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Experimental discovery of ultralarge elastic deformation in nano-
scale diamond and machine learning of its electronic and phonon
structures have created opportunities to address new scientific
questions. Can diamond, with an ultrawide bandgap of 5.6 eV, be
completely metallized, solely under mechanical strain without
phonon instability, so that its electronic bandgap fully vanishes?
Through first-principles calculations, finite-element simulations
validated by experiments, and neural network learning, we show
here that metallization/demetallization as well as indirect-to-direct
bandgap transitions can be achieved reversibly in diamond below
threshold strain levels for phonon instability. We identify the
pathway to metallization within six-dimensional strain space for
different sample geometries. We also explore phonon-instability
conditions that promote phase transition to graphite. These findings
offer opportunities for tailoring properties of diamond via strain
engineering for electronic, photonic, and quantum applications.

elastic strain engineering | machine learning | multiscale simulations |
metallic diamond | materials under extreme conditions

The exceptionally high hardness and stiffness of diamond, along
with its many extreme physical properties and biocompatibil-

ity, make it a desirable candidate material for a wide variety of
mechanical, electronic, photonic, biomedical, and energy appli-
cations. Recent experimental discovery (1) has established that
monocrystalline and polycrystalline diamond nanoneedles (diam-
eter ∼300 nm) can be deformed reversibly to local elastic tensile
strains higher than 9% and 3.5%, respectively, at room tempera-
ture. These findings have been independently corroborated by
subsequent deformation experiments (2) on nanoscale pillars
produced by focused ion beam slicing of natural diamond speci-
mens. Here the largest local tensile strains of 13.4% and 9.6%,
respectively, are realized in <100>- and <110>-oriented nano-
needles (2) of single-crystal diamond during bending, whereas the
corresponding maximum local compressive strains of −14% and
−10.1%, respectively, are observed on the compression side.
These advances offer hitherto unexplored possibilities whereby

functional properties of diamond can be purposely tailored and
significantly altered through strain engineering. One pathway to
accomplish this goal is to develop ab initio calculations and ex-
perimentally validated finite element simulations for reversible
straining. Results from these analyses are then used to train
machine-learning algorithms to find optimized material properties
for diamond for different geometries and loading conditions by
scanning all possible combinations of deformation states within
the general six-dimensional (6D) strain space employing reason-
able computing resources (3).
Motivated by such possibilities, we focus here specifically on

addressing the following scientific questions:

1) Is it possible to metallize diamond at room temperature and
pressure, from its natural unstrained state with an ultrawide
electronic bandgap of 5.6 eV to full metallization with 0-eV
bandgap, without phonon instability or structural transforma-
tion such as graphitization, solely through the imposition of
strain?

2) What are the strain states and the lowest strain energy density
required to achieve such “safe” bandgap metallization among
all possible combinations of straining?

3) How much of such “safe” metallization can be realized within
deformation conditions that have already been shown to be
achievable experimentally?

4) How do crystallographic and geometric variables influence the
metallization of diamond?

5) What are the conditions that trigger indirect-to-direct bandgap
electronic transition, or a competing graphitization phase
change, in diamond under straining?

Here we demonstrate that it is possible to achieve 0-eV
electronic bandgap in diamond exclusively through the imposi-
tion of reversible elastic strains, without triggering phonon in-
stability or phase change (4, 5). This discovery implies that
reversible metallization/demetallization is feasible through judi-
cious design of mechanical loading conditions and geometry in
nanoscale diamond. We further show that “safe”metallization can
be achieved at elastic strain energy density values on the order of
95 to 275 meV/Å3, comparable to what has been demonstrated
in experiments of reversible deformation of diamond nanopillars
(1, 2). Our results also reveal that even simple bending of low-
index <110>-oriented monocrystalline diamond nanoneedles can
effectively reduce the bandgap from 5.6 eV down to 0 eV without
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phonon instability, at about 10.8% local compressive elastic strain.
Further bending the nanoneedle can, however, induce phonon
instabilities (5) that lead to irreversible sp3 → sp2 (diamond to
graphite) phase transition or fracture. Indeed, plasticity induced
by such sp3 → sp2 phase transition has recently been observed in
the large bending of a single-crystalline diamond pillar (6), sub-
stantially agreeing with our calculations. Similar graphitization
transition is also seen in nanoindentation experiments (7). Navi-
gating the treacherous elastic strain space above 80 meV/Å3 or
at >9% local compressive or tensile principal elastic strain to in-
duce complete metallization in diamond without encountering
phonon instabilities is a “holy grail” demonstration for power
electronics, optoelectronics, and quantum sensing systems.
Whether mechanically strained or not, the absence of imagi-

nary phonon frequency for the wavevector in the entire Brillouin
zone is the hallmark of a locally stable crystal lattice (5, 8, 9). If a
strained perfect crystal lattice has a stable phonon band struc-
ture, then at T = 0 K and in the absence of defects such as free
surfaces, interfaces and dislocations, this lattice is guaranteed to
avoid spontaneous phase transition or defect nucleation. Con-
sequently, phonon stability is the minimal requirement for lattice
stability and loading reversibility (5). If such a phonon-stable
diamond can have zero electronic bandgap, Eg = 0 eV (re-
duced from Eg = 5.6 eV at zero strain), then this extreme elec-
tronic material (10) is expected to demonstrate unprecedented
functional flexibility, from ultrawide bandgap semiconductor to
the far-infrared and even metallic, in one material, without any
change in chemical composition and possibly under dynamic
loading. The electronic band structures of diamond under ten-
sorial strain can be predicted with high accuracy based on ab
initio density functional theory (DFT) followed by many-body
GW (G, Green’s function; W, screened Coulomb interaction)
calculations (11). However, because GW calculations are com-
putationally expensive, it is necessary to invoke a stress–strain
constitutive law for modeling large elastic deformation of dia-
mond in any arbitrary sample geometry, along with fast proxy
models for the electronic and phonon band structures. In this
work, we employ machine-learning algorithms of band structures
(3) based on an artificial neural network (NN) approach, so as to
perform coupled ab initio and finite element calculations with
constitutive laws based on NNs (see Methods for details). The
coupling of this simulation to loading and/or device geometry
optimization (12) and computer-aided design (13) provides a
unique and hitherto unknown pathway to engineer “safe” met-
allization in diamond.

We first present some 6D strain states in Fig. 1 which make
the bandgap of diamond vanish without phonon instability or
graphitization. In the crystallographic [100][010][001] coordinate
frame, our calculations show that one such complete and “safe”
metallization occurs when the local 6D strain state is (0.0536,
−0.0206, −0.056, 0.0785, 0.0493, 0.0567). Fig. 1A is a k-space plot
of the GW electronic band structure for diamond deformed to
this particular 6D strain state, resulting in a direct metal (see SI
Appendix, Fig. S1 for comparison of GW electronic band struc-
ture with that for DFT). Contours of strain energy density are
plotted in two-dimensional (2D) strain space in Fig. 1B where
the star symbol in black, represents h = 98.7 meV/Å3. Note that
the strains and strain energy density values in Fig. 1 are com-
parable to the values achieved experimentally (1, 2) in reversible
ultra-large elastic bending of diamond nanoneedles or pillars.
Fig. 2 further illustrates our discovery of the region of “safe”

metallization of diamond without phonon instability and dem-
onstrates reversible indirect-to-direct bandgap transitions under
large elastic strains. Possible strain states in the three-dimensional
(3D) space of normal strains «11, «22, and «33, spanning −20%
(i.e., compressive strain of 0.2) to +10% (i.e., tensile strain of 0.1)
within which “safe” metallization is induced (highlighted in brown
color) are shown in Fig. 2A. Regions of metallization are also
plotted in Fig. 2B in the 2D strain space of «11versus «22, with the
other four strain components held fixed (i.e., formed as a result of
2D projection out of 3D strain region tessellated by cubes on to
the plane «33 = −0.056 in Fig. 2A). The triangle data points of
different colors in Fig. 2B represent results of computational
simulations of the effect of mechanical strain on bandgap and
band structure. Two types of “safe”metallization, direct metal and
indirect metal (where the band-edge transition is indirect, i.e.,
from two different k-points), are identified. The 2D region of di-
rect metal, shaded in brown, encompasses the strain state repre-
sented by the star symbol, which was discussed in Fig. 1. This zone
is embedded within the strain space of direct bandgap (blue re-
gion, Fig. 2B). The region of indirect metal, also shaded in brown,
is surrounded by the white zone representing the strain space for
indirect bandgap (comprising magenta-colored data points from
our simulation). In Fig. 2C, the GW band structure is plotted in
the k-space to illustrate such indirect-metal state at point c (Fig.
2B) inside this zone of “safe” metallization. Examples of nonzero
direct and indirect bandgap cases indicated by the band structure
plots are shown in Fig. 2 D and E, respectively. The area shaded in
gray outside of the dashed lines is the region of large elastic strains
and unstable metallization where phonon instability leading to

Fig. 1. Metallization of diamond. (A) Electronic band structure k-space plot showing complete closure of bandgap leading to metallization of diamond
which is subjected to deformation at a 6D strain state of (0.0536, −0.0206, −0.056, 0.0785, 0.0493, 0.0567) in the [100][010][001] coordinate frame. An entire
region of strains exists for the metallization of diamond and a 2D cross-section plot of normal strain components «11   and  «22 is illustrated in B. The axes in B
are absolute strain component values of «11 and «22, with the other four strain components fixed at −0.056, 0.0785, 0.0493, and 0.0567. Color contours in-
dicate regions of constant elastic strain energy density (h) for different deformation states. The black star symbol denotes the strain energy density value, h =
98.7 meV/Å3, which corresponds to the band structure plot shown in A.
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defect nucleation and/or phase transition occurs (5). Fig. 2F re-
veals pronounced reduction in phonon frequency and the occur-
rence of soft mode associated with strain point f in Fig. 2B where
phonon instability and associated phase transition from diamond
to graphite takes place. The location of the special strain region
containing metallization is not unique in a general 6D strain hy-
perspace and such stratified regions may exist in a broad range of
semiconductors. Our findings offer a systematic strategy in the
search for strain-engineered semiconductor-to-metal transition,
indirect-to-direct bandgap transition, as well as phase transition.
Experiments show that diamond nanoneedles exhibit ultra-

large elastic bending before fracture (1). Such deformation,
resulting in local compressive strains larger than −10% and
tensile strains in excess of 9%, is reversible upon release of the
load. Here we apply simulations to determine bandgap modu-
lation in bent diamond nanoneedles at maximum local strain
levels that are known to be experimentally feasible (SI Appendix,
Table S1). Fig. 3A schematically illustrates the method whereby a
diamond indenter tip pushes on a diamond nanoneedle to induce
large deformation (1). The finite element method (FEM) is used
to simulate the sideward bending moment of the diamond needle
upon contact with the indenter tip and account for nonlinear
elasticity, orientation of the cubic lattice with respect to the
needle axis, the bending direction, and possible friction between
the indenter tip and the needle.
Fig. 3B shows FEM results of local compressive and tensile

strains of the deformed geometry of <110> diamond nanoneedle,
with the maximum compressive and tensile strains of −10.8% and
9.6%, respectively. The accuracy of FEM predictions is validated
by direct comparison with experimentally measured indentation
load plotted against displacement (1). The corresponding predic-
tions, from our simulations, of the distribution of bandgap are also
plotted in Fig. 3B. The onset of “safe”metallization appears in the
severely strained compressive side of the nanoneedle at a local
strain of −10.8%, as shown in Fig. 3C. The propensity toward
increasingly more metal-like behavior with increasing strain is
independent of friction between the indenter and the nanoneedle
(see SI Appendix, Fig. S3). The <110> nanoneedle can withstand
up to 12.1% local tensile strain before incurring phonon instability
on the tensile side, at a bandgap of 0.62 eV, as shown in Fig. 3D.
The maximum attainable local tensile strain of 9.6% on the tensile
side of <110> single-crystal natural diamond samples (2), as
compared to theoretical predictions of higher values (SI Appendix,
Fig. S4 and Table S1), could be attributed to the presence of
dislocations and/or other surface-related defects (14–17). The
compressive side is more tolerant to deformation. The maximum
attainable compressive strain could be on the order of −20% along
a low-index orientation (18), suggesting that there is room for ad-
ditional elastic deformation after achieving “safe” metallization in
compression-dominated regions. Note that due to the zero-point
motion effect (19) and the Varshni effect (20), for physical exper-
iments performed at room temperature, the bandgap of diamond is
expected to be even smaller than estimated here by 0.4 to 0.6 eV
(21, 22). This understanding leads to the inference that safe met-
allization in diamond can occur at elastic strain levels somewhat
smaller than indicated by our analysis, making it even more easily
achievable than appears from the quantitative results plotted here
(see Methods for details).
Crystallographic orientation of the nanoneedle axis is another

variable determining the extent of large deformation and the
resultant bandgap modulation. This orientation effect is illus-
trated in SI Appendix, Fig. S5 A and B. Among the three types of
nanoneedles studied, the <110>- and <111>-oriented nano-
needles require relatively smaller tensile strains to reduce bandgap
through straining, whereas the <100> orientation is the hardest
orientation to reduce bandgap below 2 eV or approach metalli-
zation. This distinction can be attributed to the difference in
flexibility to access all six components of the strain tensor expressed

in the [100][010][001] coordinate frame. Despite the possibility of
extremely large strain in a <100>-oriented nanoneedle, this ori-
entation primarily facilitates normal strains (with the shear com-
ponents «23, «13, and «12 being relatively much smaller) and the
resultant maximum bandgap reduction is limited before phonon
instability is reached, causing fracture or phase transformation (5).
For deformation of the <110>- and <111>-oriented needles, on
the other hand, it is relatively easier to initiate both normal and
shear strain components necessary for band structure engineering
(3, 23–25) and the resultant bandgap modulation. In the <111>-
oriented needles, these strain conditions further facilitate indirect-
to-direct bandgap transitions in diamond. The spatial evolution of
the “safe” direct bandgap regions in our nanoneedles can be found
in SI Appendix, Fig. S5C. Bending direction is another geometrical
factor, as shown in SI Appendix, Fig. S5D. For a low-index-oriented
needle, we find bending direction has little influence on the max-
imum bandgap reduction in the bent needle.
Beyond the configurations considered here, more complex 3D

loading geometries with holes and notches through topology
optimization (26) and micro- and nanomachining of geometric
features (27, 28) can be designed without exposing the metallized
zone to near-surface regions (29), further increasing possibilities
for metallizing diamond. These methods for deep elastic strain
engineering are equally applicable to map the indirect-to-direct
bandgap transition locations in diamond for the most general 6D
straining case, as indicated in Fig. 2 A, B, and D. When strained
diamond is transformed into a direct bandgap semiconductor,
even only locally at the site of maximum strain, it would exhibit a
fundamental enhancement in its optical transitions around the
adsorption edge compared to an undeformed diamond in its
natural state. This transition arises from the absence of phonon
involvement (momentum change of electron) in the adsorption or
emission process. Since absorbance increases exponentially with
thickness in a material, a light energy conversion device based on
direct bandgap semiconductor with a high adsorption coefficient
and rationally engineered bandgap value would require much less
thickness to absorb the same amount of light with a variety of
wavelengths, from the visible to the far-infrared. These consider-
ations could pave the way for designing high-efficiency photo
detectors and emitters from ultraviolet to the far-infrared on a
single piece of diamond. As photons and excitons are the primary
tools for quantum information processing, this extreme ability to
mold diamond’s band structure will also be highly consequential
for quantum sensing and quantum computing applications.
To perform simultaneous mechanical deformation and electronic

properties evaluation, further studies could combine in situ nano-
electromechanical loading experiments inside a transmission elec-
tron microscope with built-in electron energy loss spectroscopy
(EELS). It is known (30–32) that EELS is reliable for assessing the
bandgap value (including surface plasmon mapping) as well as
indirect-to-direct bandgap transition in diamond. Indentation and
anviling (compression under extreme pressures) coupled with in situ
photoluminescence (33–35) or cathodoluminescence (36) spectros-
copy as well as electrical resistivity measurement (37) further add to
the toolbox for characterization of mechanically induced properties
including superconductivity of diamond (38–40).

Methods
First-Principles Calculations. The Vienna Ab initio Simulation Package (VASP)
(41) was used for DFT calculations to predict the evolution of bandgap and
band structure of diamond subjected to mechanical deformation. We in-
voked the generalized gradient approximation in the form of Perdew–

Burke–Ernzerhof’s (PBE) exchange-correlation (42) functional and the pro-
jector augmented wave method (43) in our DFT computation. A plane-wave
basis set with an energy cutoff of 600 eV was adopted to expand the elec-
tronic wavefunctions. The Brillouin zone integration was conducted on a
13 × 13 × 13 Monkhorst–Pack (44) k-point mesh. Atomic coordinates in all of
the structures were relaxed until the maximum residual force was below
0.0005 meV/Å.
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Many-body GW corrections were performed when bandgap evaluations
were needed. It is known that an extremely accurate GW calculation would
involve choosing “infinitely” large values for several interdependent pa-
rameters (45, 46). Given the situation that we need to construct a huge
dataset of GW bandgaps for machine-learning purposes and conduct many
calculations for varied 6D strain cases, we hereby struck a balance between
efficiency and effectiveness. Specifically, we chose the q-grid to be 6 × 6 × 6,
the screened cutoff to be 600 eV, and the number of bands for both di-
electric matrix calculation and Coulomb hole summation to be 600. In ad-
dition, beyond the single-shot G0W0 method, we allowed two to three
iterations of the Green’s function in our calculations to obtain accurate
quasi-particle shifts. This partially self-consistent GW0 calculation is known to
yield results that are in agreement with available experimental measure-
ment for semiconductor materials (47) and better than plain DFT calculations
using hybrid functionals (48). For undeformed diamond, our calculation indi-
cates a +1.5-eV GW correction to the DFT–PBE bandgap, which matches values
reported in recent literature (49). For general 6D strain cases, this correction
may vary (see SI Appendix, Fig. S1 for an example). Diamond primitive cells

were used for DFT and GW calculations. All band structures were plotted by
VASP with a Wannier90 interface (50–52).

We also acknowledge that, even at 0 K, due to the quantum zero-point
motion, further corrections need to be made to the electronic levels of di-
amond. This renormalization of bandgap could be −0.6 eV to −0.4 eV for
undeformed diamond (21, 22). We consider this correction value to be
negative in other cases of our interest. According to the temperature-
dependent “adiabatic Allen–Heine formula” (19, 53), by setting T = 0 to
zero-out the Bose–Einstein occupancy factors, the zero-point renormaliza-

tion of the band structure (ΔEZP
nk) arising from the electron-phonon inter-

action could be expressed as

ΔEZP
nk ≡ ΔEnk(T = 0) = ∑

ν

∫
dq
ΩBZ

[∑
n’

⃒⃒
gnn’ν(k,q)

⃒⃒2
«nk − «n’k+q

] + ΣDW
nk ,

where «nk is the single-particle eigenvalue of an electron with crystal mo-
mentum k in the band n, the integral is over the Brillouin zone of volume

Fig. 2. Stratification of the strain hyperspace into regions of metallization and bandgap transition in diamond. (A) Metallization in elastically strained di-
amond for different values of normal strain components «11, «22, and «33, with the other three strain components held fixed. The plane with «33 = −0.056
(colored as light green) cuts the 3D volume and results in a projection onto the «11–«22 2D plane. (B) Detailed characterization of the «11–«22 strain space
includes a region of direct metal (brown) strains within the region of direct bandgap (blue) strains and a region of indirect metal (brown) strains within the
nonzero indirect bandgap strains (white zone with magenta symbols). The black star in indicates the same strain case (0.0536, −0.0206, −0.056, 0.0785, 0.0493,
0.0567) discussed in Fig. 1. An alternative visualization of the metallization strains in A is presented in SI Appendix, Fig. S2. (C) GW band structure of the
diamond strained within the “safe”metallization region resulting in an indirect metal. Strained diamond (D) with a direct bandgap (point d in B) and (E) with
an indirect bandgap (point e in B). The strain region of phase transformation in diamond (usually associated with phonon instability) is shaded in gray in B. (F)
A phonon density of states (DOS) plot corresponding to point f in B illustrates imaginary phonon frequencies (indicated by the magenta arrow) when
structural instability occurs. (Inset) A magnified view near zero frequency.
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ΩBZ, the outermost summation is over all phonon branches ν, and the first-
order electron–phonon matrix elements gnn’ν(k,q) describe the scattering
from an initial state with wave vector k to a final state with wave vector
k + q, with the emission or absorption of a phonon with crystal momentum q
belonging to the phonon branch ν. The first term on the right-hand side is

the Fan–Migdal self-energy term (54) and the ΣDW
nk term is the Debye–Waller

(DW) self-energy term. Given the DW term are normally much smaller than
the Fan-Migdal term [about 1:5 in diamond (21)], the deciding factors to the

sign of ΔEZP
nk are the denominators «nk − «n’k+q. The change of bandgap can

be qualitatively evaluated by considering the relative shift of the valence
band maximum (VBM) and conduction band minimum (CBM). For VBM, we
can further assume the coupling primarily comes from scattering within the
valence bands. Since no values of «n’k+q in the valence bands can be larger

than «nVBMk, the denominators «nVBMk − «n’k+q would always be positive and

the resultant ΔEZP
nVBMk would also be positive. Similarly, «nCBMk − «n’k+q at CBM

and the resultant ΔEZP
nCBMk would always be negative. The upward shift of

VBM and downward shift of CBM would, therefore, result in an overall re-
duction in the computed bandgap of diamond. Therefore, from this per-
spective, we provided a generally conservative estimation of the strain
magnitude required for engineering the bandgap. The actual bandgap may
be even smaller than we predicted at particular strain levels as in Fig. 3,
allowing metallization to be safely achieved more easily.

To identify the phonon instability boundaries, we performed phonon
stability calculations for densely sampled strain points in 3D or 2D strain
space. These calculations were primarily carried out using the VASP-Phonopy
package (55); 3 × 3 × 3 supercells were created, and phonon calculations
were conducted with a 3 × 3 × 3 k-point mesh. Whenever accurate phonon
stability check was needed for diamond primitive cell, density functional
perturbation theory (56) as implemented in Quantum ESPRESSO (57) was
adopted, with a dense 11 × 11 × 11 k-grid and 6 × 6 × 6 q-grid.

Machine Learning. The bandgap distribution in diamond nanoneedles de-
formed to different strains was computed using machine-learning algo-
rithms. This is done by representing deformation as a strain tensor and using
an artificial NN to fit the strain states against respective bandgap values
obtained accurately by first-principles calculations. The NN fitting is imple-
mented within the TensorFlow framework, an end-to-end open-source
machine-learning platform released by Google (58). The specific design,
similar to our previous work (3), involves a feed-forward architecture with
hidden layers capable of learning the variations of band structure and
bandgap with respect to large mechanical deformation. In order to inte-
grate both the PBE and GW datasets we prepared by first-principles calcu-
lations and to produce more consistent and accurate machine learning
outcomes, the same “data fusion” technique as in our work in ref. 3 was
used. It took the quantitative advantage of PBE and the qualitative advan-
tage of GW by interpolating between them to achieve decent NN fitting
results with only ∼104 PBE and ∼103 GW calculations, successfully alleviat-
ing the need for the otherwise impractical submillion-level amount of
computations.

Finite Element Modeling. The ABAQUS (Dassault Systèmes Simulia Corp.)
software package was employed to conduct FEM analyses on specimen
models, which replicated the 3D geometry of the diamond nanoneedles.
Both the cube corner indenter and the nanoneedle were specified as de-
formable solids using the same elastic properties. A frictional sliding contact
was specified between the nanoneedle surface and the indenter surface.
Geometric nonlinearity induced by large deformation was accounted for.
Neo-Hookean nonlinear elasticity model was used to simulate large defor-
mation. The equivalent small-strain Young’s modulus was given as 1,100 GPa
and the Poisson’s ratio 0.0725 (1). Since friction makes a negligible change to
the deformed shape, the friction coefficient between the nanoneedle and
the indenter was taken to be 0.1.

Fig. 3. Metallization in diamond nanoneedles. (A) Schematic of the bending of single-crystalline diamond nanoneedle by diamond nanoindenter tip inside a
scanning electron microscope. (B) FEM predictions of the local compressive and tensile strain distributions (left and middle needle, respectively) and pre-
dictions by the machine-learning algorithm of the distribution of bandgap (right needle) for a diamond nanoneedle with its <110> crystallographic direction
aligned with the needle axis. (Inset) A scanning electron micrograph of the deformed nanoneedle during the bending experiment, from ref. 1. Reprinted with
permission from AAAS. (C) Increasing magnitude of bending in the <110> nanoneedle causes a significant reduction in bandgap of diamond from 5.6 eV
(zero strain) down to 0 eV for a maximum local compressive strain of −10.8% (the corresponding maximum local tensile strain on the tension side is 9.6%). (D)
Local tensile strain beyond 12.1% results in fracture or graphitization on the tensile side of the nanoneedle according to our ab initio calculations, even when
there are no preexisting defects. See also Movie S1 for the evolution of elastic strain energy, bandgap, and the corresponding band structure at the maximum
compression site in the nanoneedle, showing the medialization process.
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Data Availability. Data supporting the findings of this study are available in
the paper and SI Appendix.
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