fig. 3a), indicating minor or partial decomposition of LaCrO_3. However, after regeneration in 5% O_2/Ar at 950 °C, the XRD peaks associated with La_2O_3, La(CrO_4) and La(CrO_4) disappear completely and only the peaks for perovskite oxides remain, showing that the perovskite structure can be completely recovered after the regeneration in oxygen. This indicates that structural change during the catalytic oxidation of methane is reversible. In the case of LaFeO_3 there is no change in the perovskite-type structure after the catalytic oxidation in 5%CH_4/95%Ar at 950 °C (Fig. 3b). This indicates that LaFeO_3 is quite stable for the catalytic oxidation in methane.

Fig. 4 is the XRD patterns of the as-prepared doped LaCrO_3 and LaFeO_3 oxide series. Secondary phase of La_2O_3 was found in Ba and Mg doped LaCrO_3 (Fig. 4a), probably due to the large size of the Ba and Mg dopants. In the case of Ca and Sr-doped LaCrO_3, no secondary phases were found although a small shift to larger diffraction angle is observable for
La$_{0.75}$Sr$_{0.25}$CrO$_3$ (Fig. 4a), indicating the lattice distortion due to Sr substitution. Sr$^{2+}$ ion is slightly larger than La$^{3+}$ ion in size (0.144 vs. 0.136 nm). For the doped LaFeO$_3$ oxide series, Fe$_2$O$_3$ phase is observed in all doped samples, while Fe$_2$O$_3$ phase appears to be higher in the Sr and Ba doped samples (Fig. 4b).

Similar to Ba-doped LaCrO$_3$, secondary phases were also observed in Ba-doped LaFeO$_3$. Nonetheless, the peaks associated with perovskite oxides were dominant in all the XRD patterns, indicating the formation of main perovskite phases.

Table 1 – BET surface areas of as-prepared (La$_{1-x}$A$_x$)MO$_3$ perovskites-type oxides.

<table>
<thead>
<tr>
<th></th>
<th>Surface area (m2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaCrO$_3$</td>
<td>2.39</td>
</tr>
<tr>
<td>(La${0.7}$Ba${0.3}$)CrO$_3$</td>
<td>2.57</td>
</tr>
<tr>
<td>(La${0.7}$Ca${0.3}$)CrO$_3$</td>
<td>3.21</td>
</tr>
<tr>
<td>(La${0.7}$Mg${0.3}$)CrO$_3$</td>
<td>2.76</td>
</tr>
<tr>
<td>(La${0.75}$Sr${0.25}$)CrO$_3$</td>
<td>2.78</td>
</tr>
<tr>
<td>LaFeO$_3$</td>
<td>2.99</td>
</tr>
<tr>
<td>(La${0.7}$Ba${0.3}$)FeO$_3$</td>
<td>3.72</td>
</tr>
<tr>
<td>(La${0.7}$Ca${0.3}$)FeO$_3$</td>
<td>4.76</td>
</tr>
<tr>
<td>(La${0.7}$Mg${0.3}$)FeO$_3$</td>
<td>5.02</td>
</tr>
<tr>
<td>(La${0.75}$Sr${0.25}$)FeO$_3$</td>
<td>4.97</td>
</tr>
</tbody>
</table>

Fig. 3 – XRD patterns of (a) as-prepared LaCrO$_3$, LaCrO$_3$ after generation in 5%CH$_4$/Ar at 900 °C, and LaCrO$_3$ after regeneration in 5%O$_2$/Ar at 950 °C; and (b) as-prepared LaFeO$_3$, LaFeO$_3$ after generation in 5%CH$_4$/Ar at 950 °C, and LaFeO$_3$ after regeneration in 5%O$_2$/Ar at 950 °C.

Fig. 4 – XRD patterns of the as-prepared (a) doped LaCrO$_3$ oxides and (b) doped LaFeO$_3$ oxide series.

3.2. **TPR**

Temperature-programmed reduction (TPR) was carried out to study the oxygen mobility and the amount of oxygen which can be released from the oxides via the reaction with hydrogen. Fig. 5 shows the TPR profiles of the amount of consumed hydrogen versus reaction temperature for the doped LaCrO$_3$ and LaFeO$_3$ oxide series. The amount of H$_2$ consumed per mole of the oxide sample can be obtained from calibrated integrated peak areas in the TPR profile. For the undoped LaCrO$_3$, the TPR profile is flat with no distinguish peaks, indicating no or little hydrogen was consumed by LaCrO$_3$ (Fig. 5a). This also indicates that undoped LaCrO$_3$ has very low reducibility probably due to its very low activity and low ionic conductivity [38–40]. With alkaline earth (AE) metals dopants, one or more reduction peaks were observed, indicating the significant increase in the hydrogen consumption.
However, the characteristics of the profile depend strongly on the nature of the dopant. For Ba-doped LaCrO$_3$, there are three small adsorption peaks at 390, 485 and 590 °C, respectively. This may be related to the presence of multi-phases in Ba-doped LaCrO$_3$ (see Fig. 4a). In the case of Sr-doped LaCrO$_3$, the hydrogen consumption is characterized by a large and overlapped peak at around 550 °C. Two large reduction peaks were detected for the Ca-doped LaCrO$_3$. The fact that both the reduction peaks are different in shape and height with the latter appearing at a high temperature could indicate the presence of different amount of active lattice O$^{2-}$ species present in the bulk and surface of the perovskite oxide that participate in the reaction at different temperatures.

For the undoped LaFeO$_3$, a single peak with maximum at 662 °C is present (Fig. 5b), showing higher activity as compared to that of the LaCrO$_3$. With AE doping, the intensity as well as the number of reduction peaks increase significantly. For example, with Ca doping, a reduction peak was also observed at ~660 °C, but the intensity is 5 times higher than that of undoped LaFeO$_3$. In the case of Sr-doped LaFeO$_3$, two distinctive and large reduction peaks were detected at 505 and 900 °C, respectively. The distinctive reduction peaks at different temperatures could signify that there exist various types of O$^{2-}$ species at different mobility which participate in the reaction with H$_2$. These peaks with maxima at the temperatures in the range of between 250 and 900 °C could indicate the increased mobility of lattice oxygen ions by A-site doping with the AE metals. Similar to the doped LaCrO$_3$ series, A-site doping changes significantly the TPR profile of LaFeO$_3$ samples. Although the TPR curves of the LaCrO$_3$ series have different profile as compared to that of LaFeO$_3$ series, it can be seen that in general, Sr and Ca doping promotes significantly the reducibility of perovskites, most likely due to the significantly increased mobility of the lattice oxygen ions in perovskite oxide structures.

The total amount of hydrogen consumed per mole of catalysts during TPR was calculated and the results are given in Table 2. The ratios of moles of hydrogen consumption per mole of catalysts indicate the variations in the availability or mobility of the oxygen lattice ions within the oxides. A high consumption implies the high availability of lattice oxygen, O$^{2-}$ for the catalytic partial oxidation of methane (reaction (1)).

The amount of hydrogen required for the reduction of one mole of catalyst is much lower for the LaCrO$_3$ series as compared to the LaFeO$_3$ series. The results are justifiable as LaFeO$_3$ is more readily reducible than the LaCrO$_3$ [18]. In comparison, the undoped LaCrO$_3$ and LaFeO$_3$ have the smallest moles of H$_2$ consumed by one mole of catalysts, 0.08 and 0.12, respectively which suggested that both oxides have the least amount of lattice oxygen reacted. AE doping on A-site of ABO$_3$ perovskite greatly enhanced the oxygen availability. As it can be seen from Table 2, the amount of H$_2$ consumed by AE-doped LaCrO$_3$ and LaFeO$_3$ is one order of magnitude larger than their undoped counterparts. Among all the samples, the highest values obtained under each series are by the ($La_{0.7Ca_{0.3}}CrO_3$) and ($La_{0.7Sr_{0.25}}FeO_3$), which indicate

![Fig. 5](image-url) TPR profiles of (a) doped LaCrO$_3$ and (b) doped LaFeO$_3$ oxides, showing the intensity, temperature and time on stream at which H$_2$ is consumed from the reaction between H$_2$ and perovskite oxides. The flow rate was 50 ml/min of 5%H$_2$/Ar, and the weight of each sample is 50 mg. The temperature was raised at a rate of 10 °C/min from room temperature to 900 °C.

<table>
<thead>
<tr>
<th>Moles of H$_2$ consumed per one mole of catalyst</th>
<th>LaCrO$_3$</th>
<th>($La_{0.7Ba_{0.3}}CrO_3$)</th>
<th>($La_{0.7Ca_{0.3}}CrO_3$)</th>
<th>($La_{0.7Mg_{0.3}}CrO_3$)</th>
<th>($La_{0.7Sr_{0.25}}CrO_3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>($La_{1-x}AE_x)MO_3$ perovskite-type oxides.</td>
<td>0.08</td>
<td>0.27</td>
<td>0.60</td>
<td>0.20</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>LaFeO$_3$</td>
<td>($La_{0.7Ba_{0.3}}FeO_3$)</td>
<td>($La_{0.7Ca_{0.3}}FeO_3$)</td>
<td>($La_{0.7Mg_{0.3}}FeO_3$)</td>
<td>($La_{0.7Sr_{0.25}}FeO_3$)</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>1.03</td>
<td>1.11</td>
<td>1.26</td>
<td>2.65</td>
</tr>
</tbody>
</table>
that both (La_{0.7}Ca_{0.3})CrO$_3$ and (La_{0.75}Sr_{0.25})FeO$_3$ possesses the highest amount of active oxygen species that could be utilized for the catalytic oxidation of methane.

3.3. Catalytic partial oxidation of CH$_4$

Fig. 6 shows the mass spectroscopy plots of the hydrogen production as a function of temperature when the perovskite oxides were exposed to 5%CH$_4$ in Ar from room temperature to 950 °C. Since the amount of perovskite oxides used is very small, 5% CH$_4$ would be more than enough to react with the lattice oxygen of the oxides.

For undoped LaCrO$_3$, hydrogen production starts at ≈800 °C and AE doping shifts the hydrogen formation temperature to lower temperatures and increases the hydrogen intensity (Fig. 6a). Most of the H$_2$ peaks appear at temperatures from 820 to 900 °C for the doped LaCrO$_3$ oxides series with (La_{0.75}Sr_{0.25})CrO$_3$ having the highest intensity. In the case of Mg and Sr doped LaCrO$_3$, hydrogen production started at 750 °C and reached the maximum at ≈820 °C. Ca-doped LaCrO$_3$ oxide gave two hydrogen formation peaks at 840 and 900 °C, respectively. This observation is consistent with the TPR result in Fig. 5a and could be due to the fact that different oxygen species in the Ca-doped LaCrO$_3$ sample is evolved at different temperature. Undoped LaFeO$_3$ also starts the hydrogen formation at ≈800 °C but the intensity of the hydrogen formation is weak (Fig. 6b), similar to that of undoped LaCrO$_3$. This indicates that both undoped LaCrO$_3$ and LaFeO$_3$ are very stable oxides with low activity for hydrogen production since the lattice oxygen available for reaction is very limited as shown in Table 2. With the addition of AE metal dopants, the minimum temperatures needed for the partial oxidation of methane to syngas are reduced. Similar to the doped LaCrO$_3$ series, Sr-doped LaFeO$_3$ has the highest H$_2$ intensity at 853 °C. The increment in H$_2$ production and methane activation ability of perovskites are correlated to the oxygen mobility and availability as shown in Fig. 5 and Table 2.

By using gas chromatography for on-line outlet gas analysis, as defined by Eq. (3), the amount of CH$_4$ converted was calculated and the syngas concentration in the outlet gas stream was measured for both doped LaCrO$_3$ and LaFeO$_3$ oxide series at 850 °C in the 5% CH$_4$–95% Ar gas stream with GHSV of 750 h$^{-1}$. The results are shown in Fig. 7. As seen in Fig. 7a, the CH$_4$ conversion on the doped LaCrO$_3$ oxide series is relatively low (<12%) and decreases gradually with the reaction time. The undoped LaCrO$_3$ oxide yields the lowest value of ~5% while the highest CH$_4$ conversion is 12% produced by Sr doped LaCrO$_3$. Though the CH$_4$ conversion decays at the first 70 min, the highest conversion at the end of the test at 130 min was observed on Sr-doped LaCrO$_3$, 8% methane conversion. The La$_{0.7}$Ca$_{0.3}$CrO$_3$ oxide displays steady CH$_4$ conversion of 10% in the first 80 min, after which it drops rather quickly to 4%. The continuous decrease in the methane conversion rate indicates that the activity of doped LaCrO$_3$ decreases with the contact time with methane, most likely due to the gradual reduction in the amount of lattice oxygen available for the catalytic oxidation reaction.

Doped LaFeO$_3$ oxides have a much higher CH$_4$ conversion rate as compared to that of doped LaCrO$_3$ oxides counterpart. Also, very different from the continuous delay in methane conversion in the case of doped LaCrO$_3$, the activity of doped LaFeO$_3$ exhibits a significant induction period before reaching the maximum conversion rate (Fig. 7b). For undoped LaFeO$_3$, the maximum conversion rate was 10% after reaction in 5% CH$_4$/Ar for 90 min. Doping LaFeO$_3$ with AE elements significantly shortens the induction period for the catalytic oxidation reaction as well as enhances the activity. In the case of Sr doped LaFeO$_3$ the maximum conversion rate of 60% occurs at 65 min and the best activity and performance was observed for the Ca doped LaFeO$_3$, 70% conversion at ~30 min. For Mg doped LaFeO$_3$ it took ~120 min to reach a maximum conversion rate of 65%.

The production rate of hydrogen and CO on doped LaCrO$_3$ and LaFeO$_3$ oxides basically follows that of methane conversion (see Fig. 7c–f). As illustrated in Fig. 7c, the H$_2$ concentration for undoped LaCrO$_3$ and Ba-doped LaCrO$_3$ are basically constant at 0.5 and 0.8% correspondingly. Sr doped LaCrO$_3$ produces 2.4% of H$_2$ and decreased to a steady value of 1.0% after reacted for 80 min. The Ca dopant shows rather high yield of H$_2$ production, which decreases gradually from 2.25% to 1.5% in the first 60 min on stream, and then remains
steadily at the 1.5% in the next 80 min. Mg dopant displays comparable trend, decreasing from 2.25% to 1.0%. Similar trend was also observed for the CO concentration on doped LaCrO$_3$ oxide series (Fig. 7e).

Doped LaFeO$_3$ oxides show increasing patterns for the H$_2$ production with reaction time (Fig. 7d). For LaFeO$_3$ the H$_2$ production increases to 2% after reaction for 90 min after which remains at that value over the holding time of 140 min. The Sr doped oxide displays rather a steady increasing H$_2$ production in the first 60 min, reaches a maximum of 10% and maintains for another 10 min, followed by continuous decline to 1%. The Ba dopant follow similar trend with a gradual increase to 7%, and decreases to 1% in the next 80 min holding time. The La$_{0.7}$Ca$_{0.3}$CrO$_3$ increases from initial value of 3%–9% in the 60 min stream on line time. The Mg dopant takes a longer time to be activated to give a raise from 0 to 11% in the 120th min. Similar trend was also observed for the CO production (Fig. 7f).

Fig. 8 is the molar ratio of H$_2$ to CO for both oxide series. The data were taken from Fig. 7c–f. The H$_2$ to CO molar ratio for the undoped LaCrO$_3$ and LaFeO$_3$ samples is approximate 2 which is the theoretical value derived from partial oxidation of methane, according to reaction (3). Doping generally enhances H$_2$/CO ratio. LaMgCrO$_3$, LaSrCrO$_3$, LaMgFeO$_3$, LaBaFeO$_3$ and LaSrFeO$_3$ are seen to maintain the H$_2$/CO ratio steady at various levels between 2 and 6 within 80 min testing. The high
H₂/CO ratios indicate the occurrence of CH₄ cracking. The most likely reason may be due to the fact that fine AE dopant could be segregated on the oxide surface in situ during the CPO of methane [19–22] and induces the methane cracking. Another possible reason for the higher H₂ concentration could be due to the fact that part of Fe could be reduced by H₂ during the reaction and causes the methane cracking. Thus it can be concluded that the doping of alkaline earth metals improves both the CH₄ conversion and syngas production. The selectivity of H₂ was found to be 100% and that of CO was nearly 100% with no H₂O and CO₂ produced. The LaAFeO₃ oxides are active in the oxidative conversion of methane to syngas as the CH₄ conversion and syngas concentration remained steady during the experimental period of 140 min. Among the doped LaACrO₃ series, Ca²⁺ doped oxide yielded better activity and higher syngas concentration. Despite having a slightly low methane conversion of 10%, La₀.₇₅Sr₀.₂₅CrO₃ outperformed the rest giving a high steady concentration: 2.25% H₂ and 0.7% CO. Methane conversion of 12% with 2.25% H₂ and 1% CO concentration was also achieved by La₀.₇₅Sr₀.₂₅CrO₃. In the case of the doped LaFeO₃ series, CH₄ conversion is significantly high. Best results were obtained on Ca²⁺ and Sr²⁺ doped LaFeO₃ oxides. La₀.₇₅Ca₀.₃FeO₃ gave a 70% of CH₄ conversion with 10% H₂ and 2.5% CO within 50 min, while La₀.₇₅Sr₀.₂₅FeO₃ achieved a 65% CH₄ conversion, 10% H₂, and 2.8% CO within 50 min. In conclusion, Ca and Sr are the best dopants for both LaCrO₃ and LaFeO₃ for the catalytic oxidation of methane. This is most likely correlated to the high oxygen availability of Ca and Sr doped LaCrO₃ and LaFeO₃ perovskites.

4. Conclusion

Polycrystalline AE metal doped LaCrO₃ and LaFeO₃ oxides have been prepared by conventional solid state reactions and the potential of these two series of perovskite oxides as atomic oxygen sources for the partial oxidation of methane to syngas was studied. A-site doping with AE metals generally increases the mobility of lattice oxygen ions and thus decreases the temperatures for the hydrogen and CO production, as compared with the undoped LaCrO₃ and LaFeO₃ oxides. The minor structural change during the partial oxidation of methane in the case of LaCrO₃ can be regenerated by oxidation in O₂/Ar at 950 °C, while LaFeO₃ showed negligible structural changes during the catalytic oxidation reaction of methane. The results indicate stable activities of the perovskites during the repeated reaction cycles of generation-regeneration. LaAFeO₃ series yield better performance than the LaACrO₃ series. The best results were obtained on (La₀.₇₅Sr₀.₂₅)FeO₃ with 65% of CH₄ conversion, 10% H₂ and 2.8% CO production at 850 °C with 100% H₂ selectivity. The high activity of (La₀.₇₅Sr₀.₂₅)FeO₃ is most likely due to the highly mobile lattice oxide ions, indicated by the low reducing temperature (~400 °C) in H₂ and a high mole ratio of 1.37 (H₂ consumed per catalyst used). (La₀.₇₅Sr₀.₂₅)FeO₃ shows a promising potential as atomic oxygen source for syngas production via the reaction of methane for portable fuel cells applications.

Acknowledgments

The work was carried out in the frame of Joint Project between Institute Chemical Engineering Science (A*STAR) and Nanyang Technological University Singapore, with funding from Economic and Development Board, Singapore and partially supported by the Commonwealth of Australia under the Australian Research Council (LP110200281) and the Australia-China Science and Research Fund.

References
