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A B S T R A C T   

Glaucoma is a chronic eye disease, which causes gradual vision loss and eventually blindness. Accurate glaucoma 
screening at early stage is critical to mitigate its aggravation. Extracting high-quality features are critical in 
training of classification models. In this paper, we propose a deep ensemble network with attention mechanism 
that detects glaucoma using optic nerve head stereo images. The network consists of two main sub-components, a 
deep Convolutional Neural Network that obtains global information and an Attention-Guided Network that lo-
calizes optic disc while maintaining beneficial information from other image regions. Both images in a stereo pair 
are fed into these sub-components, the outputs are fused together to generate the final prediction result. 
Abundant image features from different views and regions are being extracted, providing compensation when 
one of the stereo images is of poor quality. The attention-based localization method is trained in a weakly- 
supervised manner and only image-level annotation is required, which avoids expensive segmentation label-
ling. Results from real patient images show that our approach increases recall (sensitivity) from the state-of-the- 
art 88.89% to 95.48%, while maintaining precision and performance stability. The marked reduction in false- 
negative rate can significantly enhance the chance of successful early diagnosis of glaucoma.   

1. Introduction 

Glaucoma is one of the leading causes of blindness [1]. It gradually 
damages the optic nerve, which results in vision loss. The major risk 
factor for glaucoma is elevation of the Intraocular Pressure (IOP) due to 
blockage of the eye drainage channels [2]. Although existing vision loss 
cannot be restored, further vision loss can be effectively prevented if 
proper treatment is applied at an early stage. Therefore, it is of great 
significance to detect glaucoma early and take necessary measures to 
mitigate the disease. For IOP measurement, a tonometer [3] is used to 
detect if the pressure is above a normal range, suggesting a risk of 
developing or having glaucoma. However, it is not uncommon for a 
glaucoma patient to also have a normal IOP in normotensive glaucoma. 
Fundus imaging is widely used in glaucoma diagnosis. Clinicians typi-
cally perform optic nerve head analysis on the fundus image, calculating 
measurement metrics to determine the glaucoma cases. The vertical cup 
to disc ratio (CDR) [4] is a very popular metric for glaucoma screening, 
which is computed by dividing the vertical cup diameter by the vertical 
disc diameter. However, according to Jonas et al. [5], the CDR is 
affected by inter-individual variabilities. Therefore, eyes with a high 
CDR should not be considered glaucomatous without further studying 

other features, such as the population and disc sizes. As shown by 
Hagiwara et al. [6], computer-aided detection systems are effective in 
glaucoma screening and can alleviate clinician’s workload. In addition, 
algorithm-based feature engineering is normally able to extract more 
features from an image apart from CDR itself. Hence, machine learning 
feature extraction and classifiers have attracted significant research 
interest. 

As the optic disc region is commonly believed to be crucial to the 
glaucoma screening task, many methods have been proposed to localize 
the disc and perform prediction based on disc features. Typically, these 
methods identify the region of interest, especially optic disc and cup 
region, and calculate related clinical measures like CDR to detect glau-
coma. An example is the method proposed by Poshtyar et al. [7], where 
masks and thresholds were used to locate the optic disc and cup, fol-
lowed by CDR calculations. In a paper by Atheesan and Yashothara [8], 
the cup and disc were extracted using average and maximum grey level 
pixels with histograms, the CDR was then calculated, and blood vessel 
information was utilized to aid diagnosis. In order to alleviate the lim-
itation of CDR, Cheng et al. [9] cropped optic disc region and extracted 
various features with CNN. Ferreira et al. [10] extracted optic disc fea-
tures with segmentation. However, it is costly to obtain pixel-level 
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segmentation annotations. Furthermore, as shown by Jonas et al. [4], 
completely ignoring features from regions outside the optic disc has 
negative effects on robustness of the model. In recent years, attention 
mechanisms have been introduced to locate regions of interest in im-
ages, while preserving global information in other image regions. Using 
attention in glaucoma screening intuitively satisfies the need to focus on 
the optic disc region while keeping tissue and vessel features. Oktay 
et al. [11] applied visual attention mechanism on CT images. Li et al. 
[12] applied attention mechanisms to glaucoma diagnosis, however, 
human labelled ground truth of attention masks required in [12] is 
costly and subject to annotator bias. Hence, automatically learning 
attention with only image-level labels is of great importance and bene-
ficial to glaucoma screening. 

In [15] by Ruengkitpinyo et al, the optic disc was located using 
eclipse fitting, then the rim width was obtained using the INST Rule, and 
the CDR was calculated and used as a feature together with the rim 
width as input for a support vector machine. In [16] by Agarwal et al, a 
histogram with adaptive thresholding was used to segment the disc and 
cup and to calculate CDR for glaucoma screening. Jose and Balakrishnan 
[17] took advantage of morphological operations and blood vessel in-
formation in the optic disc and cup segmentation, before the CDR was 
calculated. In [18] by Alghmdi et al, super-pixels classification was 
performed before utilizing morphological operations to finalize cup and 
disc boundary. In [19] by Cheng et al, hand crafted features were fed 
into a super-pixel-based classifier to segment the optic disc and cup re-
gions. The segmented region was then used for CDR calculation to detect 
glaucoma. Dey et al. [20] used the Harris Corner detector to draw circles 
over optic disk and cup regions to aid segmentation. Kande et al. [21] 
used color morphology with active contours. In [22] by de Carvalho et 
al, Otsu and K-means were employed to localize disc regions and 
phylogenetic diversity indices were then utilized for feature extraction. 
Aquino et al. [23] also used morphology with the Hough Transform for 
edge screening and disk boundary extraction. 

On the other hand, methods that automatically extract image fea-
tures and perform classification based on these features are also widely 
studied. David and Jayachandran [25] used hybrid color and structure 
descriptors to perform feature selection [58–63] for classification. 
Araújo et al. [26] utilized diversity indexes as texture descriptors for 
screening. Salam et al. [27] adopted texture and intensity features to 
detect glaucoma. Acharya et al. [28] applied the Gabor transform to 
fundus images. Noronha et al. [29] extracted higher order spectra 
cumulants by the Radon transform. In [30] by Dua et al, energy features 
were extracted using 2D discrete wavelet filters. In [31] by Sousa et al, 
binary patterns were used to represent disc regions and geostatistical 
functions were applied to represent texture patterns, and the features 
were then used by a support vector machine for glaucoma screening. 
Xiong et al. [32] applied principal component analysis to obtain 
eigenvector spaces for normal and glaucoma sets, and then projected 
test images to these spaces to detect glaucoma. In [33] by Bai et al, the 
optimal error-correcting output code matrix was learned to screen 
glaucoma through ensembles. Nayak et al. [36] extracted various fea-
tures, such as CDR and ratio of the distance between optic disc center 
and optic nerve head to diameter of the optic disc, and performed 
screening with a neural network classifier. A number of researchers have 
studied detection and grading of diabetic retinopathy in retinal images 
using various machine learning techniques [53–57]. 

With the advancement in Deep Learning, specially-designed or hand- 
crafted features are generally less robust compared to features extracted 
from convolutional neural networks (CNNs). The top performing 
learning-based models are mostly based on Deep Learning or CNNs, 
which extract highly discriminative features. According to Ker et al. 
[34,51,52], CNNs are well-suited for medical image classification. Fu 
et al. [9] and Edupuganti et al. [24] used CNN to segment optic discs and 
cups jointly at the same time. Ferreira et al. [10] employed CNN to 
perform disc segmentation, then extracted features from disc regions 
with vessels removed, before feeding the features to a CNN-based 

classifier. Chen et al. [35] utilized CNN with fully connected dense 
layers for both feature extraction and glaucoma screening. Orlando et al. 
[37] used image pre-processing and pre-trained CNN for glaucoma 
screening. Pal et al. [38] used autoencoders to compress CNN features 
for screening. Al-Bander et al. [39] employed CNN features in a support 
vector machine for classification. Li et al. considered [40] the region of 
interest together with grid patches. Lima et al. [41] compared main-
stream CNN architectures as feature extractors. Norouzifard et al. [42] 
applied transfer learning and pre-trained CNN models to perform end-to- 
end glaucoma screening. In [43] by Li et al, features extracted by mul-
tiple CNNs were combined to boost performance. However, these CNN 
methods generally considered all image regions equally, instead of 
prioritizing regions of interests and suppressing noises in regions outside 
of the optic disc. Fu et al. [44] considered both local and global image 
information, together with polar transformation of the local region to 
improve performance through ensembles. Chai et al. [45] proposed a 
multi-branch neural network which extracts global and disc features 
simultaneously. However, these methods focused on only single 2D 
fundus images, which might not contain enough information to further 
improve glaucoma screening performance. 

Stereo images, taken as image pairs by two cameras from different 
viewpoints, have been introduced in medical applications. A pair of 
stereo images contain more information compared to a single image. 
Hence, utilizing both left and right images in a stereo pair to perform 
glaucoma screening can potentially improve the robustness of the 
screening model, especially when one image is of poor quality, the other 
image can usually compensate the loss and maintain a reliable perfor-
mance. Nakagawa et al. [13] obtained depth in stereo images by 
calculating location differences between corresponding points; howev-
er, they [13] did not use the depth information in glaucoma screening, 
since the depth obtained heavily depends on the selection accuracy of 
the corresponding points. Clinically, judgement of the optic disc is 
important in the diagnosis of glaucoma. In general, ophthalmologists 
classify stereoscopic optic disc photographs moderately well for glau-
coma. However, there can be large variability in diagnosis accuracy 
based on clinician judgement [14]. The need for an automatic technique 
for glaucoma screening was therefore raised to address this issue. 
Corona et al. [46] developed an algorithm to generate abundant glau-
coma measures from stereo images that can guide clinical judgement. 
Norouzifard et al. [47] generated disparity maps using stereo images 
and performed segmentation on the disparity maps to help clinicians 
analyze abnormalities. While these methods suggested potential appli-
cations of stereo images in glaucoma CAD, they mainly facilitated types 
of analytics other than prediction and they did not provide algorithms or 
experiments on automatic glaucoma screening. 

In this paper, we propose a novel attention-guided stereo ensemble 
network (AGSE-Net) using stereo fundus image pairs. It automatically 
locates optic disc regions through an attention module without the need 
of ground-truth disc region labels (or attention mask) and can be trained 
in an end-to-end manner. 

The main contributions of this paper are as follows: 

1. We propose a novel technique for glaucoma optic disc region local-
ization through a visual attention mechanism, which focuses on the 
disc region while keeping global information (including regions 
outside the optic disc).  

2. We show the effectiveness and advantages of using stereo images for 
glaucoma screening. The two images in a stereo pair compensate 
each other, especially when one of the images is of poor quality.  

3. We design a fully automatic end-to-end network that performs 
localization and screening at the same time, which is supervised by 
disease labels only and avoids the additional effort for disc region/ 
attention mask labelling. 
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2. Methods 

The overall structure of our proposed network is shown in Fig. 1, 
which consists of two types of sub-components, namely the Deep CNN 
and the Attention-Guided network. The Deep CNN captures image fea-
tures at a global scale to obtain holistic information. The Attention- 
Guided network localizes the optic disc while maintaining beneficial 
information in other regions. Both the stereo images are fed into the two 
modules to produce abundant features for classification. We fuse the 
information from the original images and the attention-guided local 
regions by combining the outputs from the all sub-networks during 
inference. 

2.1. The deep CNN 

Several types of CNNs have been proposed and applied with varying 
degrees of success [64–68]. We select the ResNet-34 [48] as our CNN 
feature extractor in this paper. One of the common issues of training a 
deep neural network is the vanishing gradient problem. With the 
increasing number of layers, the gradient tends to zero when the back- 
propagation process goes to earlier layers. The ResNet structure pro-
vides a feasible solution to this issue. It consists of many residual blocks, 
which are composed of a few stacked convolutional layers with a short 
cut connection from the first layer to the last layer. Through this process, 
the gradient can “by-pass” a few layers and directly reach those earlier 
layers to push parameter learning. Lima et al. [41] compared the per-
formance of ResNet-50 with other CNN models and showed advantages 
of the ResNet architecture in glaucoma screening. We adopt the light- 
weight ResNet-34 instead of ResNet-50 in order to reduce computa-
tional resources needed during clinical applications, while maintaining 
a high screening accuracy. The ResNet-34 structure as the backbone 
feature extractor is connected to a fully connected (FC) classifier. In 
order to reduce overfitting, two dropout layers are inserted before each 
FC layers in the classifier to regularize the model. 

2.2. Attention network 

The signals of glaucoma-affected eyes are mainly contained in the 
optic disc region. Therefore, specifically extracting features from this 
region can reduce image noise and potentially improve network per-
formance. However, many state-of-the-art methods for disc region seg-
mentation require ground-truth label for the optic disc region, which is 
costly to obtain. Inspired by the work in [49] that utilizes deep learning 
based attention mechanism to automatically focus on important feature 
region, we apply a visual attention method with convolutional layer to 
automatically locate the disc regions and highlight the glaucoma signals. 
We design and insert our attention module on the output from the third 
residual block, which is named as the pre-attention layer, of the ResNet- 
34 feature extractor. The structure of the attention network is shown in 
Fig. 2. 

The attention module consists of a convolutional layer with kernel 
size of 1 × 1 and the number of channels 1 and a sigmoid operation. By 
applying convolutional operation with the attention module onto the 
pre-attention layer, a 2D output of the same height and width as the pre- 
attention layer can be obtained. We then apply a sigmoid layer onto the 
2D output to highlight the important features and compress the irrele-
vant features. Lastly, we perform an element-wise multiplication be-
tween the 2D mask and the pre-attention layer on all pre-attention layer 
channels. As the disc region features contribute more to the glaucoma 
detection performance, the attention mask will automatically learn to 
focus on the disc features during back-propagation supervised by the 
classification loss. Some visualizations of the learned attention masks 
are presented in later sections. 

The following equations show the mathematic operations behind the 
attention module. 

F’ = F ⊙ {S(A(F, θ))} (1)  

S(x) =
ex

ex + 1
(2) 

Left CNN

Right CNN

Left 
Attention 
Net

Right 
Attention 
Net

Stereo Image 
Pair

Left Image

Right Image

Fig. 1. An overview of our attention-guided stereo ensemble network (AGSE-Net). The elements in blue represents ResNet CNN backbone for feature extraction. The 
elements in grey represent the classifier modules in the CNNs. The elements in yellow represent visual attention localization modules. The large arrow at the right end 
of the figure decides the overall output of the ensemble based on the output of each of the four branch networks. In the present work, the output of each branch 
represents the likelihood for positive or negative in glaucoma screening and the highest value determines the screening outcome. The input stereo image pair is first 
split into left and right images, each of which is fed into the respective CNN and attention net, and the results are then combined as an ensemble at the end to 
calculate prediction scores. For both the CNN and the Attention Network, the Global Average Pooling layer after the convolution layers are maintained. ResNet-34 
[48] is selected as the CNN in this paper, due to its effective error-propagation, excellent performance, and yet reasonable computational load. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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A(x) = θB +
∑C

j=1
θW*x (3)  

whereA represents the attention module’s convolutional layer with pa-
rameters θ, S represents the sigmoid operation, ⊙ represents the 
element-wise multiplication and F ∈ RH×W×Crepresents the feature map 
(pre-attention layer) output from the first three residual blocks of the 
ResNet-34 with shape H ×W × C. F’ ∈ RH×W×C is the disc highlighted 
features generated by the attention module and pre-attention layer, 
which is then fed into the rest of the layers in our network. 

As optic disc region features are beneficial for improving the glau-
coma screening accuracy and reducing training loss, the attention kernel 
automatically learns to focus on the optic disc region without ground- 
truth of that region (e.g., bounding boxes and bounding curves). 

In addition, the kernel assumes relatively small, instead of 
completely zero, values for non-optic disc regions. As shown in [4], 
keeping global information is beneficial to improve model performance. 
Hence, by focusing on the disc region while keeping global information, 
the attention kernel ensures the stability of the model and improves its 
robustness. Although it is plausible to consider that the local features 
extracted by the attention net are already included in the global features 
extracted by the CNN, the local features could focus or enhance 
weightage on some important local features, thereby offering potential 
for improved classification accuracy. This conjecture will be shown to be 
valid by the subsequent experiments. 

2.3. Model ensemble 

We aggregate the results from all our network modules together, 
combining information from original images and attention-guided in-
formation, as well as fusing information from left and right images in a 

stereo pair. In our network, the output of each branch represents the 
likelihood for positive or negative in glaucoma screening. Finally, the 
highest value determines the screening outcome. 

3. Experiment details & results 

3.1. Evaluation criteria 

As the dataset is biased towards the normal case (without glaucoma 
or negative case), directly applying the naïve accuracy (the percentage 
of correct predictions) as an evaluation metric may not be the most 
sensible. Hence, we adopt precision, recall, and the average precision 
(AP) as the main performance metrics, with the naïve accuracy as 
reference. Precision (also called positive predictive value or PPV) is the 
fraction of true positive instances (correctly classified as positive) among 
all instances classified as positive, whereas recall (also known as sensi-
tivity, hit rate, true positive rate or TPR) is the fraction of true positive 
instances (correctly classified as positive) among all positive instances in 
the dataset. 

Precison =
TP

TP + FP
(4)  

Recall =
TP

TP + FN
(5)  

Avergae Precision =
∑

n
(Rn − Rn− 1)Pn, n ∈ [1, k] (6)  

Accuracy =
TP + TN

TP + TN + FP + FN
(7)  

where TP is the number of true positives (correctly classified positives), 

Residual 
Blocks

Input Image

Pre-Attention Layer

1x1 Convolution

Attention Mask

Element-wise Multiplication

Other  
Layers

Fig. 2. The structure of the attention network.  
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FP is the number of false positives (incorrectly classified positives), TN is 
the number of true negatives (correctly classified negatives), and FN is 
the number of false negatives (incorrectly classified negatives). In 
equation (6), Rn represents the recall for the nth sample, Pn represents the 
precision for the nth sample, and k is the number of samples. Thus, 
average precision is the weighted average of precision at every decision, 
with the increment of recall from the last decision as the weight. 

We regard naïve accuracy given in equation (7) as the least impor-
tant metric and list it only for reference purpose, as accuracy may not be 
significant for a biased dataset (imbalanced in glaucoma and normal 
subjects). 

There exist other evaluation metrics. For example, specificity (also 
called selectivity, true negative rate or TNR: 

Specificity =
TN

TN + FP
(8) 

But we are less concerned with negative results than positive results 
in screening. 

An alternative representation of the results would be a confusion 
matrix:  

TP FP 

FN TN  

This representation is quite intuitive if the computer experiment is run 
only once. If the computer experiments are run multiple times, we could 
still enter the averages and the standard deviations in the confusion 
matrix, if the data split is done only once and fixed in all experiments. 
However, if the data split is done randomly multiple times, as in this 
paper, the averages in the confusion matrix may not make sense, since 
we are not sure what the correct values would be. Hence, we will not 
show the confusion matrix in this paper. 

3.2. Data preprocessing & augmentation 

The stereo glaucoma image dataset is provided by Tan Tock Seng 
Hospital, Singapore. The data are annotated by a glaucoma fellowship 
trained ophthalmologist according to the international gold standard. 
The dataset contains a total of 282 images with 70 glaucoma cases and 
212 normal cases. The stereo images are taken during patient exami-
nations, i.e., each left and right images are taken separately and are not 
the same. 

Fig. 3 is a sample stereo image pair in the dataset. The original sizes 
of the left and right images are about 1000 × 1400 pixels. All the images 
are then resized into 224 × 224 for training and testing. 

We randomly split the entire data set to 70% as training data and 
30% as test data. We split for 3 times. We train 10 models for each 
training/test set and record the averages and standard deviations for AP, 
precision, recall, and accuracy. 

In order to improve model performance and robustness, data 
augmentation is used to generate more training samples. We apply 
rotation (90◦/270◦) and horizontal flip to all training images. There are 

two main reasons for us to adopt rotation augmentation though it may 
seem counter-intuitive in this scenario. First, it has been shown that 
features other than CDR can also contribute to model learning. Second, 
we hope to encourage the deep learning model to explore rotational 
invariant features in the image. Third, although the optical discs are 
almost circular, they are not exactly circular. In addition, the entire 
images may not be centered at the centers of the optical discs. Therefore, 
rotations will generate different images. Hence, by applying these ro-
tations, the model has to learn robust features instead of depending only 
on features like vertical CDR. 

3.3. Implementation details 

The network shown in Fig. 1 is implemented using Python with 
PyTorch. During training, the Adam optimizer is utilized to update 
model parameters. We initialize the model to the ImageNet pre-trained 
weights. A warmup of 5 epochs is applied to stabilize the training pro-
cess. We adopt a learning rate decay scheme of reducing the learning 
rate by half after every 10 epochs. The base learning rate is set to 0.001. 

3.4. Results 

The experimental results are described in two parts. We first compare 
our method to the re-implementations of other state-of-the-art learning- 
base methods. We then perform ablation studies to show the effective-
ness of using attention mechanism as well as utilizing stereo images. We 
highlight the top 1st and 2nd performance on all the metrics. 

4. Comparisons with other methods 

We select five state-of-the-art learning-based methods for fair com-
parisons. As the original models were trained on other datasets, we 
implement these methods and apply them to our data. The methods to be 
compared are:  

- A CNN [35] with overlapping pooling.  
- An 18-layer deep CNN [50].  
- CNN-SVM [39] which extracts features using pre-trained CNN 

(ResNet) and perform screening using the Support Vector Machine.  
- Inception-ResNet-V2 [42] which leverages on transfer learning and 

deep CNN architecture to perform end-to-end glaucoma screening.  
- VGG-19 [42] which is similar to the Inception-ResNet-V2 method but 

with a different model architecture. 

As shown in Table 1, our proposed method yields the highest pre-
cision and recall, while maintaining top-2 smallest standard deviations 
(indicating stable performance). In particular, we increased the recall 
with a significant margin from 88.89 by Inception-ResNet-V2 to 95.48 
using the proposed AGSE-Net. Our proposed method archives the 

Fig. 3. A stereo image pair.  

Table 1 
Comparisons with Other Methods (top results are high-lighted in bold).  

Method Precision 
(Mean/ 
Standard 
Deviation) 

Recall 
(Mean/ 
Standard 
Deviation) 

Average 
Precision 
(Mean/ 
Standard 
Deviation) 

Accuracy 
(Mean/ 
Standard 
Deviation) 

CNN [35] 85.30/9.80 69.23/14.28 86.48/3.95 93.20/1.65 
DCNN [49] 82.27/15.67 80.34/8.36 92.45/4.75 92.94/5.02 
Inception- 

ResNet-V2 
[42] 

93.74/0.35 88.89/1.48 94.51/0.46 97.52/0.23 

VGG-19 [42] 91.41/4.70 78.63/12.71 94.57/2.56 95.42/2.12 
CNN-SVM  

[39] 
79.45/12.17 86.60/6.20 92.72/5.50 91.33/0.74 

AGSE Net 
(Ours) 

94.72/1.52 95.48/3.66 95.23/1.18 97.12/0.96  

Y. Liu et al.                                                                                                                                                                                                                                      
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highest AP score, while maintaining top-2 smallest standard deviation, 
in comparisons with other state-of-the-art approaches. Excellent and 
stable performance is especially important in medical diagnosis, and our 
proposed method satisfies this requirement. 

4.1. Ablation study 

In order to show the improvement from the attention mechanism and 
stereo images separately, we also perform ablation studies with different 
combinations of the four network branches in Fig. 1. 

4.2. Effects of Attention: 

In Fig. 1, the difference between the Left CNN branch and the Left 
Attention Net branch lies in the added attention module in the Left 
Attention Net (and similarly for the Right CNN branch and the Right 
Attention Net branch). In Table 2, when we compare Left CNN Only vs. 
Left CNN + Left Attention Net, and Right CNN Only vs. Right CNN + Right 
Attention Net, we see that all four performance metrics increase, while 
the standard deviations decrease with the added attention modules. It is 
notable that Attention Net alone does not provide performance 
improvement over CNN Net for both single branch and left–right 
ensemble scenario. This is reasonable as the attention mechanism 
adopted in our network mainly provides fine-grained focus not 
emphasized by the usual CNN branch. Hence, its benefit may be sig-
nificant only when fusing together with the CNN branch. 

We visualize some attention mask in Fig. 4, in which the optic disc 
region and nearby related tissues are highlighted by the learned atten-
tion masks. Even for fundus images with very poor lighting and reso-
lution, the attention mask is able to locate the region of interest, as 
shown in Fig. 4. 

4.3. Effects of stereo Images: 

Table 2 shows that the combination of Left CNN Only and Right CNN 
Only outperforms its two sub-components by a significant margin. 
Similarly, the combination of Left Attention Net and Right Attention Net 
significantly outperforms its two sub-components, while the combina-
tion of Left CNN + Left Attention Net and Right CNN + Right Attention Net 
also outperforms its two sub-components. This indicates the comple-
mentary effects between the images in a stereo pair. Fig. 5 shows a 
sample stereo image pair in which the left images is of poor quality (also 
appears as the top second image in Fig. 4). In this case, the right image 
can compensate the incompleteness of the left image and yield a stable 
result through the ensemble. 

5. Conclusion 

In this paper, we have introduced a novel approach to glaucoma 
screening, i.e., the Attention-Guided Stereo Ensemble Networks (AGSE- 
Net). The network considers abundant information from stereo image 
pairs to maintain reliability and robustness even when one image in the 
stereo pair is of poor quality, as well as incorporate attention mecha-
nisms for regions of interest while preserving global features. 

The network is very efficient in terms of the training labels needed, as 
both the attention localization and glaucoma diagnosis are fully- 
automatic and can be trained in an end-to-end manner with image- 
level annotation only. Hence, significant labor and time can be saved 
by avoiding manually labelling optic disc bounding-boxes or segmen-
tation masks. 

By performing ablation studies on the network performance with and 

Table 2 
Ablation Studies on Effects of Attention and Stereo Images (top results are high-lighted in bold). Comparisons between the results show that all four performance 
metrics of “Left CNN + Left Attention Net” are higher compared to those of “Left CNN Only”, while the standard deviations of “Left CNN + Left Attention Net” are lower 
compared to those of “Left CNN Only”. The same can be observed for the right-hand-side counterparts. This indicates that the Attention Net leads to more accurate and 
yet stabler performance compared to a CNN without attention. Our results show that the Attention Net alone does not out-perform a CNN without attention. We also 
observe that “Left CNN + Right CNN” outperforms “Left CNN Only” or “Right CNN Only”, “Left Attention Net + Right Attention Net” outperforms individual “Left 
Attention Net” or “Right Attention Net”, and “Left CNN + Left Attention Net + Right CNN + Right Attention Net” outperforms individual “Left CNN + Left Attention 
Net” or “Right CNN + Right Attention Net”. This shows the importance of stereo pairs.  

Network Branches Attention Stereo 
Image 

Precision 
(Mean/Standard 
Deviation) 

Recall 
(Mean/Standard 
Deviation) 

Average Precision 
(Mean/Standard 
Deviation) 

Accuracy 
(Mean/Standard 
Deviation) 

Left CNN Only No No 82.25/6.11 87.77/6.04 91.01/3.49 92.55/1.74 
Right CNN Only No No 83.15/4.74 87.00/7.90 92.46/2.70 93.02/1.50 
Left Attention Net Only Yes No 82.10/6.56 84.70/7.27 89.20/4.53 91.81/1.80 
Right Attention Net Only Yes No 82.99//6.09 85.95/6.31 92.22/2.89 92.43/1.97 
Left CNN + Left Attention Net Yes No 85.47/5.29 87.80/4.52 91.43/2.79 93.50/1.41 
Right CNN + Right Attention Net Yes No 86.25/3.87 87.57/5.09 93.31/2.36 93.85/1.54 
Left CNN + Right CNN No Yes 89.81/2.86 91.04/4.91 94.89/1.50 95.46/1.11 
Left Attention Net + Right Attention Net Yes Yes 88.38/4.76 88.77/6.74 94.41/1.85 94.52/1.79 
Left CNN + Left Attention Net + Right CNN + Right 

Attention Net (as in Table 1, last row) 
Yes Yes 94.72/1.52 95.48/3.66 95.23/1.18 97.12/0.96  

Fig. 4. Examples of the learned attention masks and the corresponding original 
images. The first row includes two images of poor quality together with their 
attention masks. The second row includes two images of normal quality 
together with their attention masks. 

Fig. 5. A sample stereo image pair with poor quality on one side.  
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without attention, we validate the effectiveness of focusing on disc re-
gions in a cost-efficient manner. As the attention module is implemented 
simply with a convolutional layer inserted at a single backbone location, 
there is a potential to apply the same attention module to multiple layers 
in the backbone CNN feature extractor layers to detect regions of interest 
at different scale, thereby achieving better results. By comparing results 
with and without stereo image ensembles, we have shown that the left 
and right images can compensate each other in terms of image quality 
and glaucoma information to generate more robust results. 

In general, ensemble methods show their effectiveness when the 
individual components of the ensembles capture different information. 
As we are using the same backbone CNN feature extractor (ResNet-34) 
for all individual components, the improvement of the model perfor-
mance after ensemble can be deemed as contributions from different 
features extracted by each network components. Hence, we can 
conclude that the attention module and the stereo image adopted are 
capable of providing distinct yet important features to jointly improve 
prediction performance. 

In future work, we plan to implement other attention-based tech-
niques, including multi-scale attention and channel-wise attention on a 
wider range of image types. Methods to efficiently supervise the atten-
tion training process is also an important topic to improve the accuracy 
and effectiveness of the attention mechanism that we may further 
investigate. 
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