Scientists at NTU Singapore develop lensless imaging technology

BY: PRIYANKAR BHUNIA

GEOGRAPHY: SINGAPORE

PUBLISHED: 15 MAR 2018
in imaging purposes for medicine, surveillance and astrophysics.

Scientists at Nanyang Technological University, Singapore (NTU) have developed a new camera technology that can take sharp, colour images without using a lens and colour filters.

A conventional camera utilises optics made from glass or plastic lenses to capture light and guide it onto colour filters and camera sensor in order to obtain sharp colour images. These lenses are usually bulky in size and expensive due to the precision manufacturing required.

The scientists created multi-coloured images by using only a piece of ground glass and a monochrome (black and white) sensor and ‘reverse engineering’ the light that is scattered by the translucent matt surface of the ground glass. Since different wavelengths of light are scattered differently by the ground glass, an algorithm was created to reconstruct the original image that was projected on to the ground glass.

The scientists created a library of ‘speckle patterns’ linked to each wavelength of light, including those in the infrared and ultraviolet spectrums which are not visible to the naked eye.

Professor Yoon Soon Fatt, Chair of NTU’s School of Electrical and Electronic Engineering, noted that the innovation was the result of interdisciplinary research involving both physics and photonics engineering.

“How light interacts with objects change with varying wavelengths, so our scientists had to think out of the box, in order to design a camera not limited by the typical red, green and blue spectrums. This research is an example of how advanced photonics research can lead to potential improvements to diagnostics, sensing and surveillance technologies,” Prof Yoon said.

The project was led by Assistant Professor Steve Cuong Dang from the NTU School of Electrical and Electronic Engineering and it took him and his researchers, Dr Sujit Kumar Sahoo, and Dr Tang Dongliang, over a year of research and development.

Applications
By removing the need for a lens and colour filters and replacing them with ground glass, this innovation could potentially make compact cameras and smartphones slimmer.

This is also much more cost-effective compared to existing multispectral cameras on the market.

In addition, this new imaging technique could also help to improve imaging applications in biomedical and scientific applications, as the technology can reconstruct images in other multiple wavelengths invisible to the naked eye, like infrared and ultraviolet. These are used for imaging purposes in medicine, surveillance and astrophysics. The technology can also reconstruct images taken at the microscopic scale.

Assistant Professor Dang said, “The unique feature of our camera is that it can capture any range of light spectrum, unlike existing cameras on the market which are pre-fixed. It is also less affected by optical alignment issues like conventional cameras, because there are no moving parts and no focusing optics.”

This camera could also be used in areas like food safety, where one can take a photo of fruits or meat in particular spectra to look for spots that are associated with chemicals or bacterial activity leading to spoilage.

For instance, the research team used their technique to distinguish between two different apple juices which look identical to the naked eye but have different colour spectrums signalling their difference in ingredient or freshness.

It could also be used in forensics, as the camera could be tuned to capture a wide spectrum, including near infrared and ultraviolet, to reveal clues or evidence invisible under normal circumstances.

A patent has been filed for this new technology by NTU’s innovation and enterprise arm, NTUitive.

Supported by NTUitive and the LUX Photonics Consortium, the team received keen interest from industry players and potential adopters to further develop this technology in the fields of vision correction and chemical sensing. The research team plans to engage industry partners to explore adaptation of their technology for real-world applications.
Australia and US join forces to advance cancer and paediatric healthcare
15 MAR 2018

AI Singapore enters into new partnership to train 2000 students and developers over 3 years
15 MAR 2018

Australia’s DTA partners peak ICT industry body to step up co-operation on digital transformation
15 MAR 2018
Scientists at NTU Singapore develop lensless imaging technology
15 MAR 2018

EVENTS

MARCH 22, 2018
Indonesia OpenGov Leadership Forum 2018
LE MERIDIEN JAKARTA

MARCH 28, 2018
AI The Game Changer for Government
RESORTS WORLD CONVENTION CENTRE SENTOSA

APRIL 9, 2018
Government Leadership Forum 2018
SHANGRI-LA HOTEL, SINGAPORE
APRIL 19, 2018
Philippines OpenGov Leadership Forum 2018
DUSIT THANI MANILA
MANILA

MAY 8, 2018
Harnessing the Power of Big Data and Analytics for Better Governance and Improving Citizens’ Lives
THE TAJ MAHAL HOTEL
NEW DELHI

MAY 17, 2018
Singapore OpenGov Leadership Forum 2018
MARINA BAY SANDS

MAY 24, 2018
Tackling Cyberthreats for Government IT Ecosystem: How well prepared are you?
GRAND HYATT ERAWAN BANGKOK, THAILAND
JUNE 5, 2018
Canberra OpenGov Leadership Forum 2018
📍 OLD PARLIAMENT HOUSE

JUNE 7, 2018
Victoria OpenGov Leadership Forum 2018
📍 PULLMAN MELBOURNE ALBERT PARK

JULY 11, 2018
Thailand OpenGov Leadership Forum 2018
📍 SOFITEL BANGKOK SUKHUMVIT

AUGUST 23, 2018
Wellington OpenGov Leadership Forum 2018
📍 INTERCONTINENTAL WELLINGTON
SIGN UP TO OUR NEWSLETTER

GO SUBSCRIBE

OpenGov releases news stories daily on trending topics within technology and the public sector. Join our newsletter to have weekly digests of our articles conveniently sent to your email address.

WHO IS OPENGOV?

We are a digital information platform and events company specialising in the public sector across Asia and ANZ. We are passionate about digital transformation in government, and this passion has won us multiple awards.

FOLLOW US AROUND THE WEB

SECTIONSTRANSLATE

Home
Events

Select Language

INFORMATION